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Abstract :In this paper we are going to give the proof of Goldbach conjecture by introdu-
cing a new lemma which implies Goldbach conjecture .By using Chebotarev-Artin theorem |,
Mertens formula and Poincare sieve we establish the lemma .

1 Introduction

The Goldbach conjecture was introduced in 1742 and has never been proven though it has
been verified by computers for all numbers up to 19 digits.
It states that all, even numbers above two are the sum of two prime numbers. All studies
on Goldbach conjecture have failed.So we are going to give a complete proof of Goldbach
conjecture.

1.1  Principle of the Demonstration

Let n an even integer such as above 20 and denote by C,, the set of the composite integers of
fn:C, — n—-C,

m — n—m
Denote by G,, the subsect of n — C,, consisting of prime numbers and G/, that of composite
numbers we have n — C,, = G,, UG, .Let P, the set of prime numbers less than or equal to n .
Let

[1,n—1] to what we add 1 and let f;, be the bijective mapping such that :

d(n) = card(G,,), a(n) = card(P,\G), I[I(n) = card(P,)

then II(n) = 6(n) + a(n) ,obviously «(n) represents the number of ways to write n as the sum
of two primes

1.2 Lemma 1

Vn € 2N* | we have P,\G,, # ()

As we said we are going to give later the proof the lemma 1 .Without loss of generality
,suppose that the lemma 1 is true then we have :

1.3 Lemma 2
Vp € P,\G, ,we have n —p € P,

DEMONSTRATION OF GOLDBACH’S CONJECTURE .



1.4 Proof of lemma 2

Let n be an even integer above 20 , and suppose that n-p is not prime, then
n—peC,

, as
p=n—(n—p)
hence
peGy
The lemma is thus proven .
Observe that each integer m € C,, such that m > 4 has at least one prime divisor p < /n .

Let P< m = {p1,p2, ..., pr} Where py = 2,py = 3,...p, = max(P< ).
Moreover, remembering that
C.= |J Ayu{1}

PEP< /022

where

A2p = {2p, 3p, 4]?, ....... (L

. We notice that Ay, is an arithmetic sequence of first term 2p and reason p .
So
PEP< /702

As

n—1

Then f,(As,) is an arithmetic sequence of first term n — L”lejp and reason p .
We will evaluate the quantity of prime numbers in Upepgﬁ,pzz fn(Asp)

by applying the principle -exclusion of Moivre and Chébotarev -Artin theorem in each f,(As,)
in the case where ptn

2  Chebotarev-Artin ’s Theorem

Let a,b > 0 such that ged(a,b) = 1,II(X,a,b) = card(p < X,p = a[b]) then e > 0 such

that TI(X, a,b) = 255 + O(cX eV X)
The prime number theorem states that I1(X) = L;(X) + O(—2~) so

In? X
(X, a,b) = 552 + OcXem V)

3 corollary

Let a,b > 0 such that ged(a,b) = 1,II(X,a,b) = card(p < X,p = a[b]) then ¢ > 0 such

that (X, a.b) .
) @, o —VIn
mx) e T OCmXe)

From probabilistic point of view, the probability of prime numbers less than or equal to X in
an arithmetic progression of reason b and of the first term has such that ged(a,b) = 1 is worth
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ﬁ + O(cln Xe~VnX) for X large enough .In the following we will justify the application of
Chebotein-Artin’s theorem for sets ﬂ;?:l,pij P fn(AQPij)
for 1 <ip <9 < ... < 1

3.1 Remarks
It is obvious to note that for £ > 2, N

which allows us to write

k

. . k
i=Lpi, P Asp, . is the set of multiples of [15= pi;

k k
n—1
N flAy)={n-—m]]pl<m<|Z—]3
J=Lpi;€P. /x Jj=2 Hj:g Pi;

This set is an arithmetic sequence of reason H?ZQ pi; and first term n — LH'?ilp' | H?:z Di; -
j=2Pi;

The hypothesis of application of Chebotarev-Artin’s theorem will be justified if and only if
ged(2 H;?:Q Pi; H?:z pi; +n) =1 which is the case if H?:z pi, {n

4 Demonstration of Goldbach ’s conjecture

4.1 Theorem

Let n an even integer be arbitrarily large ,
a(n) = card(P,\Gy)

the numbers of way to write n in sum of two prime numbers ,

NG vn
p(p—2) p—1
o (p—1) 11 p—
p=3 p:?’:pln
dng such that Vn > nyg
26,11(n)
a(n) Inn
4.2 Useful Lemma
Let aq,aq, ...... a, be r numbers then
1 1 (=1)" Ca;—1
1— — e — = LA
Z a; * Z a;a; i + a1as....Qa, H a;
i=1 1<i<y<r i=1

4.3 Proof
Let us consider the polynomial :P(X) = []_,(X — 2) from the coefficient-root relations

r - (_1)kXT_k
po-xey, y LA
k=1 1<i1 <ig<....<ip<r szl i

taking X = 1, the lemma is thus proved.
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4.4 Proof of Theorem

Let us define p as the function which represents the proportion of prime numbers which
appear in a given set over prime numbers less than n . we also define v,,_; = 1,0 according to
n-1 is prime or not With regard to the principle of inclusion -exclusion of Moivre we can write :

r k
o( U fa(Azp)) = Z(_Dk Z o( m fn(AQPij))
pepsﬁ,pz&pm k=2 2<12<i3<.... <t <1 j:2,pij E’PS\/EJ)?”’TL
.Moreover we have
5(”) - wn—l

o(n —Cp\n — 1) = o U fa(Azyp)) =

PEP< /mp>3,ptn

II(n)

. According to Chebotarev’s theorem -Artin more precisely the corollary we have : Vk > 2

k

1
fa(Agp, ) = ———— +h
Q(jlmj EQﬁapiﬂn ( i J)) ¢(H§:2 pij) (n)
Vi > 2 . s
— _ InThi

, where h(n) represents the error of our estimation Regarding the corollary we h(n) = O(cIn(n)e™ V™)

['hus
6(n) — ZT Un—py j: Z (—D)F
II(n) 9(n) — II(n) 1"

k=2 2<ip<iz<..<ip<r j:2(pij = 1),p;; In

where
g(n) =Y (=1)* > h(n)
k=2 2<i<ig<...<ip<r

represents the error of the proportion estimation of prime in Upewﬁngﬂn fn(As,) Noting

that .
Y= >, 1= Y  1=alp)
k=2

n—pEPn,p<pr PEPR\Gn,p<pr

and applying the useful lemma, we have :

5(”) B %—1 _
II(n)

As 6(n) =TI(n) — a(n) and r = max(i|p; < y/n) so

Jn
)l gy ] 222 e

. The veritable problem of our result is bounded on the error function g . How can we solve it ?
. The answer is so simple by noticing that

oI SR Wl (R [ e (-

2<in<ig<...<ip<r k=1

DEMONSTRATION OF GOLDBACH’S CONJECTURE .



Using the previous result our formula becomes :

a(n) — a(vn) ~ 1(n)

ngan

In the following we will apply the Mertens’ theorem in order to evaluate ¢, = [[¥"

As Vn e Vi
ﬁ L | e
sp—1 S p—1 23 p—1
p= P—37P)m p—3,p|n
so we have
v v
p—2yyr—1
I ==
p=3,p|n p p=3 p
By using the third formula of Mertens we have :
1 2e 7
1—-)= —
[[0-)=570+0G)
p<vn
Let’s put
(n) ﬁp(p—Q) ﬁ p ﬁp—2
02 n)= D) =
s p=12 ap—1 Sp—1
SO
U TR A |
Cn = 2¢3(n) H(l - =) H —
p=2 P p=3,p|np
From the previous part
NG
dey(n)e™ 1 p—1
) = 1 S
Inn ( O(lnn)) H p—2
p:'?’vpln
Jn
4ey(n)e™ p—1
a(n) = a(V) ~ooe ) 22— [T 2=)
nn P
p:3,p|n
Let
vn -1
Bn = 02(n) ﬁ
p:37p|n
then Ing Yn > nyg
206,11
o(n) = afn) - a(ya) > o)

4.5 proof of lemma 1

P:37M” pfl ’

Let suppose that 3¢ such that P,\G, = 0 then a(q) = card(P,\G,) = 0 .According to the

theorem necessarily we have ¢ < ng and we also have
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then
-2
) + H p—= wq ;
p= 3pf ay
more precisely Hp Sng L2 — g(q) +7
_ V4
Acs(q)e™ 1 p—1 1
— (1 — — < T
p=3.plq

Multiplying each member by In(q) we have

o In(q)
des(g)e (1 4+ O(1) H—2<1n)() )
p3p|q

As In(q)g(q) + % = O(cln?(¢)e~ V@) hence our inequality does not hold . Therefore the

lemma 1 is true . The main result is that for any even given integer n the pairwise of Goldbach
prime is (p,n — p) where p € P,\G,,
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