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Abstract :In this paper we are going to give the proof of Goldbach conjecture by introdu-
cing a new lemma which implies Goldbach conjecture .By using Chebotarev-Artin theorem ,
Mertens formula and Poincare sieve we establish the lemma .

1 Introduction

The Goldbach conjecture was introduced in 1742 and has never been proven though it has
been veri�ed by computers for all numbers up to 19 digits.
It states that all, even numbers above two are the sum of two prime numbers. All studies
on Goldbach conjecture have failed.So we are going to give a complete proof of Goldbach
conjecture.

1.1 Principle of the Demonstration

Let n an even integer such as above 20 and denote by Cn the set of the composite integers of

[1, n−1] to what we add 1 and let fn be the bijective mapping such that :
fn : Cn 7→ n− Cn

m 7→ n−m
Denote by Gn the subsect of n − Cn consisting of prime numbers and G′n that of composite
numbers we have n−Cn = Gn ∪G′n .Let Pn the set of prime numbers less than or equal to n .
Let

δ(n) = card(Gn), α(n) = card(Pn\Gn),Π(n) = card(Pn)

then Π(n) = δ(n) + α(n) ,obviously α(n) represents the number of ways to write n as the sum
of two primes

1.2 Lemma 1

∀n ∈ 2N∗ , we have Pn\Gn 6= ∅
As we said we are going to give later the proof the lemma 1 .Without loss of generality

,suppose that the lemma 1 is true then we have :

1.3 Lemma 2

∀p ∈ Pn\Gn ,we have n− p ∈ Pn
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1.4 Proof of lemma 2

Let n be an even integer above 20 , and suppose that n-p is not prime, then

n− p ∈ Cn

, as
p = n− (n− p)

hence
p ∈ Gn

.The lemma is thus proven .
Observe that each integer m ∈ Cn such that m ≥ 4 has at least one prime divisor p ≤

√
n .

Let P≤√n = {p1, p2, ...., pr} where p1 = 2,p2 = 3,...pr = max(P≤√n).
Moreover, remembering that

Cn =
⋃

p∈P≤√n,p≥2

A2p ∪ {1}

where

A2p = {2p, 3p, 4p, .......(bn− 1

p
c)p}

. We notice that A2p is an arithmetic sequence of �rst term 2p and reason p .
So

n− Cn = fn(Cn) =
⋃

p∈P≤√n,p≥2

fn(A2p) ∪ {n− 1}

As

fn(A2p) = {n−2p, n−3p, n−4p, .......n−bn− 1

p
cp} = {n−bn− 1

p
cp, n−(bn− 1

p
c−1)p......, n−3p, n−2p}

Then fn(A2p) is an arithmetic sequence of �rst term n− bn−1
p
cp and reason p .

We will evaluate the quantity of prime numbers in
⋃
p∈P≤√n,p≥2 fn(A2p)

by applying the principle -exclusion of Moivre and Chébotarev -Artin theorem in each fn(A2p)
in the case where p - n

2 Chebotarev-Artin 's Theorem

Let a, b > 0 such that gcd(a, b) = 1,Π(X, a, b) = card(p ≤ X, p ≡ a[b]) then ∃c > 0 such

that Π(X, a, b) = Li(X)
φ(b)

+©(cXe−
√

lnX)

The prime number theorem states that Π(X) = Li(X) +©( X
ln2X

) so

Π(X, a, b) = Π(X)
φ(b)

+©(cXe−
√

lnX)

3 corollary

Let a, b > 0 such that gcd(a, b) = 1,Π(X, a, b) = card(p ≤ X, p ≡ a[b]) then ∃c > 0 such
that

Π(X, a, b)

Π(X)
=

1

φ(b)
+©(c lnXe−

√
lnX)

.
From probabilistic point of view, the probability of prime numbers less than or equal to X in
an arithmetic progression of reason b and of the �rst term has such that gcd(a, b) = 1 is worth
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1
φ(b)

+©(c lnXe−
√

lnX) for X large enough .In the following we will justify the application of

Chebotein-Artin's theorem for sets
⋂k
j=1,pij∈P≤√n

fn(A2pij
)

for 1 ≤ i1 < i2 < ..... < ik

3.1 Remarks

It is obvious to note that for k > 2,
⋂k
j=1,pij∈P≤√n

A2pij
is the set of multiples of

∏k
j=1 pij

which allows us to write

k⋂
j=1,pij∈P≤√X

fn(A2pij
) = {n−m

k∏
j=2

pij |1 ≤ m ≤ b n− 1∏k
j=2 pij

c}

This set is an arithmetic sequence of reason
∏k

j=2 pij and �rst term n− b n−1∏k
j=2 pij

c
∏k

j=2 pij .

The hypothesis of application of Chebotarev-Artin's theorem will be justi�ed if and only if
gcd(2

∏k
j=2 pij ,

∏k
j=2 pij + n) = 1 which is the case if

∏k
j=2 pij - n

4 Demonstration of Goldbach 's conjecture

4.1 Theorem

Let n an even integer be arbitrarily large ,

α(n) = card(Pn\Gn)

the numbers of way to write n in sum of two prime numbers ,

βn =

√
n∏

p=3

p(p− 2)

(p− 1)2

√
n∏

p=3,p|n

p− 1

p− 2

∃n0 such that ∀n ≥ n0

α(n) ≥ 2βnΠ(n)

lnn

4.2 Useful Lemma

Let a1, a2, ......ar be r numbers then

1−
r∑
i=1

1

ai
+

∑
1≤i<j≤r

1

aiaj
+ .....+

(−1)r

a1a2....ar
=

r∏
i=1

ai − 1

ai

4.3 Proof

Let us consider the polynomial :P (X) =
∏r

i=1(X − 1
ai

) from the coe�cient-root relations

P (X) = Xr +
r∑

k=1

∑
1≤i1<i2<....<ik≤r

(−1)kXr−k∏k
j=1 aij

taking X = 1, the lemma is thus proved.
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4.4 Proof of Theorem

Let us de�ne % as the function which represents the proportion of prime numbers which
appear in a given set over prime numbers less than n . we also de�ne ψn−1 = 1, 0 according to
n-1 is prime or not With regard to the principle of inclusion -exclusion of Moivre we can write :

%(
⋃

p∈P≤√n,p≥3,p-n

fn(A2p)) =
r∑

k=2

(−1)k
∑

2≤i2<i3<....<ik≤r

%(
k⋂

j=2,pij∈P≤√n,pij -n

fn(A2pij
))

.Moreover we have

%(n− Cn\n− 1) = %(
⋃

p∈P≤√n,p≥3,p-n

fn(A2p)) =
δ(n)− ψn−1

Π(n)

. According to Chebotarev's theorem -Artin more precisely the corollary we have : ∀k ≥ 2

%(
k⋂

j=2,pij∈P≤√n,pij -n

fn(A2pij
)) =

1

φ(
∏k

j=2 pij)
+ h(n)

∀i ≥ 2

%(fn(A2pi,pi-n)) =
1

φ(pi)
− ψn−pi

Π(n)
+ h(n)

, where h(n) represents the error of our estimation Regarding the corollary we h(n) =©(c ln(n)e−
√

ln(n))
Thus

δ(n)− ψn−1

Π(n)
= g(n)−

r∑
k=2

ψn−pk
Π(n)

+
r∑

k=2

∑
2≤i2<i3<...<ik≤r

(−1)k∏k
j=2(pij − 1), pij - n

where

g(n) =
r∑

k=2

(−1)k
∑

2≤i2<i3<....<ik≤r

h(n)

represents the error of the proportion estimation of prime in
⋃
p∈P≤√n,p≥3,p-n fn(A2p) .Noting

that
r∑

k=2

ψn−pk =
∑

n−p∈Pn,p≤pr

1 =
∑

p∈Pn\Gn,p≤pr

1 = α(pr)

and applying the useful lemma, we have :

δ(n)− ψn−1

Π(n)
= g(n)− α(pr)

Π(n)
+ (1−

r∏
i=2,pi-n

pi − 2

pi − 1
)

As δ(n) = Π(n)− α(n) and r = max(i|pi ≤
√
n) so

α(n)− α(
√
n)

Π(n)
= −g(n) +

√
n∏

p=3,p-n

p− 2

p− 1
− ψn−1

Π(n)

. The veritable problem of our result is bounded on the error function g . How can we solve it ?

. The answer is so simple by noticing that

|g(n)

h(n)
| = |

r∑
k=2

(−1)k
∑

2≤i2<i3<....<ik≤r

1| = |
r∑

k=2

(−1)k
(
r − 1

k − 1

)
| = | −

r−1∑
k=1

(−1)k
(
r − 1

k

)
| = 1
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Using the previous result our formula becomes :

α(n)− α(
√
n) ∼+∞ Π(n)

√
n∏

p=3,p-n

p− 2

p− 1
− ψn−1

In the following we will apply the Mertens' theorem in order to evaluate cn =
∏√n

p=3,p-n
p−2
p−1

.
As √

n∏
p=3

p− 2

p− 1
=

√
n∏

p=3,p-n

p− 2

p− 1

√
n∏

p=3,p|n

p− 2

p− 1

so we have

cn =

√
n∏

p=3,p|n

p− 2

p− 1

√
n∏

p=3

p− 1

p− 2

By using the third formula of Mertens we have :∏
p≤
√
n

(1− 1

p
) =

2e−γ

lnn
(1 +©(

1

lnn
))

Let's put

c2(n) =

√
n∏

p=3

p(p− 2)

(p− 1)2
=

√
n∏

p=3

p

p− 1

√
n∏

p=3

p− 2

p− 1

so

cn = 2c2(n)

√
n∏

p=2

(1− 1

p
)

√
n∏

p=3,p|n

p− 1

p− 2

From the previous part

cn =
4c2(n)e−γ

lnn
(1 +©(

1

lnn
))

√
n∏

p=3,p|n

p− 1

p− 2

α(n)− α(
√
n) ∼+∞ Π(n)[

4c2(n)e−γ

lnn

√
n∏

p=3,p|n

p− 1

p− 2
]

Let

βn = c2(n)

√
n∏

p=3,p|n

p− 1

p− 2

then ∃n0 ∀n ≥ n0

α(n) ≥ α(n)− α(
√
n) ≥ 2βnΠ(n)

lnn

4.5 proof of lemma 1

Let suppose that ∃q such that Pq\Gq = ∅ then α(q) = card(Pq\Gq) = 0 .According to the
theorem necessarily we have q ≤ n0 and we also have

α(q)− α(
√
q)

Π(q)
= −g(q) +

√
q∏

p=3,p-q

p− 2

p− 1
− ψq−1

Π(q)
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then

−g(q) +

√
q∏

p=3,p-q

p− 2

p− 1
− ψq−1

Π(q)
= 0

more precisely
∏√q

p=3,p-q
p−2
p−1

= g(q) + ψq−1

Π(q)
.Which leads us to :

4c2(q)e−γ

ln q
(1 +©(

1

ln q
))

√
q∏

p=3,p|q

p− 1

p− 2
≤ g(q) +

1

Π(q)

Multiplying each member by ln(q) we have

4c2(q)e−γ(1 +©(1))

√
q∏

p=3,p|q

p− 1

p− 2
≤ ln(q)g(q) +

ln(q)

Π(q)

.As ln(q)g(q) + ln(q)
Π(q)

= ©(c ln2(q)e−
√

ln(q)) hence our inequality does not hold . Therefore the
lemma 1 is true . The main result is that for any even given integer n the pairwise of Goldbach
prime is (p, n− p) where p ∈ Pn\Gn
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