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Abstract

In this paper, a general modeling principle is introduced that was found
useful for modeling complex physical systems for engineering applications.
The technique is a nonlinear asymptotic method (NLAM), constructed
from simplified physical theories, i.e., physical theories that were devel-
oped from particular points of view, that can be used to construct a more
global theory. Originally, the technique was envisioned primarily for en-
gineering applications, but its success has led to a more general principle.
Four examples are presented to discuss and illustrate this method.

1 INTRODUCTION

Often, practical engineering requires knowledge of how physical processes change
with time or in regions of interest between physical theories that do not overlap.
The physical laws that govern the beginning of a process often are different from
the laws that govern at the end of the process, and, often, there is no complete
physical law that connects the two. In such cases, investigators often resort to
generating empirical formulas. This type of data fitting usually works well in
certain regions of interest, but it fails completely when extended and does not
preserve the underlying physics. In this paper, we discuss a modeling technique
that fits well in all regions of interest not covered by the basic theories and that
also preserves the physical laws underlying the processes.

The first application of this technique was used while developing a life model
for dispenser cathodes, Longo [1, 2, 3]. The dispenser cathode degrades slowly,
and its emission transitions between two well-known physical laws, i.e., the
Richardson [4], Dushman [5], Schottky [6] law and the Child [7], Langumire [8]
law. There is no complete physical law that connects these two laws. The life
expectancy of cathodes is very important in the application of communication
satellites and in deep space missions, both of which depend on the satellites
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having long lives and stable outputs. This technique has proved to be useful for
extending the life of Dispenser cathodes that have high current densities. 1

Over time it was shown that this modeling technique, a relatively simple emis-
sion formula, was an accurate description of the physical processes even though
it was not derived from fundamental physics. Recently, it has been observed
that the strategy used to obtain the emission equation can be applied to nu-
merous other physical problems. The purpose of this paper is to introduce a
strategy that can be described as a general principle referred to as the nonlinear
asymptotic method (NLAM). The principle is illustrated by four examples from
different physics disciplines.

Sometimes, empirical rules are used for such a long time and have such an im-
pact on basic physics that they become an integral part of the underlying theory.
One good example of this is the Matthiessen [9] rule, which is an empirical re-
lationship (based on experimental observations) that describes the resistivity
of very dilute alloy metals. Basically, it states that the resistivity of metals is
composed of the sum of two parts, i.e., the resistivity of the pure metal due to
crystal lattice vibrations and the resistivity of a non-pure part due to strains,
defects, and impurities. The sum is just a linear combination of these two parts.
Over the years, this rule has been used to study metals, and it has been used
extensively in the development of solid state materials. The inherently unsatis-
factory nature of this empirical sum rule has generated many theoretical papers
aimed at calculating the resistivity of dilute alloy metals from basic principles
in an effort to test Matthiessen’s rule. In general, these efforts are referred to as
the ”Deviation from Matthiessen’s Rule” (DMR). An excellent review was given
by Bass [10]. Basically, Mattheissen’s rule is the linear sum of two perceived
distinct parts.

ρ = ρT + ρI (1)

where ρT is the resistivity of the pure metal (phonon scattering ), and ρI is the
impurity part (fixed impurity-electron scattering ). In terms of conductivity,
this can be written as:

1

σ
=

1

σT
+

1

σI
. (2)

When there is a need to calculate electron scattering or relaxation times in
which two discreet processes are involved, it is usually taken to be:

1

τ
=

1

τ0
+

1

τI
(3)

Similarly, combining discreet processes leads to a similar formula for mobility:

1NASA’s Deep space Cassini mission, for example, would be limited without TWTs with
both high power and long life.
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1

µ
=

1

µ0
+

1

µI
(4)

In fact, the reduced mass used in the quantum theory of the hydrogen atom has
been found to follow a rule that is functionally similar:

1

m
=

1

mproton
+

1

melectron
(5)

The form of these equations have been used in many theoretical works, some-
times without justification, Shockley [11]. In effect, all of these equations are
linear combinations of variables, constants, or distinct physical processes.

In this paper, the linear combination of asymptotic processes is generalized into
a more general, nonlinear combination. A generalized technique for modeling
physical processes is introduced in which the Matthiessen rule is just one spe-
cial case. This nonlinear asymptotic modeling technique is illustrated by four
specific examples from very different physical fields of study. The first example
is from thermionic emission, the process that led to this work. The second ex-
ample is the determination of the drag coefficient through the transition from
laminar to turbulent flow. The third example is a re-visit of Matthiessen’s rule
and a demonstration that the nonlinear asymptotic formulation offers an expla-
nation for all of the fine, detailed features observed by studies of DMR. The
fourth example uses the nonlinear asymptotic technique to construct a complex
theory of surface physics by developing two simple asymptotic physical theories
and then forming the final result as a nonlinear combination.

2 BACKGROUND

The empirical rule discussed here first was used to describe thermionic emissions
as applied to traveling wave tubes (TWTs) (Gilmour, [12]). It was observed
that the well known theories of thermionic emissions worked very well only at
the extremes, well outside of the practical range of operation. The well-known
theory of space charge emission, as first solved by Child [7]and later by Langmiur
[8], do not fit well with results observed as the accelerating voltage is increased or
the temperature of the emitter is decreased. Furthermore, the thermodynamic
solution developed by Richardson [4], Dushman [5], and Schottky [6] is in all
practical application of TWTs completely outside the normal TWT operating
range. For TWTs, all measurements are made in a region that is somewhere
between the two well-known extremes. With the Richardson-Dushman-Schottky
limit, it is impossible to reach this region under normal operating conditions
because of restrictions placed on the measurements of TWT’s so as to prevent
damage. However, pulsed measurements can be used even though they generally
are not acceptable because they are not representative of actual operation. In
order to proceed with the problem, an empirical formula was developed that

3



worked reasonably well, but, as was the case with the Matthiessen rule, it was
not perfectly accurate. This empirical formula was obtained by taking the
solutions to the two well known theories and forming a linear combination as a
reciprocal sum Longo [ 1, 2, 3].

1

J
=

1

Jsc
+

1

Jtl
. (6)

Equation 6 is similar in form to Equations 1 , 2, 3, 4, and 5, and it provides a
measure of the current density, J, in terms of two asymptotic emission theories,
the space charge limit, Jsc, the solution to the space charge theory, i.e., the Child
or Langmiur theory, and Jtl, the solution to the temperature-limited thermionic
theory, i.e., the Richardson-Dushman-Schottky theory. It is easy to show that
Equation 6 approaches the space charge theory and the temperature-limited
theory correctly in all limits. Although the linear combination, i.e., Equation 6,
has the proper behavior, in general, it has a smaller curvature in the transition
region (i.e., it has a more rounded curve) than observed, and the curvature
cannot be controlled by the internal parameters of either Jtl or Jsc. In order
to get a better representation of the observed data, an adjustable, unit-less
parameter is used that will directly affect the curvature Vaughan [13].

1

Jα
=

1

Jαsc
+

1

Jαtl
. (7)

This modification provides a virtually perfect representation of the observed
data, at least within the accuracy of the measurements. Clearly, α has the
maximum effect at the transition between Jtl and Jsc, and its effect is eliminated
as each asymptotic limit is approached.

2.1 The generalization of the nonlinear asymptotic tech-
nique

It should be observed that the general practice of forming combinations of dis-
tinct physical processes, as is done in Equations 1, 2, 3, 4, and 5, only mixes
those processes linearly. By including an adjustable parameter, as in Equation
7, the physical processes are mixed in a nonlinear way. One way to obtain more
insight into the nature of Equation 7 is to write it in the form:

Jγ = Jγsc + Jγtl. (8)

where α is replaced by −γ. This gives a functional form that is suggestive of
a geometric vector length, S, in Euclidian space, i.e., S2 = x2 + y2, with γ = 2,
that also mixes the geometric space coordinates of a particular coordinate sys-
tem in a nonlinear way to arrive at a measure (a metric) of the length of a vector.
We will use this similarity to the space metric as guidance for obtaining further
insight concerning the properties of nonlinear asymptotic mixing (NLAM), i.e.,
Equation 7. The quantity, J, in Equation 8 is a measure of a physical property
described by the generating function {Jsc, Jtl}, as is the vector length S, which
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is described by the coordinates {x, y}. The generalized quantity does not have
to be a geometric object; rather, it can describe any physical property as long
as all of the parts have the same units or have multiplying factors that bring
them to the same units.

There are interesting similarities with the Euclidean space metric that will be
useful in the generalization. In ordinary Euclidean space, the length of the ge-
ometric vector has the form S2 = x2 + y2, and the generating functions, {x, y},
are independent. The meaning of the independence of {x, y} is understood easily
in terms of the orthogonality of space. This property of component indepen-
dence can be carried over to the generalization. The meaning of independence
is not as obvious in the general case as it is in the geometric case, however, it
will be shown that the generating functions {Jsc, Jtl} for emissions, Equation
8, are independent variables. The independence of {Jsc, Jtl} will be discussed
in more detail in Example 1 in Section 3, below.

By pursuing this direction, certain properties of the Euclidian space can provide
guidance for the general case, such as invariance under certain transformations,
e.g., rotational invariance. Rotational transformation mixes the generating func-
tions but leaves the metric (i.e., the vector length in geometric applications
) invariant. As shown below, the generalized metric, which we will call the
NLAM-metric, can be made rotational invariant if the independent generating
functions, e.g., X, are taken to be Xγ/2. This is shown in Appendix A. This
means that any linear transformations of Xs will be made by using Xγ/2. Ex-
ample 3 shows that this feature has a meaningful contribution by showing that
it enhances the result.

The parameter γ in equation 8 can take any real value, positive or negative,
depending on the application. If a parameter, m, is defined as, m = 1/γ, a
physical interpretation can be given to m. The parameter, m, can be thought of
as a measure of the mixing of the independent variables. If there is no mixing
at all, m is small, and there is very little mixing; the result follows one variable
until it becomes equal in magnitude to the other, thereafter the result follows
the second variable, and the metric will have a sharp transition between the two
generating functions. In the case of a length in Euclidean space, m = 1/2 can
be interpreted as equal mixing or equal weights of the two space dimensions in
the final length result. The mixing parameter does not depend on the dimen-
sionality of space since the total metric can be built by repeated applications
of a 2-D space, e.g., in Euclidean space, S2 = U2 + z2, where U2 = x2 + y2. In
the case of the nonlinear, asymptotic technique, there would be more than two
generating theories, as demonstrated in example 2 in section 4, below.

Five principles that can be used when generating a theoretical model using the
nonlinear asymptotic modeling technique are described below.
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Principle I
From independent points of view, a physical problem that can be composed of
two or more distinct and independent theories describing a common property
can be formed into a more complete theory by the application of the nonlinear
asymptotic modeling technique.

Principle II
All generating theories must be complete over the entire range of the indepen-
dent internal physical variables. The data must go all the way to the asymptote.
The functions that are used cannot be truncated expansions of more complete
theories.

Principle III
The generating theories must be independent developments of the same physical
properties, i.e., they must have the same units or factors that cause them to
have the same units. The independence is determined from the set of assump-
tions used in their development.

Principle IV
Linear transformations can be used to test the independence of the generating
theories, and they can be used to correct for non-independence.

Principle V
The inability of the metric to adequately provide a measure of a physical process
suggests that components or theories are missing.

The remainder of this paper applies these principles to four specific examples
and attempts to clarify the general concept.

3 EXAMPLE 1: THERMIONIC EMISSION

Some of the aspects of modeling thermionic emission have been discussed in
the preceding section. In this example, the meaning of the independence of
{Jsc, Jtl} is examined, and the fidelity to which this modeling technique de-
scribes real experimental data is demonstrated.

3.1 Independence of {Jsc, Jtl}
The sense of independence of the generating functions, Jsc and Jtl , can be
understood as follows: The space charge current density, Jsc, is derived from a
theory that has a set of assumptions that is completely different and indepen-
dent from the set of assumptions used to derive the temperature-limited current
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density, Jtl . In this sense, these two theories are independent views that de-
scribe the same physical property, i.e., current flow. The sets of assumptions
for space charge emission are shown in Table1.

Table 1: Assumption for Jsc theory

Vacuum space charge ρs
Electrostatic process 52φ = ρs
Anode to cathode spacing d

Geometry of the vacuum vehicle K = 2.66×10−6

d2

Potential that returns excess electron to cathode φmin

The assumptions in Table1 lead to a current density, Jsc, that first was derived
by Child [7].

Jsc = KV 3/2. (9)

This current density depends on the applied voltage, V , and the geometry, K,
of the vacuum vehicle in which the emitter is enclosed. It is independent of
the properties of the thermionic emitter, including its temperature. As can be
seen from the assumption in Table 1, the space charge theory assumes nothing
about the emitter other than that it emits as much current as needed, focusing
only on the charge that fills the geometric volume of the vacuum device that
encloses the emitter and the applied electric field. The set of assumptions for
temperature-limited emission, Jtl, is shown in Table 2.

Table 2: Assumption for Jtl theory

Thermodynamics controls available electrons ρMe
− eϕ
kBT

Cathode material controls work function ϕ
Results are independent of geometry
All emitted electrons are assumed to be removed from problem

The assumptions in Table 2 lead to the current density, Jtl Richardson [4],
Dushman [5]

Jtl = AT 2e−eφ/kT fs(V, T ). (10)

Where the Schottky function, Schottky [6], fs(V, T ), is given by

fs(V, T ) = eβ
√
V/T , (11)

where A = 4πmek2

h̄3 , and β = e
k

√
e

4πε0d
.

7



The temperature limited current density, Jtl, is derived from a theory that fo-
cuses on the thermodynamics of the emitter and assumes nothing about the
geometry of the enclosing device or the field in the device, except that the
fields are so high that all electrons emitted from the surface are permanently re-
moved, after which they have no further influence on the physics of the problem.

This example illustrates the concept of the independence of the generating func-
tions. Each asymptotic theory describes the physical process of electron current
flow from a totally different perspective with no overlap (perhaps with the ex-
ception that both assume that electrons are emitted). This example illustrates
the application of principles I, II, and III. Note that another important point is
that physical measurements usually are made in the intermediate region where
neither of the generating functions, {Jsc, Jtl}, appropriately apply. The result
of the NLAM-metric constrains the interpretation of the experimental measure-
ments to an asymptotic trend toward the physical generating functions. This
allows practical measurements to extract physical parameters that would oth-
erwise be difficult or impossible to obtain. Furthermore, it is evident that the
parameter, γ, has the greatest influence in the transition region but does not
affect the asymptotic regions at all, so measurements of the physical parame-
ters of Jsc and Jtl from the transition region are independent of γ and produce
accurate results.

Figure 1 shows the experimental data2 in the J-V plane with temperature as a
parameter, overlaid by a fit to Equation 8. The NLAM-metric fit needs only
one value of γ for all temperatures.

JTLH1563°KL

JTLH1498°KL

JTLH1433°KL

JTLH1368°KL

JSC
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2
L

Figure 1: Shows the data fit with equation 7.

2These data were taken in a closely-spaced, parallel-plate diode (CSPPD)
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In a TWT, voltages are very important for proper operation, so data usually
are measured in the J-T plane with voltage as a parameter; even so, the same
functions, Jsc and Jtl, still apply. Figure 2 shows the data taken on a TWT,
and the measured work function was 1.97 ev, and the γ was 2.2. The model
clearly provides an excellent representation of the experimental data in either
the J-V or J-T planes.
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Jtl
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Figure 2: TWT data measured in the J-T plane

4 EXAMPLE 2: DRAG COEFFICIENT ON
FLUID FLOWTHROUGHA SMOOTH PIPE

In this example, the drag coefficient of fluid flow is modeled for the transition
from laminar flow to turbulent flow in a smooth pipe. It is clear from the
last example that the NLAM-metric always makes a transition at the crossing
point of the two generating functions. The resulting curve either lies above the
generating functions, with a positive γ or below the generating functions with a
negative γ. However, to apply the NLAM-metric, all generating functions must
be complete over the entire range of the independent variable (principle II), in
this case the Reynolds number, and each must diverge from the others in the
unobservable regions so as to contribute only where they are needed. In this
example, we used data from American Institute of Physics Handbook [14]. The
laminar and turbulent flow generating functions are given by Equations 12 and
13, respectively, and Figure 3 shows them overlying the data.

CL(R) = 104.048−1.074Log10(R). (12)
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CT (R) = 101.567−0.265Log10(R). (13)

Laminar Flow

Turbulence Flow

2.5 3.0 3.5 4.0 4.5
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Log
10

R

CD

Figure 3: Data and asymptotic functions during the transition from laminar
flow to turbulent flow

In this case, Fig. 3 shows that the physical transition from laminar to turbulent
flow does not occur at the crossing of the two functions. The NLAM-metric
still can be applied by assuming that there is a missing function, i.e., a third
generating function that is dominate only near the transition, thus illustrating
principle V. It is known that a narrow transition occurs before the onset of
turbulent flow. This generating function can be created empirically from the
data. Taking the form for the third curve to be the same, the third transition
curve is:

C3(R) = 10−1.893+0.701Log10(R). (14)
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Laminar Flow

Turbulent Flow

Transition Flow
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Figure 4: Transition from laminar flow to turbulent flow. The transition flow is
not an asymptotic function

The three generating functions shown in Figure 4 clearly capture the dataset.
Now, the three components can be modeled into a single curve over the entire
range of Reynolds numbers by applying the metric twice. The transition flow is
linked to both the turbulent flow and the laminar flow. Furthermore, since the
transition flow does not extend all the way to the asymptote in either transition,
the two transitions will have to be linked together at a single point, and this
point is marked with an ”x” in Figure 5. An NLAM-metric must be formed
for the transition to turbulent flow and must not be extended beyond the mid-
point of the transition region. Similarly, an NLAM-metric must be formed for
the laminar-to-transition region, and it is not be extended beyond the chosen
point in the transition region; these requirements are reflected in Equations 15
and 16:

CTURB(R) = (C3(R)α + CT (R)α)1/α (15)

CLAM (R) = (C3(R)β + CL(R)β)1/β (16)

Figure 5 shows the final composite NLAM-metric curve, with α = −15 and
β = 20, and it clearly is a respectable representation of the experimental data
over the entire range of Reynolds numbers. The final curve, Figure 5, is not a
single curve; rather, it consists of two parts, and the point marked with an ”x”
is where the two parts join. This is necessary because, according to Principle
II, each NLAM-metric does not continue all the way to the asymptote.
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Figure 5: Transition from laminar flow to turbulent flow is linked at the point
marked with an x.

5 EXAMPLE 3: RESISTIVITY OF DILUTE
ALLOY METALS

There has been an extensive theoretical effort to understand and develop a
theory for the resistivity of dilute metal alloys that are characterized by Mat-
tieseen’s rule. A review of this work, call deviation from Mattieseen’srule(DMR)
is given by Bass[10]. These works basically compares the measured resistivity
to the resistivity obtained from Matthiessen’s rule.

As indicated in the review and references provided by Bardeen [15], the resis-
tivity for pure metals was developed by Block-Gruneisen and is given by:

ρT = (
θ

T
)−4

∫ θ
T

0

Ess5

(Es − 1)2
ds (17)

where θ is the Debye temperature characteristic of each metal. From Mattheis-
sen [9], the impurity part can be written as

ρI = ac+ b, (18)

where a and b are constants, and c is the atomic percent concentration of im-
purities. At this point we can make a direct application of the NLAM-metric
that gives the total resistivity:
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ρ = (ργT + ργI )1/γ (19)

This clearly reduces to Mattheissen’s rule if γ = 1. To determine if a value for
γ 6= 1 makes sense, the deviation function measured in most studies of DMR,
i.e., ∆/ρI , is constructed. The deviation, ∆, is defined as the difference between
the actual measured resistivity, ρ(T, c), and the resistivity given by Mattheis-
sen?s rule. Equation 20

∆ = ρ(T, c)− (ρT + ρI). (20)

In this work, we start with the assumption that the resistivity formed by the
NLAM-metric is a good representation of the measured resistivity. Thus, we
will assume that Equation 19 is a good representation for ρ(T, c), so that the
deviation function becomes:

∆

ρI
=

(ργT + ργI )1/γ

ρI
− (ρT + ρI)

ρI
(21)

The general character of the ∆/ρI curve shown in Figure 6 is correct for most
alloy systems, but there are a few characteristics that cannot be generated with
Equation 21.

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

T H°KL

D

Ρ
I

Figure 6: Typical curve for equation 21 vs. temperature.

In many systems, there are features described as a ”hard to explain hump”
[Bass, [10]]. Our effort is to show that the application of the NLAM-metric can
fit the data. It seems that our assumption that the NLAM-metric is a good
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representation of the measured resistivity is not valid. To test this, we consid-
ered the independence of the two generating functions, i.e., Equations 17 and 18.

In Tables 3 and 4, we examined the assumptions that were made for the two
resistivity regions that were used as generating functions. When one examines
the general assumptions used to generate these functions, a clear case for inde-
pendence of these two regions cannot be made from a theoretical perspective.

Table 3: Pure metal resistivity assumptions

Quasi free electrons
Photon-electron scattering
Fermi-Dirac distributions for electrons
Bose-Einstein distribution for phonons

Table 4: Residual resistivity assumptions

Quasi free electrons
Impurity-electron scattering
Fermi-Dirac distributions for electrons
Fixed scattering centers for impurities,
probable Fermi-Dirac distributions

Note that the dependence or independence of these two sets of assumptions is
not at all clear in this case. There are a few dilute alloys that do not show the
characteristics of Figure 6, e.g., gold in copper. This suggests it is not correct
to assume that the NLAM-metric is a good representation of the measured re-
sistivity.

To attempt to capture all of the characteristics that were observed, the follow-
ing assumption was made, i.e., the two sets shown in Table 3 and 4 are not
sufficiently independent. Applying Principle IV, a linear transformation will be
used as an attempt to enhance the independence of the generating functions. In
addition, it was assumed that a linear transformation, similar to the one given
in Appendix A, will be used and that different angles will be introduced instead
of a single angle to mix the two functions.

ρ
γ/2
Ti = cos(ψT )ρ

γ/2
T + sin(ψT )ρ

γ/2
I (22)

ρ
γ/2
Ii = −sin(ψI)ρ

γ/2
T + cos(ψI)ρ

γ/2
I (23)
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ρT and ρI are the generating functions given by Equations 17 and 18, and ρTi
and ρIi are the generating functions that are assumed to exhibit a higher degree
of independence. If the transformation is taken to be a quasi-rotation in the
{ρT , ρI} space, i.e., a rotation that skews the axes, then a measurable difference
should be obtained. If the angles ψT and ψI are equal, the NLAM-metric
will be unaltered since it is invariant under rotation (Appendix A). Calculating
the scalar product gives the NLAM-metric in terms of the original resistivity
functions:

ργ =
1

2
ργI (2 + cos(2ψI)− cos(2ψT )) +

1

2
ργI (2− cos(2ψI) + cos(2ψT ))+

1

2
ρ
γ/2
I ρ

γ/2
T (−2sin(2ψI) + 2sin(2ψT ),

(24)

The DMR discrepancy function, ∆/ρI , with this new NLAM-metric, Equation
24, is:

∆

ρI
=

ρ

ρI
− (ρT + ρI)

ρI
(25)

With this transformed NLAM-metric, a richer variety of results can be obtained;
in fact, all of the observed variations can be generated (Figure 7). With the
proper choice of parameters, the deviation function, Equation 25, has the correct
shape to account for the ”hard to explain hump” that was observed in this
system. Equation 25 also will generate all of observed shapes (depending on
the physical parameters and the transformation angles), as illustrated in Fig.
7. The NLAM-metric has all of the characteristics observed in the experimental
data. Basically, the shape of the deviation function, ∆/ρ, depends on the values
chosen for the impurity scattering resistivity and the transformation angles.
Making the assessment that the given generating functions were not indepen-
dent and then applying a linear transformation, at least in this case, produced
results that better represented the observed data, and it illustrates Principle
IV. It is not necessary to go beyond this point, since the only purpose was to
demonstrate that the observed deviations can be accounted for by the applica-
tion of the NLAM-metric with γ 6= 1.

Of course this is a more subtle example because Mattheissen’s Rule is actually
an application of the metric with γ = 1. The interesting feature of this example
is the use of a transformation (a skewed rotation) to enhance the results, and,
in fact by doing so, all of the observed features of DMR studies are provided.
It seems clear that the NLAM-metric, as originally constructed, is not a cor-
rect representation of the measured resistivity as was assumed, but it becomes
closer to the measured results after the transformation. The skewed rotation
mixes the original generation functions just enough to enhance the quantitative
representation of the observed data. This example suggests that independence
of the generating function is important.
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Figure 7: . All of the typical curves for Equation 25 vs. temperature can be
generated after improving the independence of the two generating functions.

To show that it fits the data, take the measured results for 0.05 at% Au in Cu
as an example (Dugdale and Basinski, [16]) as given in Bass ([10], Fig. 22).
Obviously, a reasonable fit can be obtained (Figure 8).
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Figure 8: . Typical curve for Equation 25 vs. temperature for copper doped
with gold showing the ”hard to explain hump” (Bass [10])

6 EXAMPLE 4: WORK FUNCTION AS A FUNC-
TION OF SURFACE COVERAGE.

In this final example, the NLAM-metric is viewed from a more fundamental
perspective as a means of deriving a complex theory from two very simple the-
oretical views. When the simple views are combined by the NLAM-metric, the
result is an excellent representation of the experiments.

6.1 Background

This model for the surface work function first was used in a dispenser cathode
life model, Longo [3]. The surface work function as a function of monolayer
dipole coverage has received a great deal of attention for a good part of the
last century. The basic understanding of the problem comes primarily from the
work of Langmuir ([17- 19]). Many theories and models have been developed
to describe these surface effects. Topping [20] developed a physical theory that
has been used extensively. In recent times, Mueller [21, 22] used a cluster
model expansion from quantum physics to determine the parameters of the
Topping model as applied to dispenser cathodes. The results of the theory
developed herein were compared with the results of Topping and Mueller. The
work function developed by Topping and Mueller is given by:
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ψ = ψ0 + ∆ψ (26)

Where

∆ψ =
−1.88eµ0N

1 + cαN3/2
(27)

For details, see Topping-Mueller.

Two independent theories are required to apply the metric, each of which de-
scribes the surface as it accumulates dipoles. Let the parameter, θ, be the
fraction of the number of atoms added to the number of sites on the surface,
this will be the independent parameter. Further, it will be assumed that atoms
are added to the surface in a completely random way and that where they reside
on the surface is independent of the previous history of the affected sites.

6.2 Theory 1

This theory describes the total non-contiguous area of a surface that remains
uncovered as θ increases, i.e., the fraction of sites on the substrate that remain
free of Barium atoms. Let AM be the sum of the non-contiguous area of the
exposed substrate. With these definitions of AM and θ, the rate of change of the
exposed substrate area as θ changes will simply be proportional to the exposed
area with a proportionality constant, α:

dAM (θ)

dθ
= −αAM (θ) (28)

This generating theory simply describes the changes in the exposed number of
substrate sites as the value of θ changes. When θ = 0, the exposed area, i.e.,
AM = AG, is the geometric area of the surface. The solution is simply:

AM (θ) = AGe
−αθ (29)

This solution clearly applies and makes sense over the entire range of θ. This
theory presents a view, as seen by an outside observer, of the remaining area of
the substrate that is unaffected by the addition of Barium atoms.

6.3 Theory 2

In theory 2, the surface is viewed as a barium surface the area of which in-
creases as θ increases. In this extreme, where θ is large, a thick layer of barium
atoms is built. An outside observer would see the area of the barium surface
was increasing. Also, and perhaps more important, electrons that pass through
sites that are two or more barium atoms thick will be influenced by the barium

18



atoms alone, and not be influenced by the underlying substrate.

Let ABa be the total non-contiguous area covered by multiple layers. In this
calculation, θ measures the sites that are covered by multiple barium atoms and
not exposed to substrate sites. In this way, the covered sites are counted as
having changed, but the definition of the sites remains the same. This shift in
counting does not alter the definition of θ; it only alters the point of view of
the observer. In a sense, this is analogous to the shift in the point of view of
the basic emission theories discussed in example 1, only, this time, the same
observation is counted in two different ways. As before the rate of change of
the area ABa as θ changes is proportional to the extent of the area covered. In
general, the proportionality constant, β, will be different from the one used in
the first theory. The differential equation is:

dABa(θ)

dθ
= −βABa(θ) (30)

When θ = 0, the area of the multiple layer is zero, i.e., ABa = 0. And when
θ →∞, the multiple layer area, ABa = AG, is the geometric area of the surface.
What has changed is the boundary conditions. The solution is simply:

ABa(θ) = AG(1− e−βθ) (31)

and again it makes sense and applies over the entire range of θ. Again, it is not
a complete physical description of the surface; rather, it is the observer’s count
of multiple covered sites.

6.4 NLAM-metric description of the surface coverage

A complete physical description of the surface can be obtained by the application
of the NLAM-metric using the two independent measures of the surface. The
resulting area will be interpreted as the transition area, i.e., the area wherein the
electrons that are passing through will experience the influence of the interaction
between the substrate and the thick Barium layer. This is given by:

A(θ) = (AγM +AγBa)1/γ (32)

It is difficult to compare this with measured results because a non-contiguous
surface coverage area is difficult, if not impossible, to measure on an atomic
scale, but we can easily turn this into a work function that can be readily eval-
uated.

6.5 NLAM-metric description of the work-function

The work function over the entire range of θ can be obtained by the following
arguments. The generating functions for the work function are 1) the contribu-
tion to the work-function from the basic substrate, i.e., just a count of electrons
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passing through sites that are unoccupied, i.e., proportional to the amount of
the substrate that is exposed:

φM (θ) =
AM (θ)

AG
ϕM . (33)

2) the contribution to the work-function from the thick multilayer, which is just
the count of the electrons that are passing through sites that are covered by
more than one Barium atom:

φBa(θ) =
ABa(θ)

AG
ϕBa. (34)

where ϕM is the work function of the bare substrate, e.g., for tungsten ϕM = 4.5eV
and for barium ϕBa, which is the work function of a thick barium surface, i.e.,
the work function if the substrate were pure barium, ϕBa = 2.55eV .

The work-function through the transition is obtained by constructing an NLAM-
metric with these two generating functions, i.e., Equations 33 and 34 combined
with Equations 29 and 31, which gives:

φ(θ) = (φM (θ)γ + φBa(θ)γ)1/γ (35)

This time, we find that when γ is positive, φ(θ) is a reasonable representation
of the observed work function of the system. The precise shape of the result
will depend on the choice of the proportionality constants, α and β, and shape
factor parameter, γ. The work-function as a function of the surface coverage,
θ, can be written as:

φ(θ) = (((
ΓϕM
ϕBa

)
Γθ

1−ΓϕM )γ + (ϕBa(1− (
ΓϕM
ϕBa

)
θ

1−Γ ))γ)1/γ (36)

where Γ = α/β, and is obtained by differentiating equation 36 and setting it
to zero, where the work-function is a minimum. That this is a reasonable rep-
resentation of the effect of work function on surface coverage can be seen in
Figure 9, which compares Equation 36 with the Mueller-Topping calculation for
a particular type of cathode called an M-type dispenser cathode. 3, an osmium
emitter surface ϕM = 4.7eV with barium surface atoms. The parameters for
the fit are Γ = 2.702 and γ = 1.18

3An M-type dispenser cathode is a tungsten dispenser cathode with an osmium alloy
deposited on the surface.
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Figure 9: Work Function vs surface coverage θ, The data points are from
Mueller-Topping.

Actually, over a broader range, the metric provides a representation that is phys-
ically more satisfactory since it approaches the value of the work function of the
thick barium level, whereas the Mueller-Topping model continues to climb to
higher values, as seen in Figure 10. The comparison is made over a wide range of
dipole coverage even though the depolarization model (i.e., the Mueller-Topping
model) is really only valid up to the minimum.)
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Figure 10: Work Function vs surface coverage over longer range of θ

In this example a complex system was modeled theoretically using principles
I, III, and V to develop the two asymptotic theories from simple counting con-
cepts envisioned from two distinct and independent points of view from the same
data. The results were excellent; the maximum discrepancy between this model
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and an existing theoretical model was ±0.008eV , from θ = 0 to a small distance
beyond the minimum, and this discrepancy probably is below the measurement
detectability level. This example further demonstrates that the final result was
constrained by the asymptotic nature of the generating functions, whereas the
very thick limit of the Mueller-Topping model is not consistent with the expec-
tations of a barium surface, as the generating function suggests.

7 THE γ FACTOR CONTAINS FUNDEMEN-
TAL PHYSICS

Even though the unit-less numerical parameter, γ, was introduced to build an
engineering model for the thermionic emission process, γ contained some deeper
physics. To understand the physical property of the numerical parameter, it is
necessary to understand the paradigm of workers in the field of thermionic emis-
sions, with regards to the shape of the emission curve. The theory indicated
that it should have a sharp transition between the space charge and the tem-
perature limit, whereas it always has a more rounded transition. There have
been several studies that were directed at theoretically predicting the shape (
Scott [ 23], Tonnere [24]). It became a consensus that the behavior was due to
the non-uniformity of the surface of the emitter due to patches of high and low
work-function regions. However, this was shown to be unsupportable (Adler
[25]). From a detail theoretical study of Equation 7, as compared to a statisti-
cal mechanics theory of surfaces, a direct relationship was found between γ and
the surface entropy of the emitter (Longo [26]). Thus, the shape of the emis-
sion curve was due to non-uniform emissions, but not as originally envisioned;
rather it was the direct result of thermodynamics. Life tests of the emitter
clearly showed that the work function increased with time as did the surface
entropy.

8 CONCLUSIONS

A general, nonlinear asymptotic principle was introduced for modeling com-
plex systems, which we called NLAM-metric in that it was a measure of some
physical property of a system. This technique was first envisioned from an en-
gineering perspective, and its success suggests a more general principle may be
involved. The NLAM-metric was constructed from physical theories that were
derived independently from distinct perspectives and when combined using the
NLAM-metric can result in a very good representation of more complex sys-
tems. More importantly, it does not require making physical measurements in
regions where the pertinent physical theories strictly apply, but it constrains
the interpretation of the measurements to be asymptotically consistent with
the physical theories.

22



The NLAM technique was stated as a set of principles and was illustrated by
means of four examples. In the cases that were illustrated, the fidelity of the
theoretically-modeled representation and the experimental measurements were
very good over the entire range of the independent variables defined by the
asymptotic physical theories. The NLAM technique was demonstrated on a
range of non-related physical systems to show that it appears not to be a coin-
cidence of one special problem and also to lend credence to the generalization
of the technique.

The NLAM-metric, Equation 7, was developed from an engineering perspective
and was applied for more than 20 years with considerable usefulness and suc-
cess in dealing with thermionic emissions. The use of Equation 7 was directly
responsible for understanding the basic mechanisms that control the lifecycle
of thermionic dispenser cathodes that are used in high power TWT, enhancing
their expected useful life from 2 to 5 years to 25 to 30 years. The order of
magnitude increase in life expectancy made higher power space communication
economically practical.

By assuming Equation 7 to be a true physical representation of the emission pro-
cess, it was shown that the parameter, α, was derived from statistical mechanics
and is the entropy of the emitter surface (Longo [26]). This correlates with the
long-held belief that the lack of a sharp transition in emission was related to the
non-uniformity of the surface, but, instead of small patches at different work
functions, as was believed, the non-uniformity is a thermodynamic effect.

As a final comment, there may be insight into the NLAM-metric that is more
fundamental. In the resistivity example, the results suggested that the inde-
pendence of the generating function was important rather than just a curiosity.
In the last example, something even more unexpected was suggested. How an
observer looks at the problem makes an important difference. There is strong
evidence in quantum mechanics, in particular the double-slit experiment, that
the consciousness of an observer can alter the results of the experiment (Radin
[27]). The result of the last example suggests that this might also be true in
the classical realm, since the only difference between the two generating func-
tions was how the observer decided to interpret counts, thus producing two
independent theories with exactly the same data. Longo [28] provides thoughts
concerning how real physical observers interact with the physical world.

9 APPENDIX A. ROTATIONAL INVARIANCE

If the independent variable are taken to be X
γ/2
1 and X

γ/2
2 , instead of X1 and

X2, then a linear coordinate transformation can be written,

Y
γ/2
1 = a11X

γ/2
1 + a12X

γ/2
2 (37)
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Y
γ/2
2 = a21X

γ/2
1 + a22X

γ/2
2 (38)

Now if we assume that the transformation is a simple rotation in the X1, X2

space the matrix becomes(
a11 a12

a21 a22

)
=

(
cos(θ) sin(θ)
−sin(θ) cos(θ)

)
(39)

The two equations above can be written(
Y
γ/2
1

Y
γ/2
2

)
=

(
cos(θ) sin(θ)
−sin(θ) cos(θ)

)(
X
γ/2
1

X
γ/2
2

)
(40)

Taking the scalar product of this result we get the metric

Zγ = Y γ1 + Y γ2 = Xγ
1 +Xγ

2 (41)

which demonstrates rotational invariance.
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