
Electron spin 1/2 is ”hidden” electro-

magnetic field angular momentum

U. Kayser-Herold

March 18, 2018

Abstract

This is to present and discuss an alternative method for precise analyt-
ical determination of electron spin angular momentum ~/2. The method
is based on the Lorentz-force acting on a point-like charge moved through
the entire magnetic dipole-field of the electron. The result ~/2 coincides
with a previous result based on Lagrangian electrodynamics and confirms
the ”hidden” electromagnetic origin of spin angular momentum. Both
methods reveal a key role of the ”classical” electron radius.

1 Introduction

This analysis is to determine the electrons ”hidden” electromagnetic angular
momentum ~/2 (equivalent to its spin angular momentum), embodied in the
electromagnetic vacuum-field outside of a sphere of classical electron radius re,
by means of Lorentz-electrodynamics. The term ”hidden” refers to the invisibil-
ity of electromagnetic field angular momentum, corresponding to the canonical
angular momentum generated by a charge located in a magnetic field. [[1]], [[2]]

According to the Abraham-Lorentz conjecture the electron mass me is relativis-
tically determined electrostatic Coulomb-field mass located outside of a sphere
of classical electron radius re. Hence it is obvious that the electrons spin angular
momentum also is embodied in its electromagnetic field-mass, as suggested in
[[3]]. To prove this conjecture it has been attempted to determine electron spin
angular momentum ~/2 by analysis of the Poynting-vector field surrounding
an electron outside of a sphere of classical electron radius re, by volume inte-
gration of its assignable electromagnetic field angular momentum. However in
this case the envisaged spin angular momentum ~/2 did not match up with the
lower integration limit imposed by the classical electron radius re - as expected
- even if vacuum-polarization was considered. [[3]] A specific advantage of the
Lorentz-force approach presented here is that it is solely based on the quan-
tums of charge e and magnetic moment µb (Bohr’s magneton) thus avoiding
consideration of the Coulomb- and Poynting-vector fields presumably affected
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by vacuum-polarization.

Notwithstanding the perfect result obtained with Lagrange-electrodynamics [[4]]
there were raised some doubts with respect to the validity of the Lagrangian
method in a non-uniform dipole field. Therefore an alternative Lorentz-force
method will be used here to confirm the results achieved with Lagrangian elec-
trodynamics.

2 The Lorentz-force method

This method is based on determination of the Lorentz-force, -torque and -
angular momentum produced by a point-like charge during and after guided
radial motion through the whole magnetic vacuum-field of an uncharged point-
like dipole µ located at the origin (0,0,0), proceeding from ”infinity” towards
classical electron radius re where the motion is halted. A specific advantage of
Lorentz-electrodynamics is that it doesn’t require uniformity of the magnetic
field. Instead, the Lorentz-force can be determined by the local induction field
~B(r) in the equatorial plane of µ (where the charge moves along), irrespective
of its structure, in this case a dipole-field.
This analysis aims at a general determination of total (Lorentz-) angular mo-

mentum ~Ll transmitted by a point-like charge q to its guiding slide or similar
device, after having traversed the whole dipole-field ~B(r).

Let pe designate the equatorial (x-y) plane of a magnetic dipole ~µ centered at
its origin (0, 0, 0), such that the dipole axis of ~µ coincides with the z-axis.

Then the induction-field ~B(r,Θ) of a point-like dipole µ is generally given by

~B ≈ µ0 ~µ

4π r3

(
2 cosΘ + sinΘ

)
(1)

where µ0 = 1/ε0c
2 is the vacuum permeability, ~µ the dipole-moment, Θ the

polar angle and r the radial distance of a point from the origin.

For any point in the equatorial plane pe the following applies:
Θ = π/2→ cosΘ = 0, sinΘ = 1, ~B(~r) ‖ z and ~B(~r) ⊥ pe.

Thus in pe the first term in brackets in (1) vanishes yielding

| ~B(~r)| = µ0 ~µ

4 π r3
(2)

Now imagine a point-like probe charged with q initially being at rest on the
equatorial plane pe, at very large distance r ≈ ∞ from the origin where ~µ is
located.
Then let this probe be accelerated and conducted in radial motion with velocity

http://vixra.org/pdf/1702.0161v1.pdf
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~v towards the origin 0, 0, 0 until it reaches re where it is halted.
(It can be shown that such radial motion is no absolute requirement but sub-
stantially simplifies the calculus. What counts the the final position of q)

As soon as the charged probe is in radial motion with ~v through the induction-
field ~B(r) it immediately is subjected to Lorentz-force

~Fl = q ~v × ~B(r) (3)

oriented perpendicular to its instantaneous velocity ~v and the local induction
~B(r).
While the moving probe is subjected to Fl it delivers an instantaneous Lorentz-
torque

~Tl = ~r × Fl = q ~r × (~v × ~B(r)) (4)

into its radial guiding slide.
Now imagine ~Tl would act during a time-differential dt. Then an angular mo-
mentum differential d~Ll was imposed on the guiding slide

d~Ll = ~Tl dt = ~r × ~Fl dt = q ~r × ( ~v × ~B(r)) dt = q ~r × ( ~dr × ~B(r)) (5)

Note that in (5) the time-differential dt has been substituted by the radius-
differential dr using ~v = d~r/dt or dt = dr/v. Thus the angular momentum

increment d~Ll in (5) becomes independent of ~v, only depending on d~r and ~B(r).

Substitution of ~B(r) in (5) with (2) yields:

dLl =
q µ0 µ

4 π

dr

r2
(6)

Then total angular momentum Ll along the whole pathway from r = ∞ to
r = r0 generally is

Ll =

∫ ∞
r0

dLl =
q µ0 µ

4 π

∫ ∞
r0

dr

r2
=
q µ0 µ

4 πr0
(7)

Further substitution in (7) with the electron characteristics:

q = e, µ = µB = e~/4πme, r0 = re = e2/4πε0mec
2 and µ0 = 1/ε0c

2

yields the final result coinciding with the established spin 1/2 angular momen-
tum

~Ll =
e µ0 ~µB

4 π re
= ~~/2 (8)

or equivalently

~Ll = e
~Φ0

2 π
= ~~/2 (9)
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where re is the classical electron radius and ~Φ0 = ~h/2e the magnetic flux quan-
tum (fluxon) passing through the equatorial plane pe, outside of a delimiting
circle of radius re in pe.

In this particular case total magnetic flux ~Φ traversing the equatorial plane pe
outside of a circle of radius re can be determined by integration of the magnetic
flux differential dΦ = 2πrB(r) from re outwards to ∞.:

~Φ =

∫ ∞
re

d~φ = 2π

∫ ∞
re

r ~B(r)dr =
µ0 µB

2

∫ ∞
re

r−2dr = ~Φ0 (10)

precisely amounting one magnetic flux-quantum as shown in [[4]]. Note that (10)
also proves that Bohr’s magneton µB comprises one magnetic flux quantum Φ0.

3 Reactive angular momentum is ”hidden” in
the electromagnetic field

Conservation of angular momentum and symmetry aspects require that force,
torque and angular momentum must always emerge pairwise with mutually op-
posed directions. Thus ”hidden” angular momentum ~Lh is reactive angular
momentum corresponding to the Lorentz-angular momentum ~Ll caused by a
moving charge e in simultaneous interaction with the guiding slide and a mag-
netostatic field ~B(r) (1) according to:

~Lh = − ~Ll (11)

In other words, any Lorentz-angular momentum ~Ll introduced into the radial
slide must be counterbalanced by a reactive angular momentum of opposed
sense − ~Ll, to be absorbed and stored by a system not mechanically interacting
with the slide. Hence the only other physical entity interacting with the charge
and being able to absorb and store the reactive angular momentum − ~Ll is the
electromagnetic field which is being built up by the charge e moving towards
the origin where the dipole µB is located. If e would come into contact with µB

at re it was charged up with e and simulate an electron. [[1]]

4 Summary and Comment

A new conditional equation (8) for electron spin ~/2 has been derived by
Lorentz-electrodynamics.
The analytical method is based on a thought experiment comprising an un-
charged point-like magnetic dipole ~µ (of equal magnitude as Bohr’s magneton)
at rest and a point-like charge e in a probe moving through the dipole-field, from
a remote starting point towards the dipole ~µ where it is halted at a distance
of classical electron radius from the origin. All along on its way, the Lorentz-
force acting on the moving charge e is used to determine the pair of active and
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reactive (”hidden”) electromagnetic angular momentum brought into a radial
guiding slide and into the dipole-field, both of which amounting ±~/2.
In other words, if e is halted on arrival at re the induced electromagnetic angu-
lar momentum coincides with spin angular momentum ~/2 (8) being identical
with that determined in [4] by Lagrangian electrodynamics.
Generally, the approach of a point-like charge to a dipole is not restricted to the
equatorial plane thus can take any arbitrary pathway from a remote starting
point through the dipole-field to the location of the dipole.
Remarkably, the moving charge e must not come into contact with the dipole
~µ to charge it up, in order to generate ”hidden” angular momentum. Instead,
this begins to be generated as soon as charge e enters into the dipole field of ~µ
and is subjected to Lorentz-force.
Eq. (9) indicates how ”hidden” electromagnetic angular momentum (canonical
angular momentum) also is determined by (total) magnetic flux Φ0 of a dipole
field.
Instead of a mechanical guiding apparatus like a slide it would also be possible
to inject a ballistic electron aiming at the origin where the dipole µ is located.
The initial angular momentum of the injected electron would be equivalent to
the ”hidden” angular momentum after impact on the dipole µ where the elec-
trons angular momentum vanishes. (with the origin as reference point)
In support of above result it deserves a final note that spin angular momentum
~ of a photon also is carried by its electromagnetic field as ”hidden” angular
momentum. [[5]]
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