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Abstract- This paper carries out an electric field theory analysis 
of the interaction between two polar electric fields that are 
bounded at a fixed radius, and this model is applied to the 
neutron. This analysis demonstrates that the bounding of the 
electric fields creates a force that is push-pull in nature and 
tracks the nuclear binding force profile, further predicting how 
the force changes as the separation between the neutrons is 
reduced far below the push-pull balance point. As an adjunct to 
this analysis it shows that in order to bind to the nucleus the 
proton must have a strong neutron-like field at the very core of 
the positron-like field normally experienced in everyday 
interactions. Further, that a neutron will still interact with the 
proton’s positron-like field after the separation between the 
neutron and the proton core increases so far that they no longer 
interact, but that this new interaction is weak and falls off very 
rapidly with distance and is inconsequential beyond a few 
neutron field radii. The consequences for the Lorentz Force 
Equation are also examined, and it is clear that the Lorentz 
equation applies only to electric fields generated by particles 
whose field radii are infinite in extent and as such cannot be 
applied to the neutron. 
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I. INTRODUCTION 

This paper is in three parts. In the first part the 
methodology for examining the interaction between two 
charged particles is developed. In the second part the 
interaction between two electrons is examined in detail, and the 
interaction is shown to have a structure. In the third part 
truncating the electric fields at a certain radius - as happens 
with the neutron - is shown to cause this same structure to 
create the push-pull force/distance relationship demonstrated 
by the nuclear binding force. 

Neutrons are known to have a composite 
attraction/repulsion force between them [1]. They are also 
known to have a positively-charged electric core. Various 
models have added to this, for example a negative outer region 
of the core has been proposed [2]. A 2007 paper by G.A. Miller 
suggested a model for the neutron of a negatively charged 
exterior to attract protons, a positively charged middle to repel 
them after they approach sufficiently, and a negative core [3]. 
All these models raised issues over how the neutrons bonded to 
each other in the nucleus against their mutual electrostatic 
repulsion to other neutrons, and likewise how the protons 
bonded to each other, leading to the conclusion that the nuclear 

binding force cannot be electromagnetic. As will be shown 
below, a simple bounded positive electric field is a sufficient 
and effective mechanism that causes neutrons to attract each 
other as well as protons. The model’s force-distance profile 
matches the nuclear binding force’s profile.  

 

II. CALCULATING THE FORCES BETWEEN TWO 

ELECTRONS 

When there are multiple sources of electric field such as 
two electrons, the composite electric field vector created by 
them at a point in space must be calculated by the vector 
addition of the field from each source at that point, so if E is 
the electric field vector then 

 1 2resultantE E E= +  

Consider a pair of electric charges q1 and q2 whose electric 
fields extend to infinity, as is the case with electrons. Separate 
them by a distance ‘r’ and choose the co-ordinates so that one 
charge is at [-r/2,0,0] and the other at [r/2,0,0] as shown in Fig. 
1. The inset shows the electric field vectors at point P[x,y,z]. 
The x-axis is drawn left to right on the sheet. The y-axis is 
vertical, and the z-axis points out of the page. l1 and l2 are the 
distances from the centers of charges q1 and q2 to the point 
P[x,y,z]. The total energy in the interaction is ‘W’ and the 
energy density dW/(dx dy dz) at point P[x,y,z] is given below 
[4]. 
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Figure 1. The potential energy density between two charges. 
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Now the first term is the energy density that the first 

electric field vector would have at that point if the first charge 
was alone in the universe. The third term is the energy density 
the second electric field vector would have at that point if the 
second charge was alone in the universe. The second term is 
the change in energy density caused by bringing the two 
charges together to interact. If we subtract the energy density 
of each field E1 and E2 as it would be at infinite separation we 
are left with the second term as the “change” component. 
When this term is integrated over all of space, we get the 
potential energy ‘U’ between the two charges in moving from 
an infinite separation to their current separation. Hence this 
change term is the “potential energy density” at an arbitrary 
point P[x,y,z] for a charge separation of r, and ‘dU/(dx dy dz)’ 
is the potential energy density at a point. 
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To find the total potential energy U at a separation r, first find 

the potential energy density at a point. 
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Now integrate dU/(dx dy dz) over all space. 
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We will not be able to integrate this for the analysis of two 
intersecting neutron-charge spheres because the limits are 
difficult to handle, as will become apparent in due course, 
being the intersection volume of two spheres. Further, there is 
an infinity in the equation at the center of each charge.  We 

know this cannot exist in reality as it would lead to the 
particle’s electric field having an infinite energy so there must 
be an inner limit to the charge distribution. There is little point 
in continuing with the integration because of problems with the 
limits when we come to look at the interaction between two 
neutrons and we need to use Finite Element Analysis which 
allows us to carry out a summation instead [5]. 

First, we can simplify the equation by noting that there is 
perfect rotational symmetry around the x-axis as all particles 
have rotational symmetry, provided they are placed along the 
x-axis as we chose to do for this analysis. We rotate the y-axis 
around the x-axis through 180 degrees, thereby replacing the 
integration over z with the term πy, to eliminate the z-axis. 
This makes the computational load of the Finite Element 
calculation much lower. This gives 
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This can be taken a little further if desired, by recognizing 
that the mirror symmetry around the y-axis allows us to 
integrate that axis over the range 0 to infinity, and double the 
result. 

We now convert the integration into a Finite Element 
summation. To avoid the inner limit on each charge where the 
equation goes to infinity, we can simply take about 1% of the 
charge separation as the inner radius limit without affecting the 
result significantly. The reason it does not affect the results 
very much is that the left charge in Fig. 1 has its fields to the 
left of it aligned with the field from the right charge and to the 
right the fields are in opposition to the same degree so as the 
gradient in the field from the right charge is sufficiently low 
over very short distances the effects from the right and the left 
will almost entirely balance out. These regions at the centers of 
the charges are eliminated from the summation. 

In theory for electrons the outer limits of the integration 
stretch to infinity which would make the summation 
impossible in finite time. In fact, as we travel farther from the 
charges the potential energy density falls off rapidly as the 
inverse cube of the distance from the center of the system. 
Even allowing that the volume of space involved is growing at 
the square of the distance from the center of the system, it still means 
that only about 1% of the potential energy lies outside a sphere of 

radius 100 times the separation between the charges. For our 
purposes this is an acceptable error and we can use this as the 
summation’s upper limit. 

With these revised limits the above equation allows us to 
calculate the potential energy. However, we are looking for the 
force between the two charges rather than the potential energy. 
We use the equation F=dU/dr, where force ‘F’ is equal to the 
rate at which energy U changes divided by the rate at which 
separation ‘r’ changes. The technique in Finite Element 
Analysis is to compute the potential energy at a desired 
separation, then change the separation by a small amount (but 
not too small or quantization errors from the Finite Element 
grid start to creep into the results) and recalculate the potential 
energy. Then the difference in the potential energies, divided 
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by the change in separation, gives us the force at that 
separation. 

 

III. USING THE FINITE ELEMENT SUMMATON METHOD FOR 

THE FORCE BETWEEN TWO ELECTRONS 

When we use the above approach for the force between two 
electrons q1 and q2 the result agrees with the value provided by 
the Lorentz equation for the force between two charges, with 
minor computational errors from the Finite Element approach, 
namely 
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In the form where one point charge is conceptually seen as 
lying in the distributed electric field of another we have 
F=q1E2. Here E2 is the electric field vector generated by charge 
q2 as seen at the center of q1. Conceptually, q1 is a point charge 
and the distributed field from q2 permeates all space. We can 
equally choose q2 to be a point charge in the distributed field 
from q1 and get the same result. This does not mean that one 
charge has miraculously become a point charge while the other 
remains a distributed electric field; it is merely a shorthand 
form that allows a quicker calculation. 

 

IV. THE STRUCTURE OF THE ELECTROSTATIC 

INTERACTION BETWEEN TWO ELECTRONS 

Let us look in more detail at the energy interaction between 
two electrons. Consider the numerator from (1). 
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This expands to  
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Inspection shows that the numerator is zero on the 
circumference of a sphere whose diameter ‘r’ is the line joining 
the two charges. The sign of the function changes as we move 
from inside the sphere to the outside; this tells us that there are 
attractive forces inside this region and repulsive forces outside 
it. Between two electrons Finite Element analysis tells us that 
this “Sphere of Attraction” generates attractive forces whose 
strength is about 22% of the repulsive forces outside the 
sphere, leading to a net repulsion.  

Between two opposite charges such as the electron and 
positron this sphere is a region of repulsion and in a similar 
way this repulsion is overcome by the stronger attractive forces 
outside the sphere. 

To get an idea of the structure of attraction and repulsion in 
the interaction between two electrons, consider Fig. 2, which 
shows how electric field lines from each charge are orthogonal 

to each other on the sphere whose diameter joins the centers of 
the two charges. Being orthogonal to each other, there is no 
interaction on the surface of this sphere between the charges 
and hence no potential energy is generated on this surface. 
Inside the sphere, however, the field lines intersect at between 
+90 to +270 degrees, so the fields oppose each other at least in 
part and hence tend to cancel each other. This reduces the 
energy density inside the sphere, leading to attractive forces in 
this region. Outside the sphere, however, the field vector 
intersection is between -90 to +90 degrees and the fields 
augment each other so that the energy density increases and 
repulsive forces are generated. The net effect is one of 
repulsion between the electrons, as the overall strength of the 
attractive forces inside the sphere is a little over one fifth of the 
repulsive forces outside the sphere. This ratio applies at all 
separations because the electron’s fields extend to infinity. 

Fig. 3 shows the classical field pattern which results from 

 
Fig 3. The composite field pattern between two electrons 

 
Figure 2. The orthogonal field vectors from each electron describe a 
sphere. 
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this field cancellation within the Sphere of Attraction from 
electrons q1 and q2. This structure looks rather like a repulsion 
pattern between the two electrons but nothing could be further 
from the truth. At point P in Fig. 3, midway between the 
electrons, the fields from the electrons are equal and opposite, 
so the energy density is zero and the attractive force is at its 
highest. Field regions that are vertically up and down from this 
point have their horizontal component cancelled leaving only 
their vertical component. Other flux lines to the left and right 
of these in Fig. 3 are continuous, running from the periphery to 
the center of one or other electron, but the nearer they are to P 
the greater the cancellation and the weaker the field strength 
and the higher the attractive forces. 

It can be seen that the flux lines between two electrons 
make a rather beautiful composite field pattern in space. More 
complex arrangements of charges create an art form of their 
own. No matter how complex the charge distribution, 
providing all the charges have fields that extend to infinity the 
net forces are perfectly described by the Lorentz Force 
Equation and its “point charge in a distributed field” approach 
works well. 

It is clear that for two charges of opposite polarity such as 
an electron and a positron the sphere of attraction becomes the 
sphere of repulsion. The repulsive forces are much smaller than 
the attractive forces outside the sphere and so the attractive 
forces dominate. 

 

V. THE ELECTROSTATIC FORCES BETWEEN TWO 

NEUTRONS 

Consider now what happens if the charges’ fields do not 
extend to infinity but are suddenly truncated at some finite 
radius. Equation (1) above is still valid, but because the limits 
of the interaction are truncated the limits of the integration 
changes and the result is no longer the Lorentz value. The 
neutron is such a particle, known to have a positive electric 
field truncated at a radius of roughly 0.7x10-15 meters. Consider 
Fig. 4, showing the interaction between two neutrons at three 
different separations. At each separation the black circles show 
the limits of the electric field of the two neutrons and the 
dashed circle indicates the limits of the Sphere of Attraction. 
The Finite Element summation limits cover only that region 
where the neutron fields overlap and therefore interact, namely 
that region which is simultaneously within the field boundary 
of both neutrons. We can reasonably assume that the field 
strength of the neutron follows the classic 1/r2 profile inside its 
charge radius. This region is shown dotted-in in Fig. 4 and the 
Finite Element summation limits cover those parts of the 
neutrons' fields that are inside the boundary radius of both 
fields.  

In Fig. 4a the neutron fields do not overlap, and at all 

separations greater than twice the truncated charge radius there 
is no overlap and hence no interaction. In Fig. 4b there is a 
partial overlap of the neutrons’ fields, and so there is an 
interaction; however, this interaction is entirely contained 
within the Sphere of Attraction and so at this separation the 
forces are entirely attractive. In Fig. 4c the Sphere of Attraction 
is small compared with the total overlap, and bearing in mind 
that most of the repulsive forces are generated inside a radius 
of about five times the separation it can be seen that the region 
of repulsion dominates. Finite Element Analysis gives the force 
profile shown in Fig. 5. This figure compares the 
force/separation curve of two neutrons of radius ‘t’. For 
reference, the 1/r2 curve that would apply if the neutron’s 
electric field extended to an infinite radius is shown as a dotted 
line. There is no interaction at a separation of more than twice 
the neutron’s charge radius ‘t’ as the fields do not overlap. 
Below this, as the neutrons come together, the attractive force 
rapidly climbs to a sharp peak at about 1.02t, then dramatically 
reverses into a very steep part of the curve, passing through 
zero force at a separation of 1.00t and continuing falling to 
converge with the 1/r2 curve. Two neutrons would therefore 
come to rest at a center-to-center separation of one neutron 
radius t where the force is zero. 

Diagrams of how the neutron-neutron force changes with 
separation generally show a softer curve than that shown in 
Fig. 5, having a soft peak to right of the theoretical peak. There 
are two possibilities for this difference. The first possibility is 
that nuclear kinetics limits the accuracy of measurement, 
softening the curve as if viewed through a low-pass filter and 
essentially smoothing out the sharp peak and instead showing 
just the broad outline of the curve. The second possibility is 
that the neutron’s electric field does not abruptly drop to zero at 
the limiting radius but fades to zero over a small shift in that 
radius (our calculation in Fig. 5 assumed a hard truncation of 
the electric field).  

Existing studies of the force between two neutrons agree 
with the right-hand side of the plot in Fig. 5 but detailed studies 
of the force as it drops below zero do not seem to exist, 
especially in the region of convergence to a 1/r2 curve at 
separations significantly less than the charge radius ‘t’. This 
information would be a real test of this approach. However, 

 
Figure 4. The interaction between two neutrons at different separations. 

 
Figure 5. Plot of force by separation for two neutrons 



 5 

with the information we have this theory gives a very good 
match to the attraction/repulsion forces between neutrons. This 
demonstrates that the electrostatic forces between neutrons are 
in fact likely to be the nuclear binding forces. It also confirms 
the inapplicability of the Lorentz Force Equation in this 
situation. For example, in Fig. 4b Lorentz predicts that there is 
no force because the center of one neutron is outside the 
electric field of the other so is in a region of zero external field 
strength, yet there is clearly an interaction in the region where 
the fields overlap. The Lorentz Force Equation works only for 
those particles whose electric fields extend to infinity. 

 

VI. A MODEL FOR THE PROTON 

With the electron we know that the electric field continues 
inwards to a fixed radius at which it is truncated, because if it 
continued to zero radius the rest mass/energy of the electron 
would be infinite. We could perhaps model the proton 
electromagnetically as a sort of super-electron where the inner 
radius of the field continues to a smaller radius than that of the 
electron. However, it is impossible to make such an object hold 
position inside an atomic nucleus that contains other protons 
and such a model will not work. However, a model that does 
work well is where the proton has a neutron-like core with a 
high positive field strength similar to the neutron’s, surrounded 
by a much weaker positron-strength positive field that extends 
from the inner core’s outer periphery out to infinity. The 
interaction between such a proton core and a neutron would be 
similar to that between two neutrons at close range, and would 
also serve to help bind protons into the nucleus against the 
mutual repulsion of their positron-like outer fields provided 
that the field strengths of the neutron and the proton core are 
some orders higher than that of the proton’s outer field 
strength. The attractive force is most effective when the 
neutron core and the proton core are of similar size. Two 
protons lying together would be forced slightly further apart 
than the zero-force rest point by the mutual repulsion of their 
outer fields. 

Where the neutron and the proton core are close but do not 
overlap and hence do not interact, and provided that the inner 
boundary of the proton’s outer field starts at the outer boundary 
of the proton core field, this methodology predicts that there 
will be a weaker close-range attractive force between the 

neutron’s field and the proton’s outer positron-strength field. 
Consider Fig. 6, with ‘p’ marking the proton and ‘n’ the 
neutron. The neutron and strong proton core fields are shown 
dotted. The neutron sits in the positron-strength outer field of 
the proton, with which it interacts as indicated by the drawn 
electric field vectors of the proton’s outer field. The Sphere of 
Attraction is shown as a dashed curve. In Fig. 6a the neutron 
and the proton core are close. The strong divergence of the 
proton’s outer field here means that the field is significantly 
stronger in the region of attraction to the left of the neutron and 
weaker in the region of repulsion to the right, and this leads to 
a net attractive force despite the slightly reduced area on the 
left. In Fig. 6b the neutron is farther from the center of the 
proton, and the attractive forces on the left of the neutron more 
nearly match the repulsive forces on the right, almost balancing 
out and leading to a much-reduced attractive force. In addition, 
the outer field of the proton is weaker at this separation, and the 
two effects combine to cause the attractive force to drop 
rapidly with increasing separation. This interaction between the 
neutron and the proton’s outer positronic field is weak 
compared to the nuclear binding force and falls off very 
quickly indeed. The core of one proton will also interact with 
the outer field of an adjacent one in the same way but except at 
small separations the effect is dwarfed by the mutual repulsion 
of the protons’ positron-like outer fields. This mechanism 
extends the region of attraction outwards. 

VII. CONCLUSION 

It is a popular tenet that the positive field of the neutron 

means that neutrons electrostatically repel each other and 

therefore the nuclear binding force cannot be electrostatic. 

This paper demonstrates that the reverse is true, in that 

bounded electric fields must exhibit a push-pull force profile. 

The models of the neutron and the proton used in this paper 

are exceedingly simple, and the match between this model of 

the nuclear binding force and actual experimental data are 

good. The simplicity of this model and its match with 

experimental data suggest that the nuclear binding force may 

well be electromagnetic in origin. The match is not perfect and 

there are undoubtedly other forces at work in the atomic 

nucleus but this is clearly a dominating mechanism. 
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Figure 6. The interaction between a neutron and a proton’s outer 

positron field. 


