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Rationale

The purpose of this work is to present a more realistic model for a number of dynamic
three-dimensional physical phenomena which are traditionally depicted statically in two dimensions
and are therefore misleading. It is also to provide a model for phenomena which are regarded as
conceivable only in abstract mathematical terms, and are therefore thought to be permanently

inaccessible to the non—specialist. The use of the QSO model will reveal pattern and enable analysis
in hitherto untouched areas.



Introduction

In the fourth century B.C., Greek astronomers had a
problem. They had noticed that a handful of the astral lights that
filled the night sky moved or wandered' across the backdrop of
fixed lights. The accepted explanation was that the moving
lights were carried on crystal spheres in perfect circles around
the Earth. What troubled the sky-gazers was the fact that
sometimes the wanderers seemed to reverse their motion. From
time to time the lights were distinctly seen to go backward in
their heavenly meanderings, only to soon reverse themselves
and again resume their customary movement. In the heavens,
where all things were perfect, this was clearly unacceptable.

Eudoxus of Cnidus (408-355 B.C.) attempted to explain the
motion of the wandering lights with an ingenious scheme
involving dual crystal spheres. One sphere, he said, rotated on
an axis which passed through the center of the Earth. A second
sphere was identical to and concentric with the first, but the axis
of the second sphere was determined by two points on the first
sphere and rotated with it. If the spheres then rotate with equal
but opposite angular velocities, a light on the second sphere will
describe the figure eight in the sketch. Because it resembles a
horse fetter, the curve is called the hippopede® of Eudoxus.’

" English planet from Greek planasthai, to wander

* Greek hippos, horse + Latin impedire, to entangle, fetter

* The conventional view of the H. of Eudoxus is seen at <http:/www-
groups.dcs.st-andrews.ac.uk/~history/Mathematicians/Eudoxus.html>

Axis 1

Celestial sphere

The hippopede of Eudoxus

Eudoxus’ curve didn’t work too well as an explanation for
the retrograde motion of the planets, but he introduced concepts
of central importance to the study of Quasi-Spherical Orbits.
First, there are two intersecting but noncollinear axes. A point
rotates around one axis while that axis rotates around the other.
The point thus rotates simultaneously around both axes. The
relative angular rates of rotation determine a ratio. In Eudoxus’
cosmology this ratio was 1:1, i.e. the angular velocities were
equal. Negating one of the velocities as Eudoxus did places the
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hippopede in a different quadrant of the sky, but the resulting
curve is the same. The axes need not be at 90° to each other
(Eudoxus’ aren’t), and the curve, the hippopede, is the result of
a dynamic system.

Twenty-one centuries after Eudoxus, a French lawyer and
amateur mathematician, Etienne Pascal (1588-1651), studied
curves with an inner loop. In 1650 his contemporary, Gilles de
Roberval (1602-1675), named them limagon, which means
“snail” in French. It seems unlikely that either man realized that
their snails were related to Eudoxus’ work.

The limagon -- Pascal’s snail

About the same time that Pascal was working with snail-like
curves in France, the Italian, Vincenzo Viviani (1622 -1703),
published his Aenigma geometricum,* which challenged the
analysts (mathematicians) of his day to determine on the surface

* Full title: Aenigma geometricum de miro opificio Testudinis Quadrabilis
Hemisphaericae

of a hemisphere “...four equal windows in such a way that the
remaining surface after removal of the windows could be exactly
squared.” The problem was solved by a number of Viviani’s
contemporaries, not the least of which was Gottfried Leibnitz.’
The problem became known as Viviani’s window, but was
called the “quadrable Florentine sail” by Viviani himself because
of the sail-like appearance of the solution.

Viviani’s window, aka quadrable Florentine sail

Viviani’s window was and is considered a problem in
analytic geometry. There is little or no appreciation of the fact
that it is a dynamic phenomenon, or that entire families of curves
can be generated from the QSO rotations that create it.

A generation after Viviani, another Italian, Guido Grandi
(1671-1742), studied curves which he called rhodonea’ because

they reminded him of roses.

* Loria, G. (1925), p. 201

Roero C. S. (1986), pp. 351-379
Roero C. S. (1988), pp. 803-810
® From Greek rhodon, rose.
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The trifolium, a three-lobed rhodonea curve

Grandi might be surprised to learn that his beautiful rose
curves are the two-dimensional projections of three-dimensional
QSOs.

A century after Grandi and Viviani, French mathematician
Camille Christophe Gerono (1799-1891) studied what came to
be known as the “eight curve.”

The eight curve

Gerono’s ribbon-like curve, which is sometimes called the
lemniscate’ of Gerono, only superficially resembles Viviani’s
window. There is no evidence that they’re related. And yet,
both men studied aspects of the same curve, a curve which is, in
fact, a QSO.

In 1975 and again in 1979 Buckminster Fuller (1895-1983)
discussed what he considered to be the basic energy exchange
mechanism in Universe.® Energy, Fuller said, never travels in
straight lines. It is stored on and shunted along the multiple
“great circle railroad tracks of energy” of the tetrahedron,
octahedron, icosahedron, and Vector Equilibrium, Fuller’s name
for the cuboctahedron. When energy gets a green light to go
from one of the great circles to the next, he said, it can do so by
crossing over one of the inter-atomic-sphere bridges, or Grand
Central Stations, where the great circles intersect.

Octahedron with great circle railroad tracks of energy

" New Latin, from Latin lemniscus, ribbon, from Greek lemniskos.
¥ Fuller, 1975, p. 187
, 1979, p. 455
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There is always the problem with Bucky’s model of how a
charge manages to jump from one track to another. He did not
explain how the jump was achieved. QSO shows how this
happens, and it’s not a jump. QSO demonstrates that the charge
is sequentially on all the great circles, or on the only one
nonsimultaneous great circle. QSO demonstrates that one great
circle can pass through all the vertices of a polyhedron. It
shows how a single dipole may non-simultaneously constitute
an entire system.

The author must now confess to a small deception. The goal
in beginning with these historical antecedents of Quasi-Spherical
Orbits was to indicate the range and depth of the QSO concept.
Each historical example was illustrated with a sketch. The
deception is in the sketches. None of them is based on the
original mathematics or physics. Eudoxus’ twin crystal spheres
were not used to generate the hippopede; the hippopede
displayed here is a QSO. Pascal’s equations, Viviani’s
geometry and Grandi’s rhodonea were not used to generate their
curves; they too are QSOs. Likewise for Gerono and Fuller. In
every case, the curve illustrating the discoveries of each scientist
or mathematician is a Quasi-Spherical Orbit. Although it is
unusual to come across a simple concept that subsumes such
diverse phenomena, it is not unheard of. Let us proceed to a
fuller investigation of these most interesting curves.



Chapter 1

Curves of Compound Curvature

Space Curves

QSOs are space curves.' They are one-dimensional closed
loops which exist in three-dimensional space.

/
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Fig. 1-1a

Fig. 1-1b

QSO (2:3)
A one-dimensional QSO space curve

It is difficult to appreciate the three-dimensionality of these
curves on a flat page, so a translucent gray sphere has been

' The relationship between QSOs and more familiar space curves will be
explored in chapter 9.

added to the QSO on the right. The sphere partially blocks the
visually confusing overlap of front and back traces and aids
depth perception.

Fig. 1-2
2-D QSO (2:3)

Two-dimensional QSOs are surfaces that exist in three-
dimensional space. In figure 1-2, QSO (2:3) is shown again,
this time as a self-intersecting two-dimensional surface.
Dynamically, the surface corresponds to the sweepout of the
radius vector that traces the one-dimensional, linear QSO. For
comparison, the one-dimensional QSO in red outlines the two-
dimensional multicolored surface.
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Three-dimensional QSOs have not been investigated. Such Although QSOs can be conceived with any number of
rotations, which presumably trace out volumes of space, offer commonly centered axes, and with various angular orientations,
an excellent opportunity for further exploration. we will limit ourselves here to the simplest case, that is, where

there are two axes and they are at 90° to each other.’
Definition

Virtual Sphere
A Quasi-Spherical Orbit (QSO) is the path of a particle in

orbit simultaneously about two or more axes with a common QSOs occur on the surface of a virtual sphere. Although the
center. virtual sphere can have any arbitrary size, it simplifies matters
considerably if the sphere has a unit radius. Neither of these
Alternate Definition conventions eliminates the possibility that QSOs may occur on

surfaces other than spherical, or that the sphere might have a

A Quasi-Spherical Orbit (QSO) is the path of a particle in a radius other than unity.
great circle orbit when a second spin axis is introduced. This

causes the great circle to “tumble.” The resultant track appears

to be no longer a great circle, but is in fact the synergetic result

of the combination of two great circle events or systems.’

> The American Heritage Electronic Dictionary defines “synergy” as:

1. The interaction of two or more agents or forces so that their combined
effect is greater than the sum of their individual effects.

2. Cooperative interaction among groups, especially among the acquired
subsidiaries or merged parts of a corporation, that creates an enhanced
combined effect.

This definition is insufficient for QSOs. Fuller’s (1975) is better.

§101.01 Synergy means behavior of whole systems unpredicted by the Fig. 1-3a Fig. 1-3b

behavior of their parts taken separately. Quasi-Elliptical Orbits

§102.00 Synergy means behavior of integral, aggregate, whole systems QEOs (3:5)

unpredicted by behaviors of any of their components or subassemblies of . ’ o

their components taken separately from the whole. An oblate spheroid, left, and a prolate spheroid, right.
Fuller’s emphasis is not on “an enhanced combined effect,” which may, after

all, be quite predictable, but on the unpredicted behaviors of the whole. It * Rotation on three mutually perpendicular axes was explored by Kelleher

includes all such behaviors, not merely additive ones as in the AHED entry. (1991) and by Prodaniuk (1992). See appendix 2.
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Two or more QSOs may occur on a single sphere, but a
single QSO may not occur on more than one sphere.

Fig. 1-4
QSO (3:5) [red]
QSO (4:1) [blue]

Generating QSOs

Imagine tying a rock on a string and swinging it around your
head. Can you clearly see the path of the rock? Imagine
swinging it at the end of your arm, vertically. Again, can you
see the path? Now combine the two motions. Imagine
swinging the rock simultaneously in the vertical and the
horizontal planes.* If you’re like most people you have no idea
what the path of the rock now looks like. Rotation around one

axis is a familiar idea. Rotation around two axes sequentially is
* Although it’s unfamiliar, it’s quite possible to swing an actual rock like
this. The key is in knowing where to lead the rock with your arm.

equally familiar, but rotation around two or more axes
simultaneously is next to unknown.’

Visualization

QSOs are most readily visualized by imagining an inverted
unicycle.’ The tire has been repaired with a red patch which is at
the zenith. One spoke, which points toward the zenith, is
colored violet. The seat and pedals have been removed from this
unicycle, the better to illuminate the concepts involved.

-

Fig. 1-5
An inverted unicycle

* Technically, rotation about two axes simultaneously is precession.
% See appendix 1 for the mathematics needed to generate the unicycle.
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Fig. 1-6 Fig. 1-7
Horizontal orbit Vertical orbit
If the patch is placed at the equator and the brake is set, the When the brake is released and the fork locked, the wheel
wheel and fork rotate as a unit about the axis of the seat post. rotates around its own axle. The patch describes a great circle
Like the rock around your head, the patch describes a great circle  orbit in a vertical plane as did the rock when you swung it at the
orbit in a horizontal plane. Rotation is in the positive, i.e. the end of your arm. Rotation is again in the positive or right-hand

right hand direction. direction.
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Generating QSO (1:1) with the Unicycle

Starting with the patch at the vertex, the wheel and fork
rotate in the right hand direction around the axis of the seat post.
At the same time the wheel also rotates in the right hand direction
around its own axle. The rate of rotation on both axes is the
same. The ratio of the rates of rotation is therefore 1:1 so this is
QSO (1:1). Development of the QSO is illustrated next in 30°
increments. The patch begins at the north pole of the virtual
sphere.

Fig. 1-8
A Quasi-Spherical Orbit

When the wheel and the fork rotate simultaneously, the patch
describes an orbital path on the surface of a virtual sphere. The
orbital trace seems to be no longer a great circle. It has become a
Quasi-Spherical Orbit, or QSO. The precise shape of the orbit is
determined by the ratio between the rotational rates on each of
the axes.

30° 60° 90°
At 90° of rotation (right) the patch reaches the equator of the
virtual sphere.
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@

At 180 the patch reaches the south pole.

circle meridians divide the sphere into octants.

The patch crosses the equator again. The QSO resembles a bent figure 8. It exhibits symmetry

120°
210°
% @ with respect to two of the great circle meridians. The single

The patch returns to the north pole, completlng the curve.

i%

Fig. 1-9
QSO (1:1)

QSO (1:1) is shown on the virtual sphere. The sphere is
slightly transparent to allow the full QSO to be seen. Three great

intersection occurs at the equator where the QSO crosses itself at
90°. All QSOs are self-intersecting. That is, in the course of a
single orbit the particle crosses its own trace at least once. The
reader may want to turn back now and compare the first
quadrant of QSO (1:1) with Viviani’s window in the
introduction. Four such quadrants comprise Viviani’s figure.

o*@
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Points-of-View

The model particularly accents the importance of considering
more than a single point-of-view. In the following illustrations
QSO (1:1) is shown again, first as it appears with the unicycle,
and then as it appears when seen head-on from each of the three
axes of the Cartesian coordinate system.’

.

N

Fig. 1-10
QSO (1:1), view from the x-axis

Seen from the x-axis, QSO (1:1) is an open arc. In chapter 7
the open arc will be shown to be a parabola.

7 Software note:

All of the QSOs in this book are generated on Graphing Calculator
3.2 by Pacific Tech <http://www.PacificT.com/>. Macintosh and PC
versions are available. In Graphing Calculator’s 3-D world, the x- and
y-axes have arrows that point in the positive direction. The z-axis has
no arrow, but Graphing Calculator draws only its positive side.

In the first two sketches that follow, the arrowheads on the positive
x- and y-axes are not immediately apparent. They are two-dimensional,
and they are drawn in the xy-plane. When seen from any point in this
plane, the arrowheads are edge-on. They have no depth. The third
illustration, the view from the positive z-axis, clearly shows the
arrowheads.

Fig. 1-11
QSO (1:1), view from the y-axis

From the y-axis, the QSO is the figure 8 previously noted.
Likewise, chapter 7 will explore the relationship between the
figure 8 and the lemniscate of Gerono.

Fig. 1-12
QSO (1:1), view from the z-axis

From the z-axis the QSO is a circle. The reader may
recognize the cover art on this book as a composite of these three
views of QSO (1:1).
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Dynamic Diversity

The dynamic picture is equally diverse. The view from the
x-axis shows a reciprocating half-wave motion. Looking from
the y-axis the particle travels counterclockwise in the northern
hemisphere and clockwise in the southern, and from the z-axis
the motion seems to be consistently counterclockwise. The x-,

y-, and z-views of QSO (1:1) are shown next developing 0° 30°
together. The three views, which seem mutually contradictory, View

must be taken into simultaneous consideration if one is to from

understand what is really happening. When the wheel, fork, +x

axle and five of the six spokes are removed, the red patch is
revealed to be a small sphere rotating at the end of a violet

o
(8]
o

o

radius. The isometric view with the unicycle is reproduced for

comparison. View -
A Quasi-Spherical Orbit is that trace left by a point rotating from -

simultaneously about two or more intersecting axes where the +y \

point of intersection forms a common center of rotation.® The

common center of rotation is the Origin of the coordinate

system. This appears to be obvious in the two views from the

x- and y-axes, but is counterintuitive for the view from the 0 30°

z—axis where the QSO is tracing a circle. Although the center of View

rotation is at the Origin, the center of the circle is not. from /J
At 90° the QSO has rotated through 1/4 of its total rotation. Tz / /

The static pictures seem to show that the elapsed rotation as seen

from the x-axis is 90°, although from the y- and z-axes it looks

like 180° each.

¥ See p. 2.
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At 180°, half way through, the arc and the circle seem to be
complete. Elapsed rotation as seen from the x-axis is apparently
—180°. From the y-axis it’s +180° followed by —180°, and from
the z it appears to be +360°. However, stopping here would
seriously misrepresent the shape of the orbit.

At 210° the arc and the circle seem to be retracing
themselves, but because the QSO is a three dimensional curve
this cannot be true. Close examination of the circular trace
reveals that the small red sphere is now behind the curve, away
from the viewer.

At 270° the QSO intersects itself for the first and only time.

At 300° the small sphere has moved behind the curve in the
x—view and in front of it again as seen from +z.

At 360° QSO (1:1) has developed to its fullest extent. The
angular sweepout of the particle may be assessed at anything
from £180° to £360° to +720°! This last angular measure is
reminiscent of Fuller’s statement that the minimum system is the
minimum knot = 720°.>" QSO (1:1) is the minimum QSO. The
model reminds us to look not only at the static picture of the
completed curve, but at the video of its dynamic formation.

° Fuller, 1979, p. 403, §1033.665.
' Edmondson, 1987, chapter 5.



Chapter 2

Coordinates and Equations

Spherical Coordinates

There are three coordinate systems which can be used to
graphically illustrate QSOs. Each of these has advantages and
disadvantages which we will examine in turn. We begin with
the spherical coordinate system.

7.
\."P
¢ ./'{
/r
ol |
- -
xw. 6 - y
Fig. 2-1

The spherical coordinate system

A fixed point in space is established as the Origin of the
system. Three mutually perpendicular axes pass through the
Origin. Traditionally the axes are labeled x, y and z, with each
axis having positive and negative halves extending to positive
and negative infinity. Also by convention the x- and y-axes

define a horizontal plane and the z-axis is perpendicular to that
plane.

A point P can be located by measuring its distance from the
Origin and its angular displacement from the x- and z-axes. The
distance of the point from the Origin is 7, the radius of the virtual
sphere on which the point lies. In the unicycle model
(figure 1-5), r corresponds to the violet spoke which connects
the hub of the unicycle to the rotating patch, which here is point
P.

The angles from the x- and z-axes are labeled with the Greek

letters 8 and ¢. There is sometimes a difference between the

way physicists and mathematicians name the angles, so it’s
necessary to be clear about which is which. For convenience,
we adopt the mathematical usage of Graphing Calculator, the
primary display software. The angular displacement from the

x-axis is expressed as 6. From the z-axis it’s ¢. The location of

point P in spherical coordinates is therefore

P (1,9, ¢)
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The QSO Equation in Spherical Coordinates

A Quasi-Spherical Orbit is the result of simultaneous
rotations around two axes. A vector expression is an efficient
way of expressing both rotations along with the radial position
of the rotating point.

T 1
o = |1
¢ 1
Eqgn. 2-1

The variables », 6 and ¢ appear on the left side of the

equation. The order in which the variables appear is also the
order in which they’re calculated by the software. This is of
little concern with respect to the radius which is invariant on the
unit sphere. However, the order becomes critically important
when dealing with the rotations because in general rotations do
not commute. Therefore the order of the QSO rotations assigned
by the math is taken as the default order for all QSOs.
Specifically, that order is first theta, then phi. QSO notation

reflects this convention. We write “QSO (0:¢),” and not

“QSO0 (¢:0).” In the natural world the order of the rotations

may in fact differ from this convention which is adopted solely
to simplify the exploration of QSOs. On the right side of
equation 2-1 each variable is assigned a test value of one unit.

Graphing,

Fig. 2-2
Point (1, 1, 1) in spherical coordinates

The resulting picture shows only point P; no QSO is evident.
Point P is located at a distance 7 from the Origin and has been

rotated 6 and ¢ degrees respectively from the x- and z-axes. The

default interpretation for angles is radians, so the angles of
rotation in degrees are

O = 1 radian =57.296...°
¢ =1 radian = 57.296...°
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The actual path point P has traveled is revealed by replacing
the unit values of the angles with the parametric variable ¢ where
t:0... 1.

Graphing,

=i

\

-—

Fig. 2-3
A partial QSO trace

The software calculates and plots the position of P for every

value of 7 from zero to one.! Since ¢ is a multiplier of 6 and ¢,

and since O = ¢ = 1 radian, the curve exists only from 0° to

57.296...°. In order to see the full curve ¢ needs to encompass
the full cycle. There are two ways to accomplish this. We can
define t: 0 ... 27, or we can multiply each ¢ in the equation by
2m. The latter method is more instructive.

" Compare Fig. 2-3 with Fig. 1-9.

r 1
0 2t
) 27t
Eqn. 2-3
|'/ N
| \
\ .
\ \
N, )
N |
) ™~ l'
L ‘l
LY "\1,’
e
Fig. 2-4

The QSO after one cycle of revolution

The ensuing curve is the familiar QSO (1:1) which results
from identical rotations on both axes. To generate QSOs in
which the rotations are not identical, we employ variables @ and
b.> By convention a and b are real numbers. Here they are taken
to be positive integers.

* This notation also introduces the possibility of QSOs that have identical
but non-unitary rates of rotation, e.g. QSO (15:15).



14

QSO — The Mathematics and Physics of Quasi-Spherical Orbits

Equation 2-3 becomes

r 1

0] = |a2mt

) b2t
Eqn. 2-4

Fora=2, b =3, the curve is

A s )
SN 7 N\
/ ' N { f \

f ! \1\/ ' / "‘n
I' { N\ 7 '
f / '~. 4

N D ’
Vs \‘ L S/

\ r .\, A Pa |
llﬁ P \,k /
L} 1.’ |.r \ ‘

N #
\\ " A,' N A
L. A

/
S V., >
“— _;Av‘- g
¥ —

Fig. 2-5
QSO (2:3)

This curve is the one which introduced QSOs in chapter 1,
figures 1-1a, b.

So far, so good. We have developed a vector expression
using spherical coordinates that will compute and display any
QSO whether the rates of rotation are identical or not. Although

technically the QSO is written as “QSO (a2stt:b2smt),” in practice
we omit the invariant terms and write only “QSO (a:b).”

One last consideration is the fact that QSOs are not static
curves that materialize completely developed either on the
computer screen or in four-dimensional reality. They are
dynamic phenomena which change and evolve over time.

A slider variable 7 is provided by the Graphing Calculator
software. The slider may be used to animate any graph and
show how it develops. With n, equation 2-4 becomes

r 1

O = |a2mnt

) b2mnt
Eqgn. 2-5

Unlike #, whose range is displayed simultaneously, the range
of n is calculated and displayed sequentially.’ If the range of n is
setatn: 0 ... 1 with 100 steps allowed between the limits, then
each increment of n will represent 1% of the developing QSO.

* Think of ¢ as a strip of movie film. It shows a series of simultaneous but
static pictures of a developing phenomenon. To see the phenomenon
actually change, you need a film projector. That’s the role of n.
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n=0.02
./“Av/
€
X
n=0.04

el

e

n=0.01

n=0.05

QSO (2:3),n: 0.00 — 0.05

equation. The term 2szn may be replaced by the symbol g.

g=2mn
Substituting,
r 1
0 = |agt
¢ bgt
Eqn. 2-6

The QSO equation in spherical notation

Limitations of the Spherical Coordinate System
and an Advantage

The limitations of the spherical coordinate system are the
same as those of the Cartesian system which will be discussed
next. There is a slight advantage to spherical coordinates in that
the defined angles are identical to those of QSOs. Thus the
spherical expressions for QSOs tend to be somewhat simpler
than the Cartesian ones.

The effect of watching these frames develop sequentially and

rapidly on the screen is exactly that of watching a movie. You

see the rotations. You see the curve develop.
A final step completes the spherical form of the QSO
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Cartesian Coordinates

The Cartesian coordinate system is named after its inventor,
René Descartes (1596-1650).

Fig. 2-7
The Cartesian coordinate system

As in spherical coordinates, a fixed point in space is
established as the Origin of the system. Three mutually
perpendicular axes which pass through the Origin are
constructed and labeled as before. A point P is located by
measuring first along one axis, then along the second, and
finally along the third. The coordinates of P are by convention
written as

P(x,y,2z)
The QSO Equation in Cartesian Notation
The derivation of the Cartesian form of the QSO equation is

fairly straightforward. We begin with point P in the combined
spherical and Cartesian coordinate system.

2 — _:; y

Fig. 2-8
Point P in spherical and Cartesian notation

z
e
~_P
sing
¢ )/ Z=C0S {
Fig. 2-9

View from the x-axis

The view from the x-axis shows that

Z=C0S ¢

while the horizontal distance of P from the z-axis is sin ¢.
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For the x- and y-values we need to look at the point from the Writing the vector equation
Z-axis.
X (sing) (cosB)
y| = | (sin¢) (sinB)

cos¢

(sin ¢)(sin ) =y /,/"’ l Eqn. 2-7
X = (sin ¢)(cos 0)
We now face a problem similar to that of equation 2-1.
Graphing this equation would yield a single point P, but not a
QSO. By a process of reasoning similar to that above, we know

that
Fig. 2-10 0 = agt
View from the z-axis o bt
Therefore the x- and y-values are Substituting,
X = (sin ¢)(cos 0) X (sinbgt) ( cosagt)
y = (sin ¢)(sin 0) y| = | (sinbgt) (sinag)
cos bgt
Eqgn. 2-8a

The QSO equation in Cartesian notation
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Limitations of the Cartesian Coordinate System

The Cartesian (and spherical) way of looking at space has
two major limitations with respect to QSOs. First, it comes to
us from a time when stasis, not movement, was the norm.
When René Descartes died in 1650, the Philosophiae Naturalis
Principia, in which Sir Isaac Newton first published his three
Laws of Motion, was thirty-seven years in the future. When
Einstein established beyond any doubt that motion, not stasis, is
the universal norm, he utterly destroyed even the philosophical
basis for Descartes’ system. Nevertheless, the system continues
to find wide acceptance. Although developments in graphing
techniques allow the simulation of motion in the Cartesian
system, people still tend to see static pictures.® This is
particularly disadvantageous to the study of QSOs which are
dynamic and change through time.

The second limitation relates to the ability of the Cartesian
system to adequately describe nature. Buckminster Fuller is
especially critical: “The prime barrier to humanity’s discovery
and comprehension of nature is the obscurity of the mathematical
language of science. Fortunately, however, nature is not using
the strictly imaginary, awkward, and unrealistic coordinate
system adopted by and taught by present-day academic

science.””

* For this reason among others, movies of selected QSOs have been included
with this book.

* Fuller’s reasons for objecting so strenuously to the orthogonal axis system
are beyond the scope of this book. See Fuller, 1979, p. xxiii, p. 566.

Fuller’s alternative to Descartes, the Isotropic Vector Matrix,
will be outlined next.’

The Isotropic Vector Matrix

Despite the convention to limit the discussion to axes that
intersect at 90°, the definition of a QSO specifies no such
limitation.” Let us briefly explore a coordinate system that was
discovered by R. Buckminster Fuller® To understand Fuller’s
design we begin with a stack of cannonballs.

¢ The Cartesian coordinate system is not the only conventional mindset to
be challenged by the QSO model. Burke proposes the use of base 720. He
writes, “The use of base ten gives us immediate problems as, for instance,
1/3 becomes a recurring fraction and source of imprecision. The use of a
much larger base would eliminate a large part of this vagueness. Change of
base can reveal otherwise ‘encrypted’ hidden patterns. I am aware that large
bases are considered to be difficult to handle, but... we have a solution to
that. In fact I am going to suggest that we use base 720. And use degrees as
our subdivisions of the circle. My intuition tells me that this should be as
revealing of underlying pattern as the use of base 8 was in analysing the
Franklin 16 x 16 square” (personal communication, 1995 Dec 2).

7 See p. 2.

* The discussion here presents only the most superficial review of the
Isotropic Vector Matrix. For Fuller’s own exhaustive treatment, see Fuller
(1975, 1979).
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Fig. 2-11
Stacked cannonballs®

The figure shows ten cannonballs stacked in omnidirectional
closest packing array. Each sphere is tangent to its neighbors
and nestles in a valley formed by three others.

’ They can be bowling balls, beach balls, ping-pong balls or stacked fruit.
What matters is that they’re spherical and have identical radii.

Fig. 2-12
Connecting the centers

The cannonballs have been rendered translucent. Their
centers are connected through the points of tangency forming a
tetrahedron (black chords) with an embedded octahedron (red
chords).
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Fig. 2-13

The Isotropic Vector Matrix (IVM)

Removing the spheres and the floor leaves the octa-tetra
arrangement. Fuller calls this geometric configuration the
Isotropic Vector Matrix, or IVM. All chords meet at 60°, which
Fuller identifies as the basic angular relationship in “Scenario
Universe.”'" " Extended indefinitely, this pattern will fill all
space without gaps.

Fig.2-14
Relationship between orthogonal & IVM systems

' Fuller (1975), p. 85
! (1992), p. 38

It is not immediately apparent that the Isotropic Vector Matrix
contains Descartes’ axes. Figure 2-14 shows the IVM rotated to
place the orthogonal axes in a more familiar orientation.
Specifically, the diagonals of the octahedron comprise the
Cartesian coordinate system. Within the tetrahedron, the three
bisectors of opposite pairs of edges define the Cartesian system.
The Cartesian axes intersect at 90°. The axes of the [IVM
intersect at 60°. What is needed is not so much a new system as
a rotation of the conventional point-of-view into a better
relationship with the natural world.

The single greatest failing of this book may be the
employment of the Cartesian and spherical coordinate systems to
display QSOs. There are two reasons for using them. First, the
orthogonal systems are ubiquitous in both mathematics and
physics. Their use here facilitates communication. Second,
Graphing Calculator, like all other software of its kind, assumes
orthogonal axes. As a matter of practicality, we stay with the
prevailing system even though orthogonal axes do not
adequately reflect reality. Readers are urged to develop QSO
theory in the IVM coordinate system. It’s conceivable that such
an approach may directly and precisely describe natural
phenomena better than anything in the present work.
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Variations on a Theme

QSOs can be translated and rotated with ease, as can any
space curve generated in Cartesian notation. Additional axes can
be considered, as well as multiple rotating points. It is also
possible to vary the phase angles of the rotations, or the angle
between the axes as in the IVM. We will examine most of these
operations in chapter 6. For now let’s look at some variations
that arise from the Cartesian equation itself.

We can...

1) Exchange axes (x <>y <—>z)

2) Reverse polarity of the axes (+ <— —)

3) Exchange rotations (a <—>b)

4) Reverse chirality of the rotations (+ <— —)
5) Exchange trig functions (sine <—> cosine)

Exchanging axes
(X <>y<—> z)

Exchanging the axes on which a QSO is graphed is as simple
as exchanging the terms for those axes in the Cartesian vector
equation. The standard form of the vector equation for QSOs is
shown next, followed by an expression in which the x- and
y—axes have been exchanged.

X (sinbgt) ( cosagt)
y (sinbgt) ( sinagt)
cos bgt

Eqn. 2-8a

X (sinbgt) ( sinagt)
y (sinbgt) ( cosagt)
cos bgt

Eqn. 2-8b
Exchanging x- and y-axes

To abbreviate the equations, let

X = (sin bgt) (cos agt)

y = (sin bgt) (sin agt)
Z = cos bgt

Equation 2-8a thus becomes {x,y,z}, and equation 2-8b
becomes {y,x,z}. Curly brackets are used to show that the
abbreviated expressions are vector equations and not the
Cartesian coordinates of two points.
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_ O «  fyxz

Graphing,

x.y.z}

{y.,x,z

Fig. 2-15
QSOs (1:1) {x,y.z}, {y.x,z} @ 1.0 cycle Fig. 2-16
QSOs (1:1) {x,y,z}, {y,x,z} @ 0.1 cycle

Equations 2-8a and 2-8b are shown graphed onto the same
unit sphere. Reversal of the x- and y-axes has rotated the

original QSO (in red) negative 90° (A8 =-907). However, blue curve is negative, i.e. left-handed. This curve was

that’s not the full story. The reversal has also resulted in a generated by exchanging the expressions for the x- and y-axes in

change that’s not immediately apparent. equation 2-8a. There are six such permutations, including the
original vector equation {X,y,z}. The abbreviated equations and
their graphs are shown next.

At 10% of a cycle it is apparent that the O-rotation for the
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” O - yx3
{y,z,x}

{Z,X,Y} {X,Z,Y}

Fig. 2-17
The six axial permutations of QSO (1:1) @ 0.1 cycle

When fully developed, the QSOs look like

Fig. 2-18
The six axial permutations of QSO (1:1) @ 1.0 cycle

Only the original QSO (1:1) {x,y,z} is graphed in red. All
others are blue. Although the curves generated by permutations
of the axes range over most of the virtual sphere, they begin only
at the positive unit values of the Cartesian axes. To include the
negative unit values, we reverse the polarity of the axes.

Reversing the Polarity of the Axes
(+<—=>-)

Reversing the polarity of an axis means that the sign of the
term representing that axis is changed.

X (sinbgt) ( cosagt)

y (sinbgt) ( sinagt)

cos bgt
Eqn. 2-8a
X — (sinbgt) ( cosagt)
y| = | (sinbgt) (sinagt)
z cosbgt
Eqn. 2-8c

In equation 2-8a all three axes have a positive sign.
Reversing the sign of the term for the x-axis yields equation
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2-8c. In the abbreviated vector format the equations are

Eqn. 2-8a: {x,y,z}
Eqn. 2-8c: {—x,y,z}

Notice that the order of the axes has not changed. Only the
sign of the x-term has been reversed.
Graphing,
{_X=Yaz}
<

x.y,z}

Fig. 2-19
QSOs (1:1) {x,y,z}, {—x,y,z} @ 0.1 cycle

The change in sign has a not unexpected effect. The curve is
reflected in the yz-plane. The x-values are now negative while
the y- and z-values remain unchanged. Both curves start at
(0, 0, 1), but a reversal in one of the rotations is evident; a

reflection in the yz-plane also results in a reversal of rotation 6.

There are three combinations of positive and negative that have a
single negative axis. These are graphed next, along with the

original QSO.
{Xa_YaZ}

{_XsYaZ}
-+

—>

Fig. 2-20
QSOs (1:1) @ 0.1 cycle
Four curves, three with a single negative axis

In each case, in addition to reflection in the corresponding
plane, the curve displays the reversal of the 8-rotation previously

noted. There are also three combinations that have two negative
axes each. These are shown next, along with the original QSO.
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{—X,—y,Z}
{X=Y9Z}

{X,—y,—Z} {—X,y,—Z}

Fig. 2-21
QSOs (1:1) @ 0.1 cycle
Four curves, three with two negative axes each

And finally, the last curve with negations on all three axes.

x.y,2}

{_X Y, Z }

Fig. 2-22
QSO (1:1) with negations on all three axes

get a small surprise.

Fig. 2-23
QSOs (1:1) @ 0.1 cycle
The eight combinations of positive and negative axes

Running the rotations forward to one-quarter of a cycle, we

Fig. 2-24
QSOs (1:1)
The eight combinations @ 0.25 cycle
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At 25% it looks like only two curves are developing. This
cannot be true because all eight colors are visible. Furthermore,
each curve differs from the others in its starting point and/or in
the rotations which generate it.

Fig. 2-25
QSOs (1:1) @ 1.0 cycle
The eight combinations of positive and negative axes

At 100% the colors bleed through, indicating that four
curves are present in each hemisphere of the y-axis. When the
eight curves resulting from a reversal of the polarity of one or
more axes are combined with the six curves from exchanging
axes, they create 48 ways to generate a QSO. We leave it to the
reader to explore the effects of using QSO ratios other than (1:1)

Exchanging Rotations
(a<—>b)

The standard representation for a Quasi-Spherical Orbit is
“QSO0 (a:b),” where a and b represent the rates of increase of

angles 6 and ¢. This way of naming QSOs results in equation
2-8a.

X (sinbgt) ( cosagt)
y| = | (sinbgt) ( sinagt)
cos bgt

Eqn. 2-8a
Exchanging a and b results in a single alternative form,

QSO (b:a)."”

X (sinagt) ( cosbgt)
y| = | (sinagt) ( sinbgt)

cosagt

Eqn. 2-8d

"> Variables a and b are not free variables. They represent rotations, of
which there are only two. Thus we consider only the systemic change where
all variables a are replaced by b and vice versa.
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When a = b there is no difference between the two curves.

Fig. 2-26a
QSO (1:1) {a:b}
@ 1.0 cycle

Fig. 2-26b
QSO (1:1) {b:a}

The variables a and b have been exchanged, but you’d never
know it. Figure 2-26b is identical to figure 2-26a. They both
start at the same point and rotate in the same manner. However,
when a = b, the inverse curve is generated. Compare QSOs
(2:3) and (3:2).

Fig. 2-27a
QSO (2:3)" {a:b}
@ 1.0 cycle

Fig. 2-27b
QSO (3:2) {b:a}

The inverse curve is QSO (3:2). The curves start at the same
point and rotate in the same manner. However, this time
different curves result from the exchange in the order of the
rotations. Connecting the intersections of QSO (2:3) forms an
octahedron. Connecting the intersections of QSO (3:2) forms a
tetrahedron." These and other QSO polyhedra will be discussed
in chapters 10 and 11.

" QSO (2:3) was the first QSO used to illustrate the relationship between
QSOs and space curves. See Figs. 1-1a, b.

" Fuller identifies the tetrahedron and the octahedron as complimentary
structures. See:

Fuller, 1979, p. 223, § 986.049.

, 1992, p. 53.
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There are now six ways of generating QSOs by exchanging
the axes, eight by reversing the polarity of the axes, and two by
exchanging the rotations. That makes 96 ways so far" of
generating QSOs that stem directly from equation 2-8a.

Reversing the Chirality of the Rotations
(+<—=>-)

Chirality'® refers to the handedness of a pattern or system.
For instance, molecules often come in right- and left-handed
versions. QSO rotations also come in right- and left-handed
versions. Reversing the chirality of a rotation is equivalent to
reversing the sign of the variable, but because there are two
rotations, four variations result.

As usual, we begin with equation 2-8a.
X (sinbgt) ( cosagt)

y| = | (sinbgt) ( sinagt)
cos bgt

Eqn. 2-8a

"6x8x2=96
' From Greek kheir, hand.

If b is negated the equation becomes

X (sin (—b) gt) (cosagt)

y (sin (—b) gt) (sinagt)
cos (—b) gt

Eqn. 2-8¢
Abbreviating,
Eqn. 2-8e: {a:-b}
The other two variations are

Eqgn. 2-8f: {—a:b}
Eqgn. 2-8g: {—a:—b}

Once again the curly brackets indicate vector equations.
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Graphing, ’ {a--b}
{—a:b} s

(a:b} B X

Fig. 2-28
QSOs (1:1) {a:b}, {a:-b}, {—a:b}, {—a:—b} @ 0.1 cycle

At 10% four QSOs start from (0, 0, 1) and propagate into
the four octants of the positive hemisphere of the z-axis. Next
we advance the rotations to 25% of a cycle.

Fig. 2-29
QSOs (1:1) {a:b}, {a:—b}, {—a:b}, {—a:-b} @ 0.25 cycle

At 25% the pattern looks suspiciously like that of figure
2-24. The emerging curves seem to be developing only in the
positive and negative hemispheres of the y-axis. The difference
between that scenario and figure 2-29 is that here there are only
four curves whereas in the former there were eight.

Fig. 2-30
QSOs (1:1) {a:b}, {a:-b}, {—a:b}, {-a:—b} @ 1.0 cycle

The colors of the curves after one cycle confirm that each
hemisphere of the y-axis contains two overlapping QSOs.
Equations {a:b} (red) and {—a:—b} (light blue) have developed in
the positive half, whereas equations {—a:b} (dark blue) and
{a:-b} (violet) are in the negative half. There are now
96 x 4 = 384 variations on the theme of equation 2-8a. This is
not over yet.
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Exchanging Trig Functions
(sine <—> cosine)

The last of the internal manipulations that generate variations
of equation 2-8a is the exchange of the trig functions sine and
cosine.

X (sinbgt) ( cosagt)

y (sinbgt) ( sinagt)
cos bgt

Eqn. 2-8a

Here again we consider only the systemic exchange wherein
all sines are replaced by cosine and vice versa. Equation 2-8a
thus becomes

e

(cosbgt) ( sinagt)
y| = [ (cosbgt) ( cosagt)
sinbgt

Eqn. 2-8h
The abbreviated forms are

Eqn. 2-8a: {sin cos}
Eqn. 2-8h: {cos sin}

Graphing,

{sin cos}

{cos sin}

Fig. 2-31
QSOs (1:1), {sin cos}, {cos sin} @ 0.1 cycle

The curves overlap, as they have done before.

Fig. 2-32
QSOs (1:1), {sin cos}, {cos sin} @ 1.0 cycle
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Here, however, there is a difference. The graphic shows

only QSO (1:1). Other ratios reveal an interesting pattern. The

best vantage point is from the positive z-axis.

O

Fig. 2-33
QSOs (1:1), {sin cos}, {cos sin} @ 1.0 cycle
View from the z-axis

QSO (4:1) QSO (5:1)
Fig. 2-34

QSOs (2:1), (3:1), (4:1), (5:1), {sin cos}, {cos sin}@ 1.0 cycle

View from the z-axis

Although the curves start in different places and rotate in

different ways, they overlap again at QSO (5:1). This is a true
congruence, and not an illusion of the point-of-view. The
congruencies occur every four increments of a: QSOs (1:1),
(5:1), (9:1),... and so on.

It also works the other way.

S

N

n\._" '
\\

1
}
s

~

QSO (1:2)

QSO (1:4) QSO (1:5)
Fig. 2-35
QSOs (1:2), (1:3), (1:4), (1:5), {sin cos}, {cos sin} @ 1.0
cycle

View from the z-axis
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Again the curves are congruent every four increments, this
time, of b: QSOs (1:1), (1:5), (1:9),... The striking resemblance
of the QSO (1:n) series to thodonea curves will also be
discussed in chapter 7.

The number of variations of Eqn. 2-8a now stands at

Exchanging AXeS.....ccccceeeiiiiiiiiinnaennnnn. 6

Reversing the Polarity of the Axes............. 8

Exchanging Rotations.......cc.......cceeeeee. 2

Reversing the Chirality of the Rotations....... 4

Exchanging Trig Functions..................... 2
Multiplying,

6x8x2x4x2=768

However in each case equation. 2-8a was the common
starting point. It appears five times, once in each of the
categories. Subtracting 4 from the total leaves equation. 2-8a
and 763 variations as the final count.

The take-home lesson in all this shuffling and scrambling of
functions and variables is probably to always remember that
although equation. 2-8a is the conventional form of the QSO
equation, there are 763 other variants out there, some of which
might be more interesting, more elegant, or more useful than the
standard version. It pays to keep an open mind.



Chapter 3

Elements of the QSO

The QSO Ratio In the unicycle model, a controls rotation around the fork
while b controls rotation around the axis of the wheel. Much can
A Quasi-Spherical Orbit results from the simultaneous be learned by manipulating the QSO ratio in a variety of ways.

rotation of a point about two or more axes. The precise shape of =~ We begin with fractions.
the orbit is determined by the ratio between the rotational rates

on each axis. If aand b represent the rates of rotation, the Fractional Ratios
0SO0 ratio is written as (a:b).

A ratio of (1:1) gives the figure eight curve.

- ‘.
Fig. 3-2
QSO (1:1)
Fig. 3-1
Unicycle showing rotations @ and b What happens if you divide each element of the QSO ratio in

half?
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Fig. 3-3
QSO (0.5:0.5)

The tendency is to view figure 3-3 as a static picture. It
looks like the curve starts at (0, 0, 1) and rotates to (0, 0, —1)
where it stops. It looks like you get half of a (1:1), but in this
case looks are deceiving.

Fig. 3-4
QSO0 (0.5:0.5) @ 100% of a cycle

The elements of the QSO ratio are rotations, not static
displacements. They refer to rates of change over time. When
the (0.5:0.5) is given enough time, it results in a curve that, on
the static page at least, looks exactly like QSO (1:1). It just takes
longer. In fact since QSO (0.5:0.5) rotates half as fast as QSO
(1:1), it’ll take twice as long to rotate any given amount
compared to the (1:1).

Thus QSOs (0.5:0.5), (1/7t:1/x) and (10"°:10') all give
curves that look alike. However, their rates of rotation are 0.5,
1/x, and 10" angular units per unit time, respectively.

Two conclusions are possible. First, QSOs which differ
only in the magnitude of their ratios result in curves which are
statically identical. Second, QSOs that are statically identical
may still differ dynamically.

If dividing both elements of the QSO ratio by the same
number results in a curve that looks the same but differs
dynamically from the original, how about dividing only one
element or the other?
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QSO (0.5:1) has the same static form as the (1:2). For
obvious reasons, QSO (1:2) is known as the “baseball seam.”
Like the previous example, QSO (0.5:1) rotates at half the speed
of QSO (1:2).

Dividing the second element of the (1:1) by 2 gives

Fig. 3-5a
QSO (0.5:1)

Again the result appears to be an incomplete curve.
However, as we just learned, completion is a matter of timing.
Let’s compare the complete static form of QSO (0.5:1) to the
static form of QSO (1:2). Fig. 3-6a
QSO (1:0.5)

The QSO appears to be a three dimensional spiral beginning
at (0, 0, 1) and ending at (0, 0, —1).*> Allowing it to go to
completion reveals its relationship to QSO (2:1).

' The seam on a regulation baseball is not exactly like QSO (1:2). In his
delightfully profound book, Slicing Pizzas, Racing Turtles, and Further

. Adventures in Applied Mathematics, author Robert Banks (1999) considers
Fig. 3-5b several variations, one of which is, for all intents and purposes, the very

QSO (1:2) thing,
* See chapter 9, Space Curves, QSO (3:1) & the spherical cardioid.
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Fig. 3-6b
QSO (2:1)

QSO (2:1) is the “loop-the-loop.” It rotates twice as fast as
QSO (1:0.5), but has the same static form.

Exponential Ratios

Exponential QSOs are those QSOs with a ratio of the form
(m“:n") where m, x, n and y are real numbers. This is not to say
that imaginary numbers are not allowed, but only that such ratios
have not been investigated.

QSO (1:2°) is one example.’ Since 2°= 1, QSO (1:2°) is the
same as QSO (1:1).

QSO (1:2") is identical to QSO (1:2) which is the baseball
seam.

It gets more interesting when the ratio is QSO (1:2'7*%).
Since 2% =3, QSO (1:2"***) is identical to QSO (1:3).

* Since 1* =1 for any x, we will ignore this possibility.

Fig. 3-7
QSO (1:2'592%) = QSO (1:3)

In this case there is no caveat about the rate of rotation since
215899 g 3 to whatever degree of accuracy is desired. The only
difference between the QSOs is in the expression of the ratio.

QSO (1:2"°**%), which is identical to the (1:3), intersects
itself at (0, 0, £1) and at three equally spaced points around the
equator. Connecting the intersections makes two face-bonded
tetrahedra. What may not be immediately apparent is that the
6-hedron is polarized. When the QSO is on the unit sphere, the
vectors that extend from the xy-plane to the poles have a length

of A2 . Those that lie in the xy-plane have a length of /3 .
These and other QSO polyhedra will be examined in chapter 10.

QSO (1:3) can also be represented by (1:4°7%'%),
(1:5°%29°") "and so on. In fact any QSO with the form (1:n%)
where n” = 3 will be identical with the (1:3). Similar operations
on the first element of the QSO ratio yield similar results.
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Irrational Ratios
Until now the focus has been on QSOs with rational ratios.
QSO (I:1)-->1/1=1

QSO (2:1) -->2/1=2
QSO (3:5) -=>3/5=10.6

Fig. 3-8
QSO (1:1) QSO (2:1) QSO (3:5)

Even QSO (7:rt) has a rational ratio, as do QSOs (1/m:1/m),

(3ee), (\2 4 \/2_) and so on. When the ratio of a QSO is a

rational number, the orbit will be finite. It will wind across the
virtual sphere only to close upon its point of origin and recycle
over the same track, ad infinitum. Irrational QSOs are a little
harder to characterize.

* Compare QSO (3:5) with Figs. 1-3a, b.

Fig. 3-9a
QSO (1:1) [red], QSO (42 :1) [blue] @ 0.1 cycle

QSOs (1:1) and (A2 :1) are shown on the unit sphere. The

curves are generated by two rotating circles which represent
unicycle wheels. A black circle generates the (1:1) while a white

circle generates the (42 :1).° Two radius vectors extend from
the center of rotation to small spheres which trace the QSOs.
The curves are shown at 10% of completion, which must be
carefully defined. Until now, completion for QSOs has been
that point in the rotation when the curve returns to its starting
point and begins to retrace its previous path. Irrational QSOs
demand a more precise definition. Since it makes no sense to
talk about a “complete” irrational phenomenon, whether it be a
rotation or anything else, we abandon the idea of completion and

* The white circle cannot be seen on the back side of the sphere against the
white background of the paper.
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instead take up the notion of a cycle.

A cycle is that point in the rotation when the number of trips
around each axis equals the multipliers of the respective elements
of the ratio.

Thus, a cycle will be tallied for the (2 :1) when the

a—rotation totals \/2_ x 360° and the b-rotation sums to 360°.

Although the definition does not require that a curve repeat itself,
it serves for the rational curves as well. Rational curves retrace
themselves, the irrationals don’t.

In figure 3-9a, both QSOs are shown at less than one cycle
of development. The (1:1) has rotated

a=360°/10=36"
b=360°/10=36"

while the (A2 :1) has rotated

a= 2 (360°/10)=5091...°
b=360°/10 = 36"

The a-rotations differ by (42 — 1)/10 = 0.0414... of a cycle.
The b-rotations are identical, as can be seen in the figure. The
irrational nature of QSO (A2 :1) becomes apparent as the

rotations continue. The curves are shown in 10% increments of
a cycle.

50%

90%

30% 40%

At 50% the b-rotations around the axes of
their respective circles are identical, so at
1/2 cycle both curves reach (0, 0, —1) at
the same time.

70%

Fig. 3-9b
QSO (1:1), QSO (A2 :1)



39

Elements of the QSO

Fig. 3-9¢
QSO0s (1:1), (A2 :1) @ 1.0 cycle

At the end of one cycle of rotation, both curves have
returned to (0, 0, 1). The b-rotations have been 360° each.

However the a-rotations have been 360° and (360 x 2 )",
respectively. While the (1:1) is set to repeat itself, the (12 :1) is

going off almost 180° in the other direction. It’s instructive to
let them go for a few more cycles.

Fig. 3-9d
QSOs (1:1), (A2 :1) @ 5 cycles of revolution

While the rational (1:1) is unaffected by the increasing
number of cycles, the irrational QSO precesses around the
z-axis, adding loops as it goes. What may not be apparent from
the sketches, but is amply clear when watching the QSOs

develop on the screen, is that the successive loops of the (\R:1)

are in fact continuous. They are not merely more QSOs added to
the first, they are the first, ever growing, but never retracing any
previous path.

The example suggests that if the ratio is irrational, the curve
will wander endlessly over the spherical surface, never closing,
never precisely recycling. Although this is usually true, there are
exceptions. QSO (1:3)° has an irrational ratio, and yet it makes a
perfectly well-behaved QSO.

¢ See Fig. 3-7.
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Perhaps the rule should be amended to read that a QSO is
irrational if either element is irrational. Not surprisingly, there
are still exceptions. QSOs of the form (n:n) where # is irrational
are nevertheless rational curves. They do return to the original
starting point, and they do recycle endlessly. These QSOs all
have the static form of QSO (1:1). Their dynamic properties
differ with the multiplier of the ratio.

Some irrational QSOs can be made rational by raising the

elements of the ratio to a power. QSO (\/2_ :1), for example, can
be made into the very rational QSO (2:1) by raising both
elements to the second power. QSO (1:2"%) can be rationalized
by raising both elements to the third power, and so on.

The general rule is that when one of the elements of the QSO
ratio is an irrational number and the other is rational, then the
orbital trace is irrational.” It travels forever across the unit
sphere, never retracing its path, never returning to its original
conditions. For the present, we will limit the study of Quasi-
Spherical Orbits to rational QSOs only. This convention is
adopted for the same reason as the others. It will simplify the
study of these curves.

Continuously Varying Ratios

At the end of the last chapter we saw that changing the QSO
ratio produces differing patterns when seen from the z-axis. In
this chapter we have investigated fractional, exponential and
irrational ratios. The relationships between the various
7 This insight is credited to D. Loftus, c. 1990.

manipulations of the ratio and the QSOs produced can be
summed up by looking at what happens when the ratio is varied
continuously. If one element of the QSO ratio is held constant
while the other is smoothly varied through an interval on the real
number line, the resulting QSOs show an interesting pattern.
Since the real number line consists of an infinity of numbers, we
can’t look at all the QSOs in even the smallest range. We choose
instead to start at QSO (1:3) and to change the first element of the
ratio by +0.1 until we reach QSO (2:3).

The series begins with QSO (1:3), a
fairly simple, easily recognizable curve.

QSO (1.1:3) is considerably more
complex. It’s a net-like weave with
diamond shaped openings oriented
generally along the north-south axis.

QSO (1.1:3)
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QSO (1.4:3)

QSO (A2 :3)

QSO (1.2:3) resembles the much
simpler (2:5), even though it rotates only
60% as fast.

QSO (1.3:3) shows a much tighter net
bag pattern.

Adding 0.1 produces a curve that
statically resembles the somewhat less
complex QSO (7:15), although it rotates
considerably more slowly.

An unscheduled stop at QSO (12 :3)
discloses an irrational curve that has
covered the entire unit sphere (to the
resolution of the software, anyway), and
shows no sign of stopping any time soon.

QSO (1.5:3)

QSO (1.7:3)

7S

QSO (1.8:3)

QSO (1.5:3) reveals that, given
enough time, it looks like the (1:2),
statically at least.

QSO (1.6:3) resembles the faster, less
complex QSO (8:15).

The tightest net bag so far. Compare
with QSOs (1.1:3) and (1.3:3). Is there a
pattern here?

Given enough time, QSO (1.8:3)
looks like QSO (3:5).
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QSO (1.9:3), which resembles
nothing other than itself, is the most
complex curve so far.

However, complexity yields to
simplicity as it has all along, and we
arrive at our goal, QSO (2:3).

QSO (2:3)

Fig. 3-10
QSO (1:3) goes smoothly to QSO (2:3)

It is possible, of course, to take smaller and smaller
increments, and to generate more and more QSOs. The pattern
will be the same. The complexity of the QSOs will increase until
the ratio can be reduced to some common denominator. The
greater the reduction of the ratio, the greater the simplification in
the curve itself. Simple curves are bound by complex curves on
either side. The simplest curves are bound by the most
complex. Smoothly varying the second element of the ratio
holds similar lessons. We leave this exercise to the reader.

Poles

The idea of a pole in QSOs is derived from the most common
polar system with which people are familiar, the Earth.

N

Fig. 3-11
The Earth with north & south poles

A diameter, in this case the axis of the Earth, passes through
the sphere and defines two points on the surface. The points are
designated as the north and south poles. Because it has two
poles, the Earth is a bipolar system and the axis itself is a dipole.

Monopoles

A monopole is that point defined by half a diameter, i.e. a
radius. A single point rotating at the end of a radius traces a
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monopole QSO. Unlike the fixed north and south poles of the
Earth, monopole QSOs can and do wander anywhere on the
virtual sphere as the point rotates simultaneously about its two
axes.

Fig. 3-12
Monopole QSO (2:1) @ 95%

QSO 1(2:1), shown here at 95% of a cycle, is a monopole
because it’s generated by a single rotating point. Monopole
QSOs are written with a leading “1” to indicate the unitary nature
of their generation. Monopole QSO (2:1), for instance, is
written as QSO 1(2:1).

In figure 3-12 a small sphere has been placed at the rotating
point. It’s function is to help follow the point. In the simple
QSO pictured here the small sphere is not really needed, but in
the more complex QSOs to come such visual aids will be useful.
The unit sphere has also been placed at the center of the system.
Its function, as always, is to help distinguish front from back.

Fig. 3-13
QSO 1(2:1) @ 95%

Monopoles can look deceptively alike. Figure 3-13 shows a
blue QSO 1(2:1) which looks like the red QSO 1(2:1) in figure
3-12, but it is not. Overlaying figures 3-12 & 3-13 allows a
direct comparison.

Fig. 3-14
Red QSO 1(2:1) & blue QSO 1(2:1), both @ 95%
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The red and blue QSOs considered separately have statically
identical forms. Dynamically, they have a phase difference of
180°. The orbiting points have started, red at the north and blue
at the south pole respectively. For 90% of the curve the red and
blue bleed through. It is only in the as-yet-uncompleted 5% of
each QSO that we can appreciate the fact that they are separate
curves.

Dipoles

In figure 3-14 both points undergo the same rotations.
Because the rotations are identical, the resulting curves can be
considered a dipole.® Instead of two monopoles, we have one
dipole with two branches.

The dipole in figure 3-14 is written QSO 2(2:1) to indicate
that there are two rotating points and that they undergo the same
rotations. The branches of the dipole are statically identical but
dynamically 180° out of phase. The phase difference of 180° is

added to the second rotation of the second pole. Technically, the

rotations and phase angles are

First (red) pole Second (blue) pole
a-rotation 2+0° 2+0°
b-rotation 1+0° 1+ 180°

This notation mixes apples and oranges, rotational rates and

phase angles. The preferred form is to specify the rotations and
* When the rotations are not identical, as in Fig. 1-4, the resulting QSOs
cannot be considered a dipole.

phase angles separately.
QSO 2(2:1) [0,0] [0,180°]

The first set of square brackets specifies the phase angles of
the first (red) pole of the dipole. Zero degrees are added to both
the a- and b-rotations of the pole. The second set of square
brackets likewise specifies the phase angles of the second (blue)
pole. Zero degrees are added to the a-rotation, and 180° are
added to the b-rotation.

It is of course quite acceptable to express the phase angles in
radians. In that case dipole (2:1) would be written as

QSO0 2(2:1) [0,0] [0,]

In figure 3-14 the branches of the dipole overlap. This is not
necessarily so.

—

Fig. 3-15
QSO 2(2:1) @ 95%
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The addition of a phase angle to the first rotation of the In the sketch, QSO 3(2:1) is shown at its starting position;
second pole yields a different dipole. In figure 3-15, both the rotations have not yet begun. Three small colored spheres

rotating points have started at the north pole, but the blue branch ~ mark the ends of three radii. The spheres are carried on and

of the curve starts 180° ahead of the red one. The rotations and rotate around three black circles. A small red sphere at the zenith

phase angles are of the system is carried on the first circle, currently in the
xz—plane. The corresponding black radius overlays and

QSO 2(2:1) [0,0] [180°,0] obscures the green z-axis. Thirty degrees east of the first circle,
a second circle carries a violet sphere which is 45° from the
Here again, the preferred form is to specify the rotations and ~ zenith. The third circle, at 60° from the x-axis, carries a blue
phase angles separately. sphere which is 30° from the zenith.

Multipoles
QSOs are not limited to two particles of course, and phase

angles are not limited to £180°. A tripole is shown next with its
defining rotations and phases.

Fig. 3-17
QSO 3(2:1) [0,0] [30°,45°] [60°,30°] @ 5%

At five percent of rotation the QSO traces are beginning to
develop.

Fig. 3-16
QSO 3(2:1) @ 0%
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Eliminating the parameter #, which is needed only for
graphing, leaves

0 = a2nn, ¢ = b2mn

where
a=2,b=1,n=0.08333...
Substituting
Fig. 3-18 0=2x360"x0.08333... =60°
QSO 3(2:1)[0,0] [30°,45°]1 [60°,30°] @ 8.333...% ¢=1x360°x0.08333... =30°

We pause the action at eight and one-third percent of the
cycle to observe a puzzlement. The red pole of the QSO seems
have to caught up with the trace of the blue pole. It looks like
the small red sphere is crossing through the starting point of the

At 8.333...% of a cycle, the a-rotation has carried the small
red sphere 60° around the equator. The b-rotation has carried the
sphere 30° from the zenith. This is where the blue trace started.
Furthermore, because the phase angles of the red and blue
blue trace. We can ascertain whether this is true or not by branches of the QSO differ by a ratio of 2:1, the traces will

calculating the angles. overlay each other for the rest of the rotation.
We know that

r 1
Ol = |a2mnt
() b2mnt

Eqn. 2-5
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Fig. 3-19
QSO0 3(2:1) [0,0] [30°,45°] [60°,30°] @ 95%

With the first cycle nearly complete, it is clear that the red
and blue traces have followed the same orbital track with the
blue leading and the red following. In the figure the small blue
sphere has just passed through the north pole of the system and
is closing on its starting point with the red right behind it.

The violet track has also done a couple of interesting things.
First, it began, and will therefore complete its orbit, at one of its
own intersections. The violet trace also seems to have passed
through the starting point of the blue curve, as did the red one.
To confirm this we need to calculate the angles of rotation as
before. This calculation is left to the reader, but here’s a hint.
When the a-rotation has carried the small violet sphere 570° from
its starting point, the b-rotation has gone through the south pole
and the small sphere is now on what started out as the back side
of the rotating circle.

To summarize, the general form of a QSO involves a
minimum of seven variables. Two of these are the rotations a
and b, which are placed within parenthesis: QSO (a:b). A third
variable, p, indicates the number of poles, and is placed in front
of the parenthesis: QSO p(a:b). The rest of the variables are the
phase angles. Because there are two rotations, there are two
phase angles which must be specified for each pole. In the
current notation the phase angles are called out separately. The
model accommodates any number of poles, starting points and
phase angles. The underlying requirement is that all poles
undergo the same rotations, i.e., those within the parenthesis.

Events

The life of a point in a two-dimensional circular orbit’ is
uneventful. Assuming a constant rate of rotation, there is
nothing that differentiates any part of the curve from any other.
It’s boring. When a point rotates about two axes
simultaneously, it passes a minimum of two times through at
least one location on the unit sphere. This is known as an event.
The ratio of the rates of rotation determines the number and
locations of the events.

There are two kinds of event. An event can be produced
when the orbital trace intersects itself. It can also occur when the
orbit is tangent to itself. Sometimes the two kinds of event can
occur together. All QSOs have at least one event per orbital
cycle. QSO 1(1:1), now written with the leading “1” to indicate

a monopole, typifies the intersection event.
’ See Figs. 1-6 & 1-7.
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Fig. 3-20
QSO 1(1:1) with a single intersection event."

The single event of QSO 1(1:1) occurs at (0, 1, 0) in the
Cartesian coordinate system, or at (1, 90°, 90°) in spherical
notation. It takes two nonsimultaneous passes of the rotating
point to create the event. The timing of the passes is not
obvious, nor is it obvious that the angle formed by the two
passes is 90°. These and other characteristics of events will be
explored in chapter 4.

Tangent events occur when the orbital track is tangent to
itself, but does not cross. Two tangent events occur in the
baseball seam, one at the north pole of the system, and one at the
south.

' The full notation for this curve is QSO 1(1:1) [0,0]. We omit the phase
angles when their inclusion would obfuscate rather than elucidate.

Fig. 3-21
QSO 1(1:2) with tangent events

Again, the events are created by two passes of the rotating
point, but it is difficult to see the timing. Also, if it were not
known that these are in fact tangent passes, it would be easy to
suspect that they might be low angle intersections. Intersection
events and tangent events will be discussed in chapter 4.
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The Event Constellation

With a single event, QSO 1(1:1) is the simplest QSO.
QSO 1(1:2) has two events, as does QSO 1(2:1). QSO 1(1:3)
has five events.

.~

Y

Fig. 3-22
QSO 1(1:3)

QSO 1(1:3) is shown in Fig. 3-22 at 100% of a cycle. The
five events are located one each at the north and south poles of
the system, and three more equally spaced around the equator.

Fig. 3-23
QSO 1(1:3) with small spheres marking the events

Small spheres have been placed at the events. The spheres
are red, indicating that the events result exclusively from passes
of the red branch of the QSO. This is consistent with the fact
that monopole QSOs have only a single branch.

Fig. 3-24
The event constellation of QSO 1(1:3)
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In the third sketch the QSO and the central sphere have been
deleted, leaving only the small spheres. This arrangement of
small spheres in space is called an event constellation.

QSO 2(3:1), with phase angles of 0° and 180° added to the
second (blue) branch, provides the last example of an event
constellation. On the right, the red and blue branches of the
QSO have small spheres marking the events. In this illustration,
since the events are created in different ways, the colors of the
small spheres also differ. Events that are created by two passes
of the red branch of the QSO are marked by a red sphere.

Events created by two passes of the blue branch get a blue
sphere, and events that result from a combination of red and blue
passes are marked with a gray sphere.

At the far right the QSO and the unit sphere have been
deleted, leaving only the event constellation. From the isometric
vantage point the events seem to be randomly distributed
throughout space.

In the third graphic the branches of the QSO have been
restored. The point-of-view, (cos 45°, sin 45°, 0), is achieved
by rotating the isometric view until the xy-plane is edge-on to the
eye of the reader. Like the twin snakes entwined around the
caduceus, the red and blue branches of QSO 2(3:1) wind around

the z-axis and around each other." The events define an ellipse
while the envelope of the QSO is itself a circle.

Fig. 3-25 (
The event
constellation IL
of QSO 2(3:1) ™
[0,0] [0,180°]

"' Asclepius was the most important among the Greek gods and heroes who
were associated with health and curing disease. The staff of Asclepius with a
single coiled serpent is the traditional symbol of medicine. However, in
modern times the caduceus, showing twin snakes around a staff with two
wings at the apex, has also been used to represent medicine. In Greek
(Roman) mythology, the caduceus was the staff of Hermes (Mercury), the
god of commerce, eloquence, invention, travel, and theft, and so was a
symbol of heralds and commerce, not medicine. Adapted from <http://www-
structmed.cimr.cam.ac.uk/Asclepius.html>.



Chapter 4

Events

An event is created when the rotating point passes a Although the location and nature of the single event in this
minimum of two times through at least one location on the unit simple QSO are obvious, it will be instructive nevertheless to
sphere. There are two kinds of event. An event can be follow the development in detail. The first order of business is
produced when the orbital trace intersects itself. It can also to identify the poles, ratio and phase angles of the QSO. This is
occur when the orbit is tangent to itself. Sometimes the two QSO 1(1:1) with phase angles of 0° on both rotations. It has one
kinds of event can occur together. All QSOs have at least one event, located at (0, 1, 0). In this QSO it’s fairly obvious that
event per orbital cycle. the rotating point passes twice through the intersection. The

timing and direction of those passes are examined next.
The Intersection Event

QSO 1(1:1) typifies events formed by the intersection of the
orbital trace with itself.

Fig. 4-2a
QSO 1(1:1) at 25% of a cycle
Fig. 4-1
QSO 1(1:1) with a single intersection event QSO 1(1:1) is shown at two points in its cycle. At 25% the

rotating point passes for the first time through the location of the
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event. At 75% the second pass completes the event. A vector
diagram has been added to the graphics to illustrate the
instantaneous velocity of the rotating point. The a and b
components of the velocity are shown in black while the velocity
vector is red The event can be analyzed graphically as shown

next.
Fig. 4-2b
QSO 1(1:1) at 75% of a cycle
QSO Location Events Passes Schematic
Poles # of events Direction
Ratio Branch Timing
Phase Angles (color) 25%
j75%
QSO 1(1:1)
[0°,0°] (0, 1,0) .
- 25%
Table 4-1

Graphical analysis of the event of QSO 1(1:1)
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In table 4-1 the QSO is identified in the left column. The
Cartesian coordinates of the event are next, and in the third
column a small colored sphere visually represents the event.
The fact that there is only one small sphere tells us that there is
only one event. Its color indicates that the event is formed
exclusively from passes of the red branch of the QSO.'

The point-of-view for the vector diagrams is radially

outward from the y-axis. Although the isometric view may give

a better overall picture, this perspective more clearly illustrates
the event itself. At 25% of a cycle, the rotating point passes
through the location of the event in a southeasterly direction.
The instantaneous track is at an angle of 45° to the xy-plane. At
75% the point passes again through the location of the event
traveling this time in a northeasterly direction. The angle of the
track at the event is again 45° with respect to the xy-plane. The
last column on the right summarizes the two passes of the
rotating point and displays them schematically.

It is clear from the table that the event of QSO 1(1:1) is an
intersection event. It is located at (0, 1, 0), and is formed by
passes that occur at 25% and 75% of the cycle. Each pass
makes an angle of 45° with the xy-plane, and the angle between
the passes is 90°. The vector diagrams also reveal that the

magnitude of the velocity at the event is A2 Actually the

velocity of the rotating point varies smoothly from [l at the

' Distinguishing which branch of the QSO forms a given event is not so
important when there is only one branch to distinguish. However, when
considering the events of multipole QSOs, it will become critical to

differentiate carefully which branch or branches of the QSO creates them.

poles to \E at the event.

Tangent Events

In contrast to the intersection event of QSO 1(1:1), monopole
QSO (1:2) features events created by tangental passes of the

rotating point.

Fig. 4-3
QSO 1(1:2) at 100% of a cycle

The baseball seam, shown above in its static form, has two
events, one each at the north and south poles.
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Fig. 4-4a
QSO 1(1:2) at 0% of a cycle

The rotation begins at (0, 0, 1). Since there is no component
of the a-rotation at either pole’, the motion of the rotating point at
the beginning of the orbit is entirely due to the b-rotation. This
is QSO 1(1:2), so b =2. The vector diagram consists only of
the velocity vector itself. It’s in the xz-plane, parallel to the
xy—plane, and points with magnitude 2 toward positive x.

* See Fig. 3-1.

Fig. 4-4b
QSO 1(1:2) at 25% of a cycle

At one-quarter of a cycle the rotating point has reached
(0, 0,-1). It’s traveling toward negative y with an
instantaneous speed of 2. The angle of the velocity vector with
respect to the xz-plane is 90°.
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Fig. 4-4d
Fig. 4-4c QSO 1(1:2) at 75% of a cycle

QSO 1(1:2) at 50% of a cycle
At 75% the rotating point passes for the second time through

At the halfway point the rotation has again reached the the south pole of the system, traveling, as may be expected, in
zenith. This time it’s heading towards negative x, parallel to the  the opposite direction from the first pass. These four passes of
xy-plane and at a 0° angle with respect to the xz-plane. the rotating point, which create the two events of QSO 1(1:2),

are summarized in the following tables.
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QSO Location Events
Poles # of events
Ratio Branch

Phase Angles (color)
(09 09 1) ®
QSO 1(1:2)

[0°,0°]

(09 O: _1) L
Table 4-2a

Identification, location and nature
of the events of QSO 1(1:2)

As before, the first column of the table lists the poles, p = 1,
the QSO ratio, (1:2), and the phase angles, [0°,0°]. The second
column locates the events at the north and south poles,
respectively, and the third column specifies that both events are
created solely by passes of the red branch of the QSO. The
timing of those passes differs substantially from the 1(1:1).
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Passes Schematic
Direction
Timing
0% 25% 50% 75%
y y
50% 0%

View from +z

View from +z

View from +z

View from —z

View from —z

75%

Ty

25%

View from —z

Table 4-2b

Graphical analysis of the events of QSO 1(1:2)
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The rotating point oscillates from north to south, picking up The static form of QSO 1(2:1) is shown in figure 4-5a.
half of an event on each oscillation. The passes that create the There are two events. Both are in the yz-plane, and both occur
events are aligned with the x- and y-axes respectively, with an at 45° from the respective north or south pole.’ That is, the event
angle of 90° relative to each other. While the view of the in the positive z-hemisphere is at (0, cos 45°, sin 45°), while the
northern event is conventional, the view of the event at the south  one in the negative z-hemisphere is at (0, —cos 45°, —sin 45°).
pole is from a point radially outward from the pole. When we analyzed the event of QSO (1:1), there was no
ambiguity as to which event to list first; there was only one.
Moving Off-Axis When we analyzed the 1(1:2), we intuitively listed the event at
(0, 0, 1) first, without much justification. The question now is
The events examined so far have occurred on an axis. The which event of QSO 1(2:1) should be listed first, and does it
(1:1) event is at (0, 1, 0), and the events of the 1(1:2) are at make any difference? To help decide that question a new visual
(0, 0, £1). The 1(2:1) presents the first case of off-axis aid is needed.

events. It also imparts a lesson about sequence.

Fig. 4-5b
QSO 1(2:1) at 12.5% with a negative QSO 1(2:1)

Fig. 4-5a
QSO 1(2:1) @ 100%

A black QSO is generated on the unit sphere. The black
QSO is the negative of QSO 1(2:1). As the rotating point traces

* The coordinates of events will be more fully discussed in appendix 5.
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the positive (red) QSO, the negative 1(2:1) disappears. At
12.5% of a cycle, the positive QSO has reached the location of
the first event at (0, cos 45°, sin 45°).

Fig. 4-5d
QSO 1(2:1) at 62.5% of a cycle

The QSO then loops around (0, 0, —1) and-goes through
(0, —cos 45°, —sin 45°) again.

Fig. 4-5c¢
QSO 1(2:1) at 37.5% of a cycle

One-quarter of a cycle later the QSO has reached the location
of the second event at (0, —cos 45°, —sin 45°).

Fig. 4-5¢
QSO 1(2:1) at 87.5% of a cycle.
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Finally, the QSO returns to (0, cos 45°, sin 45°), completing
the events. The sequence in which the rotating point passes
through the locations of the events suggests a convention:
Events are listed and analyzed in the order in which the rotating
point first passes through the location of the event.* Thus, the
events of QSO 1(2:1) are

1) (0, cos 45°, sin 45°)
2) (0, —cos 45°, —sin 45°)

There is now nothing left but to run the analysis.

QSO Location Events
Poles # of events
Ratio Branch

Phase Angles (color)
QSO 1(2:1) | (0, cos 45°, sin 45°) .

[0°,0°]

(0, —cos 45°, —sin 45°) e
Table 4-3a

Identification of the events of QSO 1(2:1)

* Note that this convention also applies to the events of QSOs 1(1:1) and
1(1:2), even though we didn’t say so at the time.
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Passes Schematic
Direction
Timing
12.5% 37.5% 62.5% 87.5%
a=2cos45 = \/2_ ) 7 87'5%3
. ,
X
+y— hl
12.5%
a=2cos45 =2 3‘7.5%
=71
X
- t
X
62.5%

The point-of-view in the graphics is in all cases radially
outward from the events. This results in unconventional views
of both events, but allows a more direct appreciation of the
events themselves. The first event of the QSO is formed by
passes at 12.5% and 87.5% of the cycle. The second event is

Table 4-3b

Analysis of the events of QSO 1(2:1)

formed by passes at 37.5% and 62.5%. The angle between the
passes in each case is just a little less than 70.53°. The

magnitude of the velocity vector at the events is /3. Although
it’s not obvious from the current analysis, the velocity varies

smoothly from Al at the poles to A5 at the equator.
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Dipole Events

Dipole events are created by rotations of dipole QSOs. The
first example of events in a dipole is provided by QSO 2(1:1)
with phase angles of 0° and 0° on the first branch of the QSO
and 0° and 180° on the second.

Fig. 4-6b
QSO 2(1:1) [0°,0°] [0°,180°] at 100%

The completed cycle shows each branch of the QSO as a
seemingly independent curve. The intersection events at
(0, £1, 0) are no surprise, but now there are two more tangent
events at the poles. An abbreviated graphical analysis gives the
Fig. 4-6a details.
QSO 2(1:1) [0°,0°] [0°,180°] at 5%

The addition of 180° to the second rotation of the second
(blue) branch of the QSO has rotated its starting point to the
south pole of the system. At 5% of a cycle the branches of the
QSO are seen departing from the north and south poles
apparently in diametrically opposed directions, but which are
actually the same rotation. The sign of both rotations is still
positive. The phase angle has changed the starting point, but not
the rotation itself.
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QSO Location | Events Schematic Location | Events Schematic
Poles # of events # of events
Ratio Branch Branch
Phase Angles (color) (color)
Y. Y.
0%
QSO 2(1:1) | (0,0, 1) . x| ©,0,-1)|
[0°,0°]
[0°,180°]
(0, 19 O) . X (07 _19 O) .

Table 4-4
Graphical analysis of the events of QSO 2(1:1) [0°,0°] [0°,180°]

The first column of the table identifies the QSO as the dipole
(1:1) and specifies the phase angles. The locations of the events
are next. The events themselves are identified by small colored
spheres. Those spheres which represent events that are created
by passes of the same branch of the QSO take the color of that
branch. Those spheres which represent events that are created

by passes of both branches are colored gray. The graphics in the
schematic columns show a large central sphere (r = 0.75) which
has no meaning other than to help distinguish front from back.

The events are listed in the order in which the first (red)
branch of the QSO passes through the location of the event. To
see the order, look at the red velocity vector at 0%, 25% and
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50% of the cycle. The event that’s created solely by passes of
the second (blue) branch of the QSO, is listed last. The effect of
adding 180° to the b-rotation of the second branch of the QSO is
that the blue trace begins at (0, 0, —1). The event at (0, -1, 0) is
therefore a simultaneous reflection in space of the event at

(0, 1, 0). As before, the passes which create the event at

(0, 1, 0) make a 90° angle, as do those at (0, —1, 0). The
magnitude of the velocity at these points is 12 .

The polar events tell a different story. Events there are
created by single passes of both branches of the QSO. The
north polar event is created by a pass of the first (red) branch of
the QSO at 0% of a cycle and by a pass of the second (blue)
branch half a cycle later. The angle between the passes is 180°;
they are traveling in opposite directions. The south polar event
is similar in timing and orientation, except that red and blue, first
and second, are reversed. The magnitude of the velocity vectors

at both events is [l . The reason for expressing this quantity as
a second root rather than the more conventional form of “1” will
become apparent in chapters 10 and 11 where a number of
second root relationships will be discovered.

QSO 2(1:1) in table 4-4 has phase angles of 0° and 180° on
the second branch of the QSO. Reversing the phase angles,
both still on the second branch of the QSO, has a subtle effect on
the events.

Fig. 4-7a’°
QSO 2(1:1) [0°,0°] [180°,0°] at 5%

Fig. 4-7b°
QSO 2(1:1) [0°,0°] [180°,0°] at 100%

* Compare with Fig. 4-6a.
¢ Compare with Fig. 4-6b.
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QSO Location | Events Schematic Location | Events Schematic
Poles # of events # of events
Ratio Branch Branch
Phase Angles (color) (color)
Y. Y.
0%
QSO 2(1:1) | (0,0,1) < »x | (0,0,-1) <
[0°,0°]
[180°,07]
(05 19 0) . X (07 _15 0) .
Table 4-5
Graphical analysis of the events of QSO 2(1:1) [0°,0°] [180°,0°]

At first glance tables 4-4 and 4-5 look very much alike. With phase angles of 0° and 180° on the second branch, the
However, a moment’s inspection reveals that the resemblance is blue rotating point passes through (0, 0, 1) at 50% of the cycle.
superficial at best. While the orientation of the velocity vectors Reversing the phase angles has the effect of making the blue
in all eight schematics is identical, only the event at (0, 1, 0) is rotating point begin at (0, 0, 1). With phase angles of 0° and
the same in each table. The differences, as one might suspect, 180°, the blue rotating point begins at (0, 0, —1). Reversing the

are in the rotations of the second (blue) branch of the QSO. phase angles puts it there half a cycle later. Even the timing of
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the event at (0, —1, 0), which is created solely by the blue branch
itself, is reversed from one set of phase angles to the other.
These variations are more clearly appreciated on the computer
screen or in a video than in the static drawings.

A Geometric Curiosity

QSO 2(1:2) was used in the introduction to illustrate Bucky
Fuller’s great circle railroad tracks of energy.” We return to it
now to observe a detail with geometric implications.

Fig. 4-8
QSO 2(1:2) [0°,0°] [0°,180°] at 100%

QSO 2(1:2) consists of two baseball seams where each
branch of the QSO is precessed 90° from the other. There are
four events spaced equally around the equator, and two more at

7 See p. xi.

the poles. The six events are located at the vertices of a regular
octahedron. While the equatorial events are created by two

intersecting passes of the red and blue branches respectively, the
polar events are created by four passes of both branches of the

curve.® Let us focus our attention on one of the equatorial

events.
QSO Location| Events Schematic
Poles # of events
Ratio Branch
Phase Angles (color)
QSO 2(1:2) | (cos45°,
[0°,0°] sin 45°,
[0°,180°] 0) “
Table 4-6

Analysis of one of the equatorial events of
QSO 2(1:2) [0°,0°] [0°,180°]

* While examination of the polar events of the 2(1:2) is instructive, the
analysis is left to the reader.
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The event in the foreground of figure 4-8 is created by a pass
of the first (red) branch of the QSO traveling south-southeast at
12.5% of a cycle and by a pass of the second (blue) branch
traveling north-northeast half a cycle later. The angle between
the passes at the event is just a little less than 126.9°. This
doesn’t ring any bells until we remember that the central angle of
an icosahedron is exactly half of that.

From the x-axis

Isometric
Fig. 4-9
Central angle of the regular icosahedron

A regular icosahedron is shown in figure 4-9. The views are
isometric, left, and from the x-axis, right. The central angle of
one of the edges is shown in red. From solid geometry we
know that the central angle of the icosaedge is 63.43494882...°.
But from table 4-6 the angle that either velocity vector makes
with the xy-plane is tan™ (2/1) = 63.43494882...°. While the

identity of a surface angle of the QSO with a central angle of the
icosahedron may come as a surprise, there is a ready, if
speculative, explanation.

Fuller showed that the tetrahedron, octahedron, icosahedron
and Vector Equilibrium, his name for the cuboctahedron, can be
smoothly transformed into one another.” In many cases the
surface angles of one figure become the interior angles of
another. This may be what’s happening here, although
confirmation awaits a more detailed examination.

° Fuller, 1975, pp. 190-196.
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Orbits

Orbital Length

Rotation around two axes simultaneously produces an orbital
trace that differs significantly from planar rotation around a
single axis. One of the differences is the length of the orbit.
Single axis rotation produces a circular orbit that is always 2
times its radius, whereas the length of a Quasi-Spherical Orbit
varies with the QSO ratio. Early efforts to find the length of a
QSO involved anything from drawing orbits on large plastic
balls and measuring with bits of string to reproducing them on a
basketball and using a mapping wheel. These crude methods
gave estimates for QSO (1:1) from 1.326 to 1.414 times the
length of a planar orbit. Professional mathematicians were of
little help. Their estimates for the (1:1) ranged from 1.1 to 1.6
times the circular orbit.

The way out of this conundrum is an integral. Since the first
derivative of position is velocity, we can integrate the velocity
function for a QSO with respect to time and get the length or
distance traveled. In this case it would give the arc length.
Unfortunately the integration resulted in what one consultant
called, “Quite an ugly mess,” which no one involved with QSOs
at the time knew how to handle. A recursive algorithm provided
a more workable approach. Kenner (1976, p. 60) gives a
standard formula for the distance between two points in space.

d= \/rlz + 1, =217, {cos9, cosY, +cos(¢, - ¢,)sin 9, sin9,}

Eqn. 5-1a

For the spherical case, where r, =1, = 1, this becomes

d= \/2 -2{cos 9 cos 9, +cos(¢p, —¢,)sin 9 sin9,}
Eqn. 5-1b

The equation is in polar coordinates and the distance is
calculated in straightforward fashion. One thing to keep in mind
is that this formula gives the chord, not the arc. By choosing the
points closer and closer together, it is possible to approximate an
arc to any required degree of accuracy.

A small routine was written to calculate and sum the
successive chords around a QSO. The routine, which ran on a
TI-66 handheld programmable calculator, took about 10 seconds
to calculate the distance between one pair of points. The
problem now becomes a question of how little of an orbit do we
actually need to calculate in order to get the whole thing. For
QSO (1:1) the answer is 1/4. Since the (1:1) has two
symmetrical lobes, and since each lobe is also symmetrical, one
need only calculate one quarter of the whole curve and multiply
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by four. For our purposes, we need to calculate 6 and ¢ from 0°

to 90°. The results are interesting so we’ll examine all of them.
At first, three increments of 30° each were used, then six of 15°,
and so on.

# of Degrees | Time to d
increments| each run
3 30° 30 sec. 7.377 606 835
6 15° 60 sec. 7.573 911 027
9 10° 90 sec. 7.610 781 978
18 5° 3.0 min. 7.632 982 429
90 1° 15 min. 7.640 098 925
900 0.1° 2.5 hr. 7.640 392 21
9000 0.01° 25 hrs. 7.640 358 589
Table 5-1

Calculating the orbital length of QSO (1:1)

As the number of iterations of the routine increases and the
angular extent of the rotations decreases, the orbital length of
QSO (1:1) approaches 7.6403... as a limit. The results are each
larger than the just preceding one, which is what one would
expect by taking more and smaller increments of the orbit. Thus
the slight shrinkage in the last result is a little puzzling. One
speculates that accumulated error in the calculator may have had
something to do with it, but no definite explanation was ever
found. Since the next result, 90,000 iterations at 0.001° would

have taken nearly ten and a half days, it was decided to accept
the length of QSO (1:1) as 7.6403 until further notice.
Compared to the length of the circular (flat) orbit, the length of
the QSO is

7.6403... /2w =1.2160...

With time, the first orbital length program was improved.
Ultimately, it could calculate the orbital length of any QSO,
whether or not the orbit displayed quadrilateral symmetry. The
(1:1) calculation was carried out again, resulting this time in a
length of 7.6366..., or 1.2154 times the circumference of a
circle.'

In some ways, the ability to calculate the incremental chords
of the orbit is more useful than the integral, which gives only the
total length. With the improved program, the increments of QSO
(1:1) were calculated at each 1% of rotation (n = 100). The
results, which are displayed next, show an interesting pattern.

' The orbital length of QSO (1:1) has been calculated several times. Slight
variations in the method yielded slightly different results each time. For the
record, they are:
Chester 1992
Kelleher 1994
Chester 2003
Chester 2006

7.640 358 589
7.640 395 578
7.640 357 086
7.636 551 79
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Fig. 5-1

Chordal increments of QSO (1:1)

The black sine-like curve shows how the increments of QSO
(1:1) vary with each 1% of rotation. All lengths are a fraction of
the radius (r = 1). Beginning with an increment of 0.062 821
518, each succeeding increment increases to a maximum of
0.088 799 204 at 25% of the orbital cycle. The increments then
decrease to the minimum again at 50% and reach the maximum
for the second time at 75%. The rotating point crosses its own
trace and forms an intersection event at twenty-five and seventy-
five percent of the orbit. At zero and 50% it’s at the north or the
south pole. The implication is that the velocity and the
acceleration of the rotating point vary around the orbit, which is
true. However, a detailed examination of the variation is beyond
the scope of this volume. The reader is encouraged to do so on

their own.

One might ask whether the obvious resemblance between the
incremental plots of the (1:1) and a sine wave is actually a sine or
just looks like it. The answer is that it is not a sine. In figure
5—1 ared sine wave has been superimposed on the incremental
orbital lengths. It matches at the maxima & minima, but misses
elsewhere.

The line formed of small squares is the cumulative total
which begins at zero and adds finally to 7.6366... at the right.
It’s not really a straight line, even though it’s close. Because the
increments that are being added to the total vary, the total varies
too, although the scale of the variation is much smaller than that
of the increments themselves.
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Expanding the Envelope

We are now in a position to begin calculating QSO orbital
lengths wholesale. The orbital lengths of the first twenty-five
monopoles are displayed in table 5-2. The 1(1:1) and its equal-

rate cousins are revealed as having the absolute shortest orbits.

Again a slight shrinkage is noted in the length of the equal rate

a-rotations ——»

curves, this time with increasing rates of rotation, and again we
suspect that the shrinkage may be due to accumulated error and
not to any real difference in the actual orbital lengths. We
mentioned in the introduction and in chapter 2 that QSOs form
polygons and polyhedra. Three of the QSOs in table 5-2 are
identified as the tetrahedron, the octahedron and the icosahedron.
The baseball seam, which forms no polyhedron, is also

indicated.

1(5:1) 21.392 780 64 || 1(5:2) 24.435 13379 || 1(5:3) 28.458 273 64 || 1(5:4) 33.116 355 61 || 1(5:5)) 7.639 434 466
1(4:1)) 17.627 938 1 1(4:2)] 10.540 217 8 1(4:3)| 25.525 358 16 || 1(4:4) 7.639 780 453 || 1(4:5)] 35.956 160 41
Tetrahedron
1(3:1) 13.974 109 01 1(3:2) 17.972 829 11 || 1(3:3)] 7.640 049 563 || 1(3:4) 28.359 994 73 || 1(3:5) 34.073 967 99
Octahedron Icosahedron
1(2:1)] 10.540 605 18 || 1(2:2)| 7.640 241 785 || 1(2:3)| 20.794 957 3 1(2:4)| 13.317 778 1(2:5)| 32.635 320 46
Baseball seam
1(1:1) 7.640 357 086 || 1(1:2) 13.318 1953 1(1:3)| 19.362 358 7 1(1:4)] 25.520 179 36 || 1(1:5)| 31.726 334 22
b-rotations —— p
Table 5-2

Orbital lengths of the first twenty-five monopoles
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The QSO Landscape

A 3-D graph of the orbital lengths reveals a surprising
“landscape.”
Icosahedron

/ 1(2:5)

Baseball seam
1(1:2)

Octahedron

Tetrahedron
1(3:2)

5
4

.3 .
a-rotations 2 3 b-rotations

1 1 2
Fig. 5-2
Orbital lengths of the first 25 monopole QSOs

Each QSO occupies the same place in the xy-plane as it does
in table 5-2. The lengths of the orbits are graphed vertically. To
fit the graph to the space available, the orbital lengths have been
reduced by a factor of 12. Connecting the tops of the vertical
vectors reveals an “equal-rate valley” (a = b) which is displayed
inred. In general, the b-rotations have a greater effect on orbital
length (black chords) than the a-rotations (blue), since the b-side
of the graph grows at a greater rate than the a-side. However,

the appearance of two “dimples” at QSOs (4:2) and (2:4) shows
that the relationship is not a linear one. The dimples occur
because the orbital lengths of QSO (4:2) and the (2:4) are the
same as those of QSOs (2:1) and (1:2), although the rotational
rates of the former are twice those of the latter.

The First 100 Monopole QSOs

Pages 74-77 present the x-, y-, z-, and isometric views of
the first 100 monopole QSOs. To save space, labels on the axes
have been omitted, although these are the same as in table 5-2
and figure 5-2.

The first thing one notices about the 100-QSO landscape is
that the graphs consist of three sections. There is the upper left
section (blue) in which a> b. There is the lower right section
(black) in which a < b, and there is the equal rate diagonal (red)
in whicha=b.?

Certain regularities are apparent in all four graphs. The equal
rate diagonal is created by multiplying the basic (1:1) ratio by
successive integers: 2, 3, 4,.... The same process creates
families of statically similar curves of any other basic ratio. For
instance, among the blue curves (a > b), QSOs (2:1), (4:2),
(6:3), (8:4), (10:5),... all look alike. In the black section
(a<b), QSOs (1:3), (2:6), (3:9),... are also all statically
identical. The dimples of figure 5-2 can now be seen as the

? In heraldry, the equal rate diagonal stretching from lower left to upper right
would be called a Bend Sinister. It passes from the wearer’s upper left side
to their lower right. To an observer, of course, left and right are reversed.
Compare sinister (left) and dexter (right).
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beginnings of their own “valleys of similarity.” All told, the

first 25 QSOs give rise to 19 distinct species, valleys of static
similarity which extend indefinitely outward from each basic

ratio.
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Fig. 5-3a

The first 100 monopole QSOs
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View from +y

Fig. 5-3b  The first 100 monopole QSOs
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Fig. 5-3c  The first 100 monopole QSOs  View from +z
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Isometric view

Fig. 5-3d  The first 100 monopole QSOs
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Chapter 6

Displays

The First QSO Display

When a new telescope comes online and begins collecting
light from the cosmos, astronomers have a name for the
occasion. They call it “First Light.” The equivalent for the
study of Quasi-Spherical Orbits is the “First QSO.”

As we saw in chapter 2, equation 2-8a is not the only form
of the QSO equation. In 1990, Burke approached a young
David Loftus and asked him to write a program. “All I gave
him,” says Burke, “was ‘imagine the disc with the thing on it
and then rotate it and then rotate it on the second axis....””
Loftus, the original QSO programmer, did the math and came up
with

X (cost) (cost)
y| = | (sint) (cost)
(sint)
Eqn. 6-1'

The original QSO equation

' Compare with Eqns. 2-8b & 2-8h.

He then wrote a “3-D Combined Rotation Plotter” in BASIC.
It ran on an IBM XT and displayed only one of the three axial
views or the isometric view at a time — in monochrome, no less.
Loftus’ equation is based solely on geometric and dynamic
considerations; he did not begin with spherical coordinates as we
did in chapter 2.

For people with a good visual imagination, Burke’s
instructions to Loftus would be enough. Eventually though,
even people with good visual imaginations need to confirm their
vision. Thus was born an effort to display QSOs that continues
to this day. The first Quasi-Spherical Orbit that was ever
generated on a computer screen was a jagged QSO (1:1).

* A mechanical device that generated QSO (1:1) was built by Burke long
before Loftus’ computer program came along. This and another mechanism
will be discussed in chapter 12.
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Fig. 6-1
The original QSO (1:1) display

Reproduced here from a 1990 printout, the view is
isometric. The positive and negative halves of the x- and y-axes
are reversed from their customary orientation while the z-axis,
which is not shown, maintains its usual relationship to the
horizontal plane. The curve starts at (1, 0, 0)’ and rotates

0 = Pos, ¢ = Neg.

In order to show what was above or below the xy-plane,
Loftus’ program drew a solid line to the plane from points with a
positive z-coordinate and a dotted line from points at negative z.
In figure 6-1 the projection of the (1:1) on the horizontal plane

* Notice “start here” written by hand near the event.

has been drawn in using these marker lines as guides. Although
it misses two of the dotted lines, the sketch is a good
representation of the circle we now know this projection to be.

When the new 286 PCs with Windows 3.1 became
affordable, the second QSO programmer, Athol Crosby, further
developed Loftus’ program to display and print all four views
simultaneously and in color.

The Kelleher Rotation

A year later, John Kelleher, the third QSO programmer,
wrote his own display program. Kelleher’s program offered
another innovative feature, illustrated next.

Like Loftus’ display, Kelleher’s has also been reproduced
from old printouts. The display has no visible axes, but the
view from the positive z-axis is conventional. A modern view of
QSO (1:1) is included in the first sketch for comparison. The
modern QSO, which is drawn in red, has been reduced in size so
it doesn’t block the view of the older curve.

Rotation =0°
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EEERATN Ct ey e Lt e The innovative feature of Kelleher’s display was the ability
' B to rotate the axis system. In figure 6-2 QSO (1:1) is seen
rotating around the y-axis in 10° increments. Each screen
. R developed dot-by-dot, which took an appreciable amount of
B '1-(-50' e AR -2-0;' R o 30° Lo time, and had to be printed out before the next screen could be
calculated.
The Octamap

It was not easy, when viewing early computer-generated
QSOs, to know what one was looking at. The curve, which
exists in space, was projected against a nearly flat piece of glass.
'40; T R 50 The observer then had to add back the dimensional information
deleted by the computer. The machine helped by giving three
views, one from each of the three coordinate axes. These three
A S0 o plus the isometric perspective allowed the viewer with a good
imagination to reconstruct the curve in their mind. For the
simple QSOs, this process worked fairly well. For the more
complex curves, it was difficult, if not impossible, to imagine
the trace crossing or not crossing, front or back, going in or

heading out, and so on.

60" 70°
In response to these and other concerns, the author
developed in 1993 what he calls the Octamap. Each edge of a
regular octahedron subtends a 90° central angle. Thus each face
. : ] . ) _ of the octahedron represents one octant of the unit sphere. The
R0° RS 90° IAERNT spherical QSO data can be mapped onto the planar octahedron
which can then be unfolded and laid flat to show an entire QSO
Fig. 6-2 at one time. It can also be refolded and put together again to see
QSO (1:1), the Kelleher rotation an approximation of the curve in space.



81

Displays

QS0 (2:1)

\‘I‘dl’l" _; Nttt
AV ARETIIA-N
a7
N\

Fig. 6-3
QSO (2:1) Octamap*

When appropriately plotted, the Octamap gives a fairly good
representation of QSOs. Shown in figure 6-3 is QSO (2:1), the
Loop-the-Loop.’ It is immediately obvious in the figure that

there are two intersections, 180° apart (A8 = 180°). This is not

so evident when looking at the flat-screen computer-generated
version of the (2:1). The two polar grazings are also clearly

180° apart in ¢ and do not touch, as might be inferred from the

computer view along the z-axis. And finally, although the
sinusoidal characteristics which are apparent when looking along
the x-axis may seem to be absent from the octahedral map, one
need only cut out the octa and paste it together to get this
information.

* Compare the flat configuration of the Octamap with U.S. Patent
2,393,676 (Dymaxion Airocean World), issued to R. Buckminster Fuller
1946 Jan 29 and updated in 1954 to an icosahedral projection.

* See Fig. 3-6b.

Fig. 6-4
Folded Octamaps

Figure 6-4 shows three Octamaps plotted by hand by the
author and one generated by Kelleher on his computer.® Left to
right, they are QSO (1:1), (2:1), (1:2) by the author, and QSO
(1:1) by Kelleher. Using these and other primitive tools of the
day, many discoveries about QSOs were made. Ultimately,
more computing power was needed, and for that the author
turned to the professionals. In 2002 he purchased the
commercial release of Graphing Calculator, version 3.2.” We
will explore next some of the more interesting display
capabilities made possible by this software.

*If a QSO is plotted on a transparent plastic sheet such as that used in
overhead projectors, the sheet can be folded into an octahedron showing the
entire QSO at once. For his part, Burke suggested mapping onto a
tetrahedron with the poles centered along opposed edges. See Fuller (1979),
p.453, §1131.10-13.

7 See p. 7, footnote 7.
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Cone & Disk

In the first chapter an inverted unicycle was used to visualize
QSOs. The purpose of the unicycle was to emphasize the
dynamic nature of QSOs and to visually show the dual rotations.
As far as it goes, the unicycle metaphor is accurate. It depicts a
single QSO developing as the result of simultaneous rotations on
two axes. However, the unicycle cannot portray more than two
rotations or one resultant QSO. A refinement of the unicycle
concept that overcomes these limitations will be developed next.*

\

Fig. 6-5
Unicycle with developing QSO

* For the equations that generate the unicycle itself, see appendix 1.

To review briefly, an inverted unicycle appears in figure 6-5.
The gray tire has been repaired with a red patch. One spoke,
which points toward the patch, is colored violet. As the unicycle
rotates simultaneously on the vertical axis of the seat post and on
the horizontal axis of the wheel, the patch traces out the orbital
path of a QSO. The actual QSO depends on the ratio between
the rates of rotation on each of the axes.

The rotations are measured by angles 8 and ¢. Angle O is
the angular displacement in the xy-plane from the positive
x—axis, while ¢ is the angular displacement from the positive
Z—axis.

The unicycle metaphor gives a pretty good picture of O since

the tire rotates O degrees around the z-axis. However, the

unicycle doesn't give much of a visual clue about ¢. There is

only the violet spoke that rotates around the axle of the wheel,
and at two places in the rotation, as the wheel goes edge-on to
the viewer, the violet spoke is hidden. This disadvantage can be
overcome by replacing the tire of the unicycle with a rotating
circle.
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Fig. 6-6
A rotating circle with Cartesian axes and an equator

A black circle which rotates around the z-axis replaces the
tire of the unicycle. The circle started in the xz-plane and in this
view has rotated about 60° in the positive direction. The angular

displacement of rotation is the angle 6. The coordinate system is

provided by the software. The equator and the rotating circle
need to be generated with appropriate equations. In the case of
the circle both the spherical and the Cartesian forms are given for
comparison.’

’ Users of Graphing Calculator please note: When the slider 7 is activated,
all rotations will go to 100% and then reverse and go back to 0% again. To
avoid this oscillation and make the rotation continuous in the positive
direction, on the Mac, press and hold the option key while you press the
“Play” button on the slider. On Windows, it’s one of the other modifier
keys. See the online help, under “Special Commands.”

r 1
O — | ag
¢ 2t
Eqgn. 6-2a

Rotating circle, spherical notation

X cosag cosag 0| | sin2zt
y| = | sinag sinag 0 0
0 0 1f]|cos2mt

Eqn. 6-2b
Rotating circle, Cartesian notation

X cos 27t
y| = | sin2mt
0

Eqgn. 6-3
The equator
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A radius vector is added to the circle
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.

\
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Fig. 6-7

The rotating circle and a rotating radius vector

The radius vector, which represents the violet spoke of the
unicycle, rotates around the axis of the circle. The angular

displacement of the vector from the z-axis is angle ¢. Three

forms of the vector equation are,

X

ga
gb|

= D =
I

X sin (bg) - cos (ag)
y| = t|sin (bg) - sin (ag)
cos (bg)
cosag cosag 0[ |0 sinbg sinbg| |0
sinag sinag O[|1 O 0 0
0 0

1] [0 cosbg cosbg| |t

Eqgns. 6-4

The rotating radius vector
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A small red sphere is placed at the end of the radius vector.

The red sphere moves with the intersection of the radius vector ((sin bg) (cos ag) — x)* + ((sin bg) (sin ag) — y)’

and the circle to trace the QSO.

Fig. 6-8
The rotating circle, radius vector and a small red sphere

The sphere represents the patch in the unicycle. It has no
structural significance. It’s only purpose is to help the eye
follow the rotations which produce the QSO. There are two
ways to express the small sphere. The equations are,

X sinftu- cos2m (sinbg) ( cosag)
y| = 0.04 ] sinmu- sin2mv| * | (sinbg) ( sinag)

z COs T cosbg

+ (cos bg — z)’ = 0.002

Eqgns. 6-5
Small sphere

Adding the orbital trace.

O\

f \
A
l

Fig. 6-9
The orbital trace

' Users of Graphing Calculator please note: While the implicit form of the
small sphere is limited by the space in which Graphing Calculator operates,
the parametric form is defined everywhere. In practice, if the QSO rotations
carry the implicit sphere beyond the defined space, it will cease to exist. If
you get a notice, “No surface found in the coordinate ranges given,” and the
small sphere does not appear, try increasing the resolution to maximum. If
that doesn’t work, use the parametric form.
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The equation for the translucent disk is simplicity itself.

r 1 X (sinbgt) ( cosagt)
ol = |agt , y| = | (sinbgt) ( sinagt) 0 = ag
) bgt z cos bgt
Eqn. 6-7
Eqns. 6-6 The rotating disk"
The orbital trace g=2mn
In the unicycle graphic the three dimensional tire and spokes Next we introduce a visual effect that was not present in the

help distinguish back from front."" The model being developed unicycle.
here offers no such visual aid, so we need to put one in. A
translucent gray disk fills the interior of the rotating circle and

rotates with it.”

‘_‘,
/
n
- v
Fig. 6-11
. The cone of ¢
Fig. 6-10
A translucent gray disk fills the rotating circle
"' See chapter 1, Dynamic Diversity, development of QSO (1:1), isometric " A further note for users of Graphing Calculator: The default settings are
views from 180° to 360°. 0 =2m, ¢ = . This makes it necessary to use two equations to draw the
"> The other visual aid used for this same purpose was a translucent sphere complete disk. (The other equation is 8 = ag + ;.) By defining ¢ = 27, one

placed at the Origin of the coordinate system. See Fig. 1-1b. equation suffices.



87

Displays

Angle ¢ 1s defined as the angular displacement from the
z—axis. There is no restriction on the xy-coordinates of the
displacement. Thus ¢ can be represented by a cone centered on

the z-axis and opening outward to an extent equal to the
displacement. A black circle around the edge of the conical
opening shows the intersection of the cone and the unit sphere
(not shown). The intersection of the rotating disk and the cone
is the radius vector. The intersection of the disk, cone and the
unit sphere traces the QSO.

The equations are

X v (sinbg) cos2mu
¢ = bg , y v (sinbg) sin2mu
vcosbg

Eqgns. 6-8

Cone of ¢
r 1 X (sinbg) cos2m
0 = |2mt ) y (sinbg) sin2t
) bg z cosbg

Eqns. 6-9

Black circle

In figure 6-11 the disk and the cone intersect in two places.
Thus a second QSO may be generated by this same system.

0)=01+m

Fig. 6-12
Second orbital trace

In the sketch a dipole QSO is generated from a single disk &
cone system. Both branches of the QSO begin at (0, 0, 1) and

both have positive 0 and ¢ rotations. Both have the same QSO
ratio, in this case (2:1). The second branch results from adding

180° to the O rotation of the first. That is, 82 is 180° out of
phase with 01.

0y = 07 + 180°
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In the equations for the second radius vector, small sphere
and orbital trace, this addition is equivalent to adding s to the

O—rotation of the first trace.

r t
0 ga+
¢ gb

X cos (ga+m) cos(ga+m) 0|0 sinbg sinbg] (0
y| = |sin(ga+m) sin(ga+m) Ol O 0 0

0 0 1[0 cosbg cosbg| |t

Eqns. 6-10
Second radius vector

X sinJtu- cos27 (sinbg) ( cos (ag+ m))

y| = 0.04| sinstu- sin2mv| T | (sinbg) (sin (ag+ w))

z cos Tu cosbg

((sin bg) (cos (ag + 7)) — x)* + ((sin bg) (sin (ag + @) - y)’
+ (cos bg — z)* = 0.002

Eqns. 6-11
Second small sphere"

" The implicit form of the second small sphere is subject to the same
limitations as the first. See p. 85, footnote 10.

-
—
s

(sinbgt) ( cos (agt+ ) )

0 agttml » |y (sinbgt) ( sin (agt+ ) )
) bgt cosbgt

Eqns. 6-12

Second QSO

The model is not limited to a single cone of ¢. Any number
of cones may be accommodated, with phase angles as desired.

Next, a second cone of ¢ is added with a phase angle of 180°
with respect to the first.

Fig. 6-13

Second cone of .
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Like the first cone of ¢, the second is bounded by a black

circle which is the intersection of the cone and the unit sphere.
The equations for the cone and the edge circle are

X v (sin (bg + 7)) cos2mu
¢=bg+m , y| = | v (sin(bg+m)) sin2mu

vcos (bg + )

Eqns. 6-13

Second cone of ¢

r 1 X (sin (bg + ) ) cos2mt

o = | 2mt ) y (sin (bg + ) ) sin2mt

) bg + z cos (bg + m)
Eqns. 6-14

Second edge circle

Two more radius vectors and two more small spheres are
added in the same way that the first and second radius vectors
and small spheres were added. A quadripole QSO results from

simultaneous rotations in (0:¢) and (8 + 180° : ¢ + 180°).

Fig. 6-14a
QSO 4(2:1)
The equations are
r t
o — ga
() gb+
X cosag cosag 0|0 sin(bg+m) sin (bg+m)||0
y| = | sinag sinag 0] |1 0 0 0

0 0 1][0 cos(bg+m cos(bg+m)

Eqns. 6-15
Third radius vector

t
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X sinftu- cos2 7 ( sinbg) ( cosag)

y| = 0.04 | singru- sin2mv (sinbg) ( sinag)

cos Tu cosbg

((sin (bg + 7)) (cos ag) — x)’ + ((sin (bg + m)) (sin ag) — y)’
+ (cos (bg + 1) —z)’ = 0.002

Eqgns. 6-16
Third small sphere

r 1 X (sin (bgt+m)) ( cosagt)
ol = agt ) y| = | (sin (bgt+m)) ( sinagt)
) bgt+ m z cos (bgt+ )

Eqns. 6-17
Third orbital trace

O = |gatw

y:

cos (ga+m) cos(ga+m) 0
sin (ga+ ) sin(ga+m) 0
0 0 1

0 sin(bg+m) sin (bg+m)||0

1 0 0
0 cos(bg+ ) cos (bg+ )

Eqns. 6-18
Fourth radius vector

singtu - cos2my| (sinbg) (cos (ag+ 7))

y| = 0.04 | singtu- sin2mv| — (sinbg) ( sin (ag+ m))

COS TTu cosbg

((sin (bg + m)) (cos (ag + ) — x)’
+ ((sin (bg + 7)) (sin (ag + ) —y)’
+ (cos (bg + 1) — z)’ = 0.002

Eqns. 6-19
Fourth small sphere

0
t
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(sin (bgt+m)) ( cos (agt+ m))
(sin (bgt+m)) (sin (agt+ m))
cos (bgt+ )

-
—_
e

O = |agt+m| > |y
() bgt+ z

Eqns. 6-20
Fourth orbital trace

It’s a little hard to see the quadripole through the cones and
the disk in figure 6-14a. Here it is without those structures.

A
/)

Fig. 6-14b
QS0 4(2:1)

All rotations are positive, even though they begin at different
places. Note that the (apparent) dipoles scissor open and closed.
It is also possible to generate a quadripole that rotates like a

pinwheel.

SN

| ,
aTAY
X ({"\ ,\ '
Fig. 6-15
QSO 4(2:1)

Y
-

It’s not immediately obvious that the four branches of the
curve are in fact generated from only two rotations of the rotating
circle. This can be ascertained by considering where the traces
started and where they are now. The first (red) trace starts at
(0, 0, 1). The other three are spaced around the rotating circle
at intervals of 90°. That is, the rotations for the four QSO traces

are (0:¢), (0 : ¢ +90°), (B : ¢+ 180°) and (0 : ¢ + 270°). They
are all carried on the black rotating circle which rotates positively
in O and ¢.

It is also possible to estimate the QSO ratio from the figure.
The violet traces, which start at +x, have traveled about 2/3 of
the way to the yz-plane. (Note the position of the rotating circle
where it intersects the equator.) The red traces, which start at
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+z, have traveled only about 1/3 of the way to the xy-plane.
(Note the position of the diameter that connects them in the
rotating circle.) Since the violet traces reveal more of the

B—rotation and the red ones show more ¢, the curve seems to be

rotating twice as fast in 0 as in ¢. We can guess that the QSO
ratio is (2:1), which is in fact the case.

Just as the model easily accommodates additional cones of ¢,

so too does it allow multiple rotating circles and disks of 0.

Next a second rotating circle and disk, precessed at 90° from the
first, creates four more QSO traces.

Fig. 6-16a
QSO 8(2:1)

Second rotating circle, second disk, Sth through 8th radius
vectors, small spheres & orbital traces

Fig. 6-16b
QSO 8(2:1) without the disks or cones

We leave the discovery of the equations for this 8-trace
variation, as well as the 4-trace pinwheel, to the reader.

Globe with Latitude and Longitude

Another useful display is a globe with circles of latitude and
longitude. In the next figure the unit sphere (r = 1) forms the
basis for the display. The equator and the meridians at 0°-360°
and 90°—180° are green, dividing the sphere into 8§ octants.
Circles of latitude and longitude at 30° & 60°, N, S, E & W, are
blue. All others are black. The interval between each circle is
10°.
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Fig. 6-17
QSO (2:1) on a globe

The globe is a modern version of the Octamap.” This
display is particularly useful for locating events, the places
where the QSO trace passes through the same point at least twice
in its orbit. QSO (2:1) has an event at (1, 90°, 45°) in spherical
coordinates. Presuming symmetry, there should be another one
at (1, 180°, 135°), and in fact there is.

" Compare with Fig. 6-3, QSO (2:1) Octamap, and Fig. 6-4, Folded
Octamaps, second from left.

There are only two equations of interest on the globe. They
are the equations for the circles of latitude and longitude.

X (sin30°) cos2m X (sin150°) cos2m
y| = | (cos60°) sin25w s |y (cos60°) sin27t
sin60° —sin60°
Eqns. 6-21

Circles of latitude north Circles of latitude south

of the equator of the equator

The equations are those of a circle. Each has been modified
for its position on the globe. The z-term determines the latitude,
here 60°N or 60°S. When the latitude goes south of the equator,
negating the z-term places the circle in its correct position. The

x-term contains angle ¢. Since latitude is measured from the

equator while ¢ is measured from the +z-axis,' ¢ for 60°N is the
complimentary angle
Gy = 90° — 60° =30°

For a latitude of 60°S, the value of ¢ is

(g = 90° + 60° = 150°

' See Figs. 2-1, 2-8, 2-9.
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The circles of longitude are

cos 2mt- cos2m <%)

X
- 4
y cos 25t sin2w (—0>
360
i sin2stt |
Eqn. 6-22

Circles of longitude

Again the equation is a modified circle (shown here,
40°-220°). The circles of longitude are spaced every 10° around
the equator. The degree of rotation is written as (longitude/360)
because it shows more clearly the actual rotation than writing
only the result of the division.

This same display affords a variety of other options.

Fig. 6-18
QSO (2:1) with green meridians and the equator

In this view, the black and blue circles of latitude and
longitude have been turned off for a less obstructed view of the
QSO0."” The equator and the green meridians can also be turned
off. The unit sphere can be reduced in size and made
translucent.

'” Compare with Fig. 1-9.
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Fig. 6-19
QSO (2:1)" with small translucent sphere (r = 0.6) Fig. 6-20

The Cartesian coordinate system
Three-in-One created by Graphing Calculator 3.2

View from +z
In chapter one QSO (1:1) was shown developing

sequentially from 0° to 360°. The views were from the x-, y- This presents an immediate problem. The software creates
and z-axes, as well as from the isometric perspective. The x- and y-axes with arrowheads indicating the positive direction
individual illustrations were generated one at a time and cut and of each axis. This is fine for displaying curves from a single
pasted to make up the composite display. To conclude the point-of-view. However, we want the 3-in-1 display to show
discussion of QSO display techniques, we will take a look at a the view from the x-axis on the left, the view from the y-axis in
method of showing all three axial views at once. the center, and the view from +z on the right. While the QSOs
To generate the 3-in-1 display, the first thing to realize is that  hemselves can be rotated to give the desired profiles, it would
the software will not create three separate coordinate axis be confusing to have the arrowheads indicating x- and y-axes in
systems and display them from three different perspectives. One 1o center when what you see from +y are the x- and z-axes,
must chose a point-of-view and from that point-of-view rotate with the positive x-axis pointing to the left no less!. We
the curves so that they present the desired profile to the viewer. therefore suppress the axes created by the software and
The point-of-view chosen here is from the positive z-axis. substitute our own.

" Compare this translucent sphere with that in Fig. 1-1b.
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Fig. 6-21
A coordinate system for the 3-in-1 display

The long horizontal axis is drawn by a 2-vector equation

ies

Eqn. 6-23
The long horizontal axis

The vector is 6.2 units long and is displaced 3.1 units to the
left. The rationale for these numbers will become apparent
shortly. Because this long axis will represent both the x- and
y—axes depending on the view, it’s less confusing to leave it
unlabeled. Three vertical lines, representing the z-, z-, and
y—axes respectively, are drawn by three more 2-vector

equations.
x[ _ | =21 X[ _ 0 x{ _ | 2.1
y 2t-1 y 2t—1 y 2t -1
Left Middle Right

Eqns. 6-24
The three vertical axes

The vectors are each two units long (y = 2t) and are
displaced one unit towards —y. The first and third vectors are
also translated 2.1 units left and right of the center (x = +2.1)
while the second vector occupies the center position (x = 0).
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Let’s add some reference circles.

Fig. 6-22
3-in-1 coordinate axes with reference circles

The reference circles are generated by standard 2-vector equations for a circle, each modified for its position in the display.

X{ _ |sin2mtf  [-2.1 x| _ | sin2mt x{ _ |sin2mtf (2.1
y cos 27t 0 y cos 27t y cos 27t 0
Eqgns. 6-25
Reference circles
left middle right
The reason for adding and subtracting 2.1 now becomes would be tangent on the horizontal axis. The extra 1/10 of a unit
clear. Each circle has a diameter of two. Moving them just two separates the views slightly and defines them more clearly.

units left and right of the center would mean that the circles It’s time to put in the QSOs, beginning with the view from
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the z-axis.

Fig. 6-23
QSO (2:1), view from the z-axis

from the z-axis. Thus the 3-vector equation gives the desired
projection, but it’s in the default position, the center of the

X (sinbgt) ( cosagt)
display. We want the view from +z to be on the right, so we

y| = | (sinbgt) ( sinagt)

z cos bgt move it.

X (sinbgt) ( cosagt) 2.1
y| = | (sinbgt) (sinagt)| T | 0
cos bgt 0

Eqgn. 2-8a
The 3-vector form of the QSO equation

The unmodified Cartesian form of the QSO equation which
was developed in chapter 2 generates a 3-D QSO. The point-of-
view of the software in the 3-in-1 display has been chosen to be

Eqn. 6-26
Moving the QSO 2.1 units to the right
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Fig. 6-24

The QSO moves to the right

Adding 2.1 units to the x-term translates the QSO to its
desired position. Note that parallax is now evident in the
display. The view from +y is next.

In the current environment the standard QSO equation will
show the QSO from +z. We could get fancy and use a rotation
matrix to display the view from +y, but it’s easier to rearrange
the terms of the 3-vector equation.

X (sinbgt) ( cosagt)
y (cosbgt)
z (sinbgt) ( sinagt)

Eqn. 6-27
Rearranging the terms of the QSO equation
to display the view from the y-axis
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Fig. 6-25

QSO (2:1), views from the y- and z-axes

Although the terms of the equation have been rearranged, it

is not necessary to move the orbital trace. It occupies the center X B (sinbgt) ( sinagt) -2

default position. On the left, the terms of the QSO equation need y| cos bgt 1o

to be rearranged again and the trace needs to be moved as well. z (sinbgt) ( cosagt) 0
Eqn. 6-28

QSO (2:1) on the left

Equation 6-28 modifies equation 2-8a to show the view of QSO
(2:1) from the x-axis. It also places the trace in the left position.
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Fig. 6-26
The simultaneous axial views of QSO (2:1)
View from +x View from +y View from +z

The orbital trace of QSO (2:1) appears correctly in all three

positions and from all three points-of-view. Seen from the r=09

x—axis the (2:1) resembles (but is not) a sine wave. From the

y—axis it looks like (and may be) a Lissajous figure with a ratio Eqn. 6-29

of (1, 3), and from the z-axis it looks like two cardioid curves, The central reference sphere

back to back. The 2-D projections of QSOs and their
relationship to known plane curves will be explored in chapter 7.

Our last task will be to add reference spheres. The easiest
way to generate a sphere in the center position is with a simple
formula.
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Fig. 6-27
The simultaneous axial views of QSO (2:1) with a central reference sphere

Graphing Calculator’s “Use Transparency” command allows
the sphere to be made slightly transparent, which allows us to
see the front and back lobes of the (2:1). The next step is to
generate spheres in the left and right positions. For the left we
attempt to subtract 2.1 units from the center sphere.

r=09-21=-12

Eqgn. 6-30
An attempt to generate a sphere in the
left position by subtracting 2.1 from equation 6-29

Unfortunately, subtracting 2.1 from equation 6-29 doesn’t
work. It just changes the diameter of the sphere. We try a
couple of parametric spheres.
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-2.1

y| = 0.9 sinmwu- sin2zv| T | 0

X sinstu- cos27

z COs TTu 0

X sinstu- cos27 2.1
y| = 0.9 sinmu- sin2zv| | 0

COSs JTu 0

Eqgns. 6-30
Parametric spheres in the left and right positions

Fig. 6-28
The three simultaneous axial views of QSO (2:1) with reference circles and spheres

View from +x

The parametric spheres work. Each has a radius of 0.9 and
they’re properly positioned at +2.1 units left and right of center.
On the left, looking from the x-axis, the QSO seems to have no
depth. It seems to exist just outside of the sphere, between the
sphere and the eye of the reader. The three dimensionality of the
curve can be appreciated by focusing on the red trace where it

View from +y

View from +z

transitions diagonally from lower left to upper right. Because
the software draws a true 3-D picture, and because the x-view is
shifted to the left of center, parallax allows one branch of the
curve to be seen in front of the sphere while the other is behind
it. The effect of parallax can also be seen in the view from the
z—axis, although there is no doubt there that part of the curve is
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in front and part behind the sphere. In the views from the y—
and z—axes, the intersections are clearly seen to be 180° apart in

0, although the separation in ¢ is not so certain.

Other display techniques translate and rotate QSOs in
3—space. They can slide back and forth on any axis or spin like
propellers. They can grow or shrink as the diameter of the
central sphere (which is now no longer a unit sphere) is
changed. These transformations use standard manipulations
which readers may discover for themselves.



Chapter 7

Plane Curves

Quasi-Spherical Orbits were introduced in this book with The projection of the QSO on the xy-plane certainly looks
the assertion that many QSOs are identical with, and therefore like a circle, and we have previously treated it as such." We will
subsume, some well-known space curves that traditionally have
been seen as unrelated. Furthermore, it was said that the
projections of specific QSOs on the orthogonal planes are
indistinguishable from certain plane curves. It’s time to
examine those assertions. We begin with curves in the flat,

show here that the projection is visually congruent with a
standard circle. The formal proof will be left to the reader.
One way to generate the QSO is with equation 2-8a.

two-dimensional plane of the Greeks. X (sinbgt) ( cosagt)
y| = | (sinbgt) ( sinagt)
Circle cos bgt

Eqn. 2-8a
The QSO equation in Cartesian notation
a=1,b=1,g=2mn,n=1,t:0... 1.

Since we’re interested only in the xy-plane, the z-term can
be deleted, leaving

Fig. 7-1
QSO (1:1) @ 100%, isometric view

' See pp. 7-9, 74, 87-8, as well as the front cover.
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x| _ | (sinbgt) ( cosagt)
y (sinbgt) ( sinagt)
Eqn. 7-1
The QSO equation on the xy-plane

Then, because we want just the complete curve displayed
statically, the unit terms a, b & n can be deleted.

x| _ | (sin2mt) ( cos2mt)
y ('sin 27tt) ( sin27tt)
Eqn. 7-2

The static projection for QSO (1:1)
@ 100% of a cycle on the xy-plane

Graphing,

-05T

Fig.+7-2
The projection of QSO (1:1) on the xy-plane

The projection of the QSO in black is shown with the green
equator from figure 7-1. The equator is a unit circle with the
equation

x?”ry2 =1

In order to fit the projection of the QSO to the unit circle, we
multiply by two to increase the radius to »= 1.

Xl = 5 (sin27t) ( cos2imt)
y (sin27tt) ( sin2t)

Graphing, / \

0,5-: o

05+

1
Fig. 7-3
The enlarged projection of QSO (1:1)
on the xy-plane (black) with the equator (green)
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The projection has escaped slightly from the picture, but that

will be taken care of with the next operation. To overlay the

projection of the QSO onto the unit circle, we move the center to

the Origin.

X| = 5 (sin27tt)
y ('sin27tt)

Graphing,

ax

( cos2mt) +|0
( sin2t) -1

=

Fig.

The black projection of QSO (1:1) overlays the unit circle.

\ -05+
\

]

7-4

The formal demonstration of equivalence is left to the reader.

Parabola
The problem is to show the equivalence of the parabola and
the projection of QSO (1:1) on the yz-plane. Following the

same procedure as the circle, we will show that they are visually
congruent. The equation for the parabola is

y=X

Graphing,

051

-051

Fig. 7-5
The parabola
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Fig. 7-6
QSO (1:1) @ 100% and its projection on the yz-plane

From the x-axis, the projection of QSO (1:1) on the yz-plane
looks like an open letter C written backwards. The red QSO and
the green meridian in the yz-plane are on the unit sphere, but the
projection is not. We proceed as before by starting with
equation 2-8a.

X (sinbgt) ( cosagt)

y (sinbgt) ( sinagt)
cos bgt

Eqn. 2-8a
The QSO equation in Cartesian notation
a=1,b=1,g=2mn,n=1,t:0... 1.

Since we’re interested in the yz-plane, the x-term may be

deleted.
y| _ | (sinbgt) ( sinagt)
z cos bgt

Eqn. 7-3

This gives the projection of the QSO in the yz-plane. We
want to compare it with the parabola, which is in the xy-plane,
so we need to put the projection also in the xy-plane. This is
accomplished by reassigning the first and second terms to the x-
and y-axes instead of the y- and z-axes.

x| _ | (sinbgt) ( sinagt)
y cos bgt

Eqn. 7-4

The unit terms, a, b, and # can be deleted, leaving

x| _ | (sin2mt) ( sin27t)
y cos 27t

Eqn. 7-5
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Graphing,

o5 X

-0.5t v 4

Fig. 7-7
The parabola, the projection of QSO (1:1) and the unit circle

The black projection of QSO (1:1) is drawn on the xy-plane.

It is shown with the green unit circle and a blue parabola.
Rotating the projection of the QSO so that its axis extends along

y-axis,
X[ _ cos2 7t
y — (sin2t) ( sin2ut)
Eqn. 7-6

In addition to exchanging terms, there is a need to negate the

y-term so the projection opens in the positive y-direction.

Graphing,

05T
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Fig. 7-8

The projection of QSO (1:1) compared to the parabola

The last operation moves the apex of the projection to the

Origin.
X[ _ cos 2t N 0
y — (sin2mt) ( sin2at) 1
Eqn. 7-7
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Graphing,

e

-05T

1
Fig. 7-9
The projection of QSO (1:1) and the parabola

The projection of QSO (1:1), originally on the yz-plane, is
now visually congruent with the parabola. The formal proof of
congruence is left to the reader.

The Lemniscate of Gerono

The lemniscate’ of Gerono, also called the figure eight
curve, was studied by the French mathematician Camille
Cristophe Gerono (1799-1891).* The implicit equation for the
lemniscate is

= (X% = y?)

Eqn. 7-8
where a is a scaling factor

Graphing,

051

-05+

-14

Fig. 7-10
The lemniscate of Gerono

* Latin lemniscus, ribbon, from Greek lemniskos.
* Gray (1998) p. 32.
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The problem is to show the equivalence of the L. of Gerono

and the projection of QSO (1:1) on the xz-plane. )
X (sinbgt) ( cosagt)

y| = | (sinbgt) ( sinagt)
cos bgt
Eqn. 2-8a
The QSO equation in Cartesian notation

a=1,b=1,g=2mn,n=1,t:0... 1

Since this time we’re interested in the xz-plane, the y-term

may be deleted.
Fig. 7-11 '
Isometric view of QSO (1:1) at 100% x| = | (sinbgt) (cosagt)
and its projection on the xz-plane z cos bgt
Eqn. 7-9

The projection of QSO (1:1) on the xz-plane is more
complex than its projections on the other two planes. It has
north and south lobes with a waist apparently at the Origin. At
the Origin one would guess that the projected curve intersects
itself at a 90° angle as does the QSO.* We proceed as before to x| _ | (sin2xt) ( cos2t)
write the equation of the projection. -

Then, deleting the unit terms @, b and n leaves

z cos 27tt

Eqn. 7-10

* See chapter 4, pp. 50-51.
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Graphing,
z z
7 o5 f')
\\ !/ \\ T x’i
\ y, S /
A V4 ST /I
X o\ ' X
-05 PARN 05 A -05 7™ 05
N A TN
g1 N ST N
'/ -05+ \, f -05+ "\'
(, I ) ( 1 )
N N~
Fig. 7-12 Fig. 7-13
The projection of QSO (1:1) @ 100% on the xz-plane. The projection of QSO (1:1) @ 100% on the xz-plane
Since the projection is symmetrical with respect to the Next we reassign the terms of the curve to draw it on the
z—axis, we can reverse the x-axis with no distortion. Note the xy—plane.
location of the small x labeling the x-axis in each figure.
x| _ | (sin2mt) ( cos2mt)
y cos 27t

Eqgn. 7-11
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Graphing, Graphing,
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Fig. 7-14 Fig. 7-15

The projection of QSO (1:1) on the xz-plane, translated to the The projection of QSO (1:1) and the L. of Gerono

xy-plane and compared to the L. of Gerono
The projection of the QSO in black overlies the blue

lemniscate of Gerono. It is now clear that QSO (1:1) subsumes
the circle on the xy—plane, the parabola on the yz—plane, and the

lemniscate of Gerono on the xz—plane.
x| _ cos 2t
(

Rotating the projection of the QSO 90°,

y sin 27tt) ( cos2t)

Eqgn. 7-12
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Here are the three projections, together with the QSO.
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Fig. 7-16
QSO (1:1) @ 87% of a cycle

\./ .

The QSO simultaneously traces the circle, the parabola and
the lemniscate of Gerono. At this point in the cycle the circle
and the parabola appear to be complete. We know this is not
true because the QSO is yet incomplete.’

Cardioid

Although the cardioid’ was studied by Roemer in 1674 as a
form of gear teeth, the name cardioid was first used by
de Castillon in 1741.

* See pp. 8-10 for a discussion of this phenomenon.
¢ Literally, “heart-shaped” [cardi(o)- + -oid].

7 Notes from Graphing Calculator 3.2 and
<http://mathworld.wolfram.com/Cardioid.htmI>.

The parametric equation for the cardioid is

X = d (k + 2ccos2mt) cos 2t
y sin2 7t
Eqgn. 7-13
c=05,d=05k=10,t:0... 1

Graphing,

Fig. 7-17
The cardioid

In figure 7-17 the cardioid has a single large lobe which is
symmetrical with respect to the x-axis, and which extends along
the positive side of that axis. There is a cusp at (0, 0). We
compare the cardioid with the projection of QSO (2:1) on the
xy—plane.
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Fig. 7-18 Fig. 7-19
QSO (2:1) at 100% and its projection QSO (2:1) at 50% of a cycle and its
on the xy-plane, isometric view projection on the xy-plane, isometric view

At first glance, the projection of the QSO doesn’t look much There is now a large cardioid-like lobe extending along the
like a cardioid. To be sure, there are two outer lobes that each negative x-axis, and what appears to be a cusp, again at (0, 0).
resemble the lobe of a cardioid, but the two inner loops The equation for the projection is
seemingly eliminate the possibility of a cusp. Running the QSO
backward to 50% of a cycle makes the resemblance more
obvious. _ | (sinbgt) ( cosagt)

L] [( sinbgt) ( sinagt)]

Eqn. 7-14
a=2,b=1,g=2mn,n=05,t:0... 1
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Graphing, Comparing with the cardioid,
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Fig. 7-20 !
The cardioid and the projection of QSO (2:1) Fig. 7-21
@ 50% of a cycle on the xy-plane The cardioid and the projection of

QSO (2:1) @ 50% of a cycle

To more directly compare the projection with the historical
cardioid, we reverse the projection left to right by negating the Comparing the historical cardioid (blue) with the projection
x—term. of the QSO (black), we see that the historical cardioid is
everywhere inside or tangent to the projection. The curves are
not equivalent. Still, they do have generally similar shapes.
Both have a cusp at (0, 0), and both intercept the x-axis at
Y (sinbgt) (sinagt) (1, 0). Ifthe classical curve is called a “cardioid,” or the
“cardioid of Castillon,” then perhaps the QSO form should be
called the “QSO cardioid,” or the “Burchester® cardioid.”

x| _ |- (sinbgt) ( cosagt)

Eqn. 7-15

® An amalgam of the names “Burke” and “Chester,” a device we use to refer
to collaborative work.
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Limacon Graphing,

The limagon® (pronounced with a soft ¢) is also called
“Pascal’s snail.” It was discovered by Etienne Pascal (1588- 1
1651), the father of Blaise Pascal. It was named by Roberval in iyl
1650 when he used it as an example of his method of drawing ]

tangents."

The general form of the parametric equation for the limagon
is the same as for the cardioid. Only the constants change. 03!

Xl = d (k +2ccos2at) cos 2t
y sin2 7t

Fig. 7-22

Eqn. 7-16 The limagon

c=1,d=05k=1,t:0... 1

The cardioid is a special case of the limacon. Where the
cardioid has a cusp, the limagon has an inner loop." Of
particular interest here is the fact that although the cardioid is not
equivalent to the projection of QSO (2:1) on the xy-plane, the
limacon, which is the general case, will be shown to be visually
identical to the projection of QSO (3:1) on the xy-plane.

? Latin limax, snail
' http://www-groups.dcs.st-
andrews.ac.uk/%7Ehistory/Curves/Limacon.html ' http://en.wikipedia.org/wiki/Lima%C3%A70on
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We are interested in the xy-plane, so the z-term may be
deleted.

x| _ [ (sinbgt) ( cosagt)
y (sinbgt) ( sinagt)

Eqn. 7-17

Graphing,

Fig. 7-23
QSO (3:1)
@ 50% of a cycle @ 100% of a cycle

Between 50% and 100% of a cycle the QSO traces the same
projection on the xy-plane. Since it makes no difference which ERER
fraction we use, we will choose the full cycle to keep the
numbers simple. The QSO is generated by equation 2-8a.

X (sinbgt) ( cosagt)

y (sinbgt) ( sinagt)

b Fig. 7-24
cos bet The projection of QSO (3:1) on the xy-plane
compared to the limagon
Eqn. 2-8a

a=3,b=1,g=2mn,n=1,t:0... 1
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Rotating the projection so that the inner loop and large outer Flipping the projection horizontally,

lobe are oriented along the x-axis,

x| _ | (sinbgt) ( sinagt)
y (sinbgt) ( cosagt)
Eqn. 7-18

Graphing,
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Fig. 7-25

The projection of QSO (3:1) on the xy-plane
rotated and compared to the limagon

x| _ |- (sinbgt) ( sinagt)
y (sinbgt) (cosagt)
Eqn. 7-19

Graphing,

Fig. 7-26
The projection of QSO (3:1) on the xy-plane
rotated, reversed left to right and compared to the limacon
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And finally, moving the projection 0.5 to the right,

X — (sinbgt) ( sinagt) 4 (05
y ( sinbgt) (cosagt) 0
Eqn. 7-20
Graphing,
//’—— e
F d .

Fig. 7-27
The projection of QSO (3:1) on the xy-plane
rotated, reversed left to right, translated
and compared to the limagon

The projection of the QSO is visually congruent with the
limagon.

Epitrochoids

So far the curves have been familiar and easily understood.
To explore now the relationship between epitrochoids and
QSOs, a little background may be helpful. If a circle rolls along
a line without slipping, then a point on the circumference of the
circle traces a cycloid.

The equation for the cycloid is

x| _ [r(O - sinB)
y r(1 - cos9)

Eqn. 7-21
where 7 is the radius of the rolling circle and 6 is the angle of

rotation of the radius."

Graphing,

Fig. 7-28
An ordinary cycloid

"> Readers using Graphing Calculator to explore these curves need to change
0 to nt and r to s or some other constant for the curve to display correctly.
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You can think of the cycloid as the trace of the valve stem as
a tire rolls along the road. If the circle rolls around the outside
of a larger fixed circle, the resulting curve is an epicycloid."

Fig. 7-29
A three-lobed epicycloid

In figure 7-29 the radius of the large fixed circle is three
times that of the smaller rolling circle resulting in an epicycloid
of three lobes and three cusps.'* If the radius of the smaller
circle is extended without making the circle itself any larger, the
resultant curve is an epitrochoid.

13 99 ¢

epi- Greek: on, over. Similar to “epicenter,” “epidermis,” etc.
* When the circles are of equal size, the cardioid results.

The equation for the epitrochoid is

R +

(R+s)cosgt— (R+s) cos( Sgt)
x| _ 1 S
2(R+s) R+

). (R+s)singt— (R+s) sin( Sgt)
s

Eqn. 7-22
R is the radius of the inner, fixed circle,
s is the radius of the outer, rolling circle"”, and

g=2mn,n:0-—>1,t:0...1.

The initial fraction
N S
2(R+s)

is not needed to generate the curve. Its purpose is to normalize
the curve so that it falls within the unit circle.

" One might suppose that the radius of the smaller circle could be
represented by a lower case 7, but Graphing Calculator refuses to graph such
an equation. Thus, another letter must be used.
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If R =3 and s = 1, the following curve results.

Fig. 7-30
A three-lobed epitrochoid'

In figure 7-30 the radius of the larger fixed circle is three
units, the radius of the smaller rolling circle is one unit, and the
extended radius is four units long. An infinite variety of
epitrochoids can be generated by manipulating the variables R

and s. We will compare this particular curve with the projection
of QSO (5:3) on the xy-plane.

' Greek trokhoeides, resembling a wheel, wheel like, circular: trokhos,
wheel.

Fig. 7-31
QSO (5:3) @ 100% and its projection on the xy-plane

The projection of the QSO on the xy-plane is a three-lobed
figure with three inner loops.
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Next we graph the projection of the QSO together with the
epitrochoid from figure 7-30.

Fig. 7-32
A three-lobed epitrochoid and the
projection of QSO (5:3) on the xy-plane

In figure 7-32 the epitrochoid is symmetric with respect to
the x-axis while the projection of the QSO is symmetric w.r.t.
the y-axis. This is easily remedied. The equation for the
projection of the QSO is

x| _ | (sinbgt) ( cosagt)
y (sinbgt) ( sinagt)
Eqgn. 7-23
a=5b=3,g=2nn,n=1,t:0... 1

Exchanging axes rotates the projection by 90°.

x| _ | (sinbgt) ( sinagt)
y (sinbgt) ( cosagt)
Eqn. 7-24

Graphing,

Fig. 7-33
The three-lobed epitrochoid and the
projection of QSO (5:3) on the xy-plane

The curves are now visually congruent.
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Going Further

Those interested in further exploring the relationship
between epitrochoids and QSOs might want to take a look at the
following comparisons. For most of the comparisons the
projection of the QSO needs to be rotated 90° for visual
congruency with the epitrochoid. Some need to be both rotated
and flipped left to right.

There are some tempting regularities in the table. It looks as
if the QSO corresponding to an epitrochoid with variables (R, s)
is of the form QSO (R + 2s : R), but no proof is offered that this
is a general pattern.

R ] QSO QSO
expands to -->
1 1 (3:1) (3:1)
2 1 (2:1) (4:2)
3 1 (5:3) (5:3)
4 1 (3:2) (6:4)
5 1 (7:5) (7:5)
1 2 (5:1) (5:1)
2 2 (3:1) (6:2)
3 2 (7:3) (7:3)
4 2 (2:1) (8:4)
5 2 (9:5) (9:5)
1 3 (7:1) (7:1)
2 3 (4:1) (8:2)
3 3 (3:1) (9:3)
4 3 (5:2) (10:4)
5 3 (11:5) (11:5)
Table 7-1

Comparison of epitrochoids with the
projections of QSOs on the xy-plane
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Hypotrochoids As before, the initial fraction is not needed to generate the
curve. Its function is to normalize the curve so it fits within the
As the name suggests, hypotrochoids are similar to unit circle on the xy-plane. If R =5 and s = 1, then the graph is
epitrochoids. Whereas epitrochoids are created by a circle
rolling around the outside of another circle, hypotrochoids result i
from one circle rolling around the inside of another.”” The '
equations are also similar. ..j__
ot .
’// 0.5 \
- - 7 { \‘ /
r 1
R - .
(R-s)cosgt+ (R—35) cos( Sgt) ===_;"'l_0‘_5 {""'0:
x| _ 1 s \ "
2(R-5) R - \ .
. (R-s) singt— (R —s) sin < 5 gt) b, ¥4 A ,.i"/
_ s i i
Eqgn. 7-25 1

R is the radius of the fixed circle, Fig. 7-34

s 1s the radius of the rolling circle, and A hypotrochoid with five loops

g=2mn,n:0—>1,t:0... 1

The radius of the large fixed circle is five units. The radius
of the smaller rolling circle is one unit, and the extended radius
of the smaller circle is four units long. We will compare this
hypotrochoid with the projection of QSO (3:5) on the xy-plane.

'" hypo-, hyp- from Greek hupo-, from hupo, under, beneath; for example
hypodermic, hypoglycemia
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Fig. 7-35
QSO (3:5) and its projection on the xy-plane Fig. 7-36
The hypotrochoid R =5,s =1
The projection of QSO (3:5) has five outer loops arrayed and the projection of QSO (3:5) on the xy-plane
equally around the Origin. Graphing the hypotrochoid and the
projection of the QSO together gives, Again the trochoid is symmetrical with respect to the x—axis

while the projection of the QSO is symmetrical w.r.t. the
y—axis, and again the fix is to exchange the terms of the QSO.

x| _ | (sinbgt) ( cosagt)
y (sinbgt) ( sinagt)
Eqn. 7-26
The projection of QSO (3:5) on the xy-plane
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Rotating the projection of the QSO, Once again it’s all over but the shouting. For those who
want to further explore the relationship between hypotrochoids
) ) and QSOs, we offer the following table. For most of the
[X] = [( sinbgt) ( smagt)] comparisons the projection of the QSO needs to be rotated for
y (sinbgt) (cosagt) visual congruency with the hypotrochoid. Some need to be both

rotated and flipped left to right. In table 7-2 the relationship
between the hypotrochoids and the projections of the QSOs is
even less clear than before. Perhaps a clever reader would like
to clarify it.

Eqn. 7-27
The projection of QSO (3:5) on the xy-plane rotated 90°

Graphing,

Fig. 7-37
The projection of QSO (3:5) on the xy-plane
rotated 90° and compared with the
hypotrochoid R =5,s =1
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R ] QSO

1 1 Does not exist.

2 1 A straight line.
x:—1...1

3 1 (1:3)

4 1 (1:2)

5 1 (3:5)

1 2 (3:1)

2 2 Does not exist.

3 2 (1:3)

4 2 A straight line.
x:—1...1

5 2 (1:5)

1 3 (5:1)

2 3 (2:1)

3 3 Does not exist.

4 3 (1:2)

5 3 (1:5)

Table 7-2

Comparisons of certain hypotrochoids
with the projections of selected QSOs

Rhodonea

These curves were named rhodonea'® by the Italian
mathematician Guido Grandi (1671-1742) because he thought
they resembled roses.” Rhodonea have the polar equations

r = sin (k0)
Eqn. 7-28a

or

r = cos (kO)
Eqn. 7-28b

Since these give identical curves with the exception of a
rotation, we will use the first equation to generate curves for this
section.

' rhodo- from Greek rhodon, rose

" http://mathworld.wolfram.com/Rose.html

** Legend has it that the rose was created at the birth of the Roman goddess
Venus. Botticelli’s painting, The Birth of Venus, shows the newly minted
goddess accompanied by her flower.
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When k = 3, the curve is a trifolium.”

051

-051

Fig. J%-38
The trifolium, k = 3

Fig. 7-39
The projection of QSO (1:3) on the xy-plane

When k = 2, the curve is a quadrifolium.

051

-0.51

Fig. 7-40
The quadrifolium, k =2

Fig. 7-41
The projection of QSO (1:2) on the xy-plane

' “Three leaves” from Latin and Greek tri-, three, + New Latin from Latin

folium, leaf
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In each case the projection of the QSO is, without when b = 1 and d = 2, the resulting curve is
modification, identical with the Rose curve on the xy-plane.
This leads us to suspect that the rhodonea variable £ might
equate to the second QSO rotation b, and indeed this is so.

14

05T

r = sinb0O

Eqn. 7-29
The rhodonea equation with QSO variable b 05

It is possible to take one more step. If & is represented as a i

fraction, T
b Fig. 7-42
k = Zl Rhodoneab=1,d=2
where b is the second QSO rotation and d is an integer, then }
- o .;(” e -~
” TN D
’,f (' 054 |}
f L 1 } \
( T 1
........ Nl Tk
\ -05 f Y 05 "I
\ L I } /
*.‘_\‘ \ 05_: ' f“ __,r'(
~
Fig. 7-43

The projection of QSO (2:1) on the xy-plane
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When b =1 and d = 3, the curve is

14

051

05 1

Fig.

|

7-44

Rhodoneab=1,d=3

Fig. 7-45
The projection of QSO (3:1) on the xy-plane

1 1
The rhodonea curves with k = 5 and k = 5 are identical to

the projections of QSOs (2:1) and (3:1) Therefore we suspect
that the general expression for rhodonea using QSO notation is

.. /b
r= sm(;@)

Eqn. 7-30

where a and b are the first and second QSO rotations
respectively.” Note also that the rhodonea curve

k=1
3

is the limagon, which implies some interesting relationships not
only between rhodonea, QSOs and the limagon, but the trochoid

curves as well.”

* Wikipedia gives a good accounting of the first 49 rhodonea which are also
QSO0s. See <http://en.wikipedia.org/wiki/Rose curve>.
* See Tables 7-1 & 7-2.
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We close with an example of the intersection between art and
life. Although QSO (1:2) gives the quadrifolium on the
xy—plane, when graphed as a surface of revolution and viewed
in 3-D with appropriate color and shading, it truly resembles a

rose bud.

Z

Fig. 7-46
QSO (1:2) as a surface of rotation, isometric view

The green stem and leaf have been added to enhance the
illusion. The equation for the “bud” is

o =20
Eqgn. 7-31

where 0: 0 ... 21
* See p. 129.




Chapter 8

Lissajous Figures

French physicist Jules Antoine Lissajous (1822-1880), like L-figures are generated by any combination of sine and
many of his contemporaries, was interested in demonstrations of  cosine on two axes.
vibration that did not depend on the sense of hearing. Lissajous’
most important research, first published in 1855, described a

way to study acoustic vibrations by reflecting a ray of light from x| _ |sin (c) , x| — | sin(c)
a vibrating object onto a screen. Lissajous produced two kinds M sin (s) M cos (s)
of luminous curve. The second kind, named the “Lissajous

. o 8-la 8-1b
figure,” is the more useful of the two. A ray of light is
successively reflected from mirrors on two tuning forks that
vibrate about mutually perpendicular axes. If the light ray is x| _ |cos (¢) x| _ [cos (c)
projected onto a screen, persistence of vision causes various y sin (s) ’ y cos (s)
curves to appear. The shapes of these curves depend on the
relative frequency, phase and amplitude of the vibrations of the 8-1c 8-1d
tuning forks. Eqgns. 8-1

Lissajous figures are plane curves and could reasonably be Equations for Lissajous figures

grouped with the plane curves in the last chapter. They’re
created by independent sinusoidal oscillations on two mutually where ¢ and s are the relative frequencies of the vibrations.
perpendicular axes. As such, they might seem to be a shoo-in We will take equation 8-1c as the basis for discussion.

for congruency with the projections of at least some QSOs. Yet,
congruency is not automatic and surprises abound, so we will
investigate the relationship between QSOs and Lissajous figures
separately from the other plane curves.
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Adding amplitudes and a phase angle,’ Lissajous Figure (1:1)
The simplest Lissajous figure, like the simplest QSO, is
X| _ Ccos(ct0) L—ﬁg(ll)
y S sin (s)
Eqgn. 8-2 I

Graphing Calculator uses radians, so 27 is needed to see
the complete curve. The variable 7 is included so that a trace is osf
generated rather than a vector field.

x| _ [Ccos (2mct+ 0)
y S sin (27st) !
Eqn. 8-3 +

For the moment we will assume that C=S =c=s5=1, and

that the phase angle 8 = 0. Fig. 8-1

L-fig. (1:1),C=S=1,0=0

The result is a circle with a radius of one and centered on the
Origin. We have already seen that the projection of QSO (1:1)
on the xy-plane is a circle,’ so we’ll skip a repeat demonstration
here. Of more interest is what happens as the phase angle
changes.

" A second phase angle could be added to the oscillation on the y-axis, but it
would not materially change the patterns generated. *Seep. 117.
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1

gXZJ‘C 2

§X2J'l? 3

%X2J'C §x2ﬂ:

Fig. 8-2
L-fig. (1:1),C=S=1,6:0... 2n

Lissajous figure (1:1), like all L-figures, oscillates between
two distinct patterns as the phase angle varies.’ In this case, the
patterns are a circle and a diagonal line. The diagonal line lies
first along the line y = —x, and then, pi radians later, along the
line y = x. Although the slope changes, both are diagonal lines.
For our purposes here, we will not distinguish between the two.

0

§X2ﬂ? 1

§X23’C 2

§X2ﬂ? 3

§x2n

* The nonstandard labeling of the phase angle deserves an explanation. The
full cycle of the L-fig. goes to completion in 25t radians. For display

purposes, the cycle is divided into eight steps, and each step is labeled as 1/8

of the cycle.

%xZn

%XZJ‘C

5

§X2J'C 6

gXZJ‘C 7

§X2J'l? 8

EXZJ‘E

Also,there are ellipses between the circle and the diagonal line.
They vary in eccentricity and orientation, but again we will not
distinguish. In fact, since the ellipses are all intermediate
between the circle and the diagonal line, we won’t bother with
them at all.*

Lissajous Figure (2:1)

Turning now to L-fig. (2:1), familiar sights emerge.

5

§X2ﬂ? 6

§X23’C 7

§X2ﬂ? 8

§x2n

Fig. 8-3
L-fig. (2:1,C=S=1,0:0... 2

* QSO0 (0:1) @ 100% gives a circle in the xz-plane, which, when rotated
around the z-axis, produces a series of elliptical views. See p. 4, Fig. 1-7.
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The L-fig. oscillates between a parabola at 8= 0, and a

figure-eight curve at 8 = 1t/2, where the figure eight curve is r~ ™~
reminiscent of the lemniscate of Gerono.” Comparing the (\ OS: i'.l
L-fig. at =0 and 6 = n/2 with the corresponding projections \ \ J/ ".
of QSO (1:1), we get WEE NN \/ Suuaus 1w
AT
A ] N
TN

t ,f, ~0.5': \

! N ‘\T_/

5:: Y \ L

e T o Fig. 8-5
y L-fig. (2:1) [blue], C=S=1,0=m/2
st i¥a QSO (1:1) @ 100% [black], view from the y-axis,
.:if“'“/j projected onto the xy-plane
Jr It looks in each case as if the L-fig. is just a wider version of
Fig. 8-4 the corresponding projection of the QSO. To test this
L-fig. (2:1) [blue], C=S=1,6=0 observation, we let C = 0.5.

QSO (1:1) @ 100% [black], view from the x-axis,
projected onto the xy-plane

*See pp. 119, 122.
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The L-figs. become

05T

osl S

Fig. 8-6

L-fig. (2:1) [blue], C=0.5,S=1,86=0
QSO (1:1) @ 100% [black], view from the x-axis,

projected onto the xy-plane

Fig. 8-7
L-fig. (2:1) [blue], C=0.5,S=1,0=m/2

QSO (1:1) @ 100% [black], view from the y-axis,
projected onto the xy-plane

The L-fig. (2:1) parabola occurs to the left of the QSO (1:1)
parabola, but they are otherwise identical. The L-fig. (2:1)
figure eight underlies the QSO (1:1) lemniscate of Gerono to the
extent that they are visually indistinguishable. We note in
passing that reversing c and s in the L-fig. rotates the static
patterns 90°, but does not otherwise alter them.
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Lissajous Figure (3:1)

Lissajous figure (3:1) oscillates between a sort of double

hourglass pattern at 8 = 0 and an upper-case letter “S” at

6 = m/2, or an upper-case letter “Z,” x radians later.

%x2n %X2J‘E %x2ﬂ: %x2fc %X2J‘E %x2n %X2J‘E %x2ﬂ: %xzn
Fig. 8-8

L-fig. 3:1),C=S=1,0:0... 2%

The double hourglass and the Z look like the y- and x-axis
views of QSO (2:1) respectively, so we compare them.
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Fig. 8-9 Fig. 8-10
L-fig. (3:1) [blue], C=S=1,8=0 L-fig. (3:1) [blue], C=S =1, 0 =3mw/2
QSO (2:1) @ 100% [black], view from y-axis, QSO (2:1) @ 100% [black], view from x-axis

projected onto the xy-plane
Again the L-figures seem to be wider versions of their QSO
cousins. Unfortunately, squeezing them on the x-axis doesn’t
do the trick this time.
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Fig. 8-11 Fig. 8-12
L-fig. (3:1) [blue], C=0.5,S=1,86=0 L-fig. (3:1) [blue], C=0.5, S =1, 0 = 3w/2
QSO (2:1) @ 100% [black], view from y-axis QSO (2:1) @ 100% [black], view from x-axis

The problem becomes clear when we look at a higher order
curve.
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Lissajous Figure (10:7)

wlo
=

2w 4
8

27 5 2m 6 2w 7 27 8 2m
X=- )

Fig. 8-13
L-fig. (10:7),C=S8=1,0:0 ... 2r/7

Lissajous figure (10:7) oscillates between an open weave
and a closed weave pattern.”’ The reason that this and all
similar Lissajous figures cannot be squeezed into congruency
with any projection of any QSO is that the L-figures occur on a
square field whereas the projections of the QSOs are drawn on a
circular field.* The congruency of the squeezed versions of
L—fig. (2:1) with two of the projections of QSO (1:1) is thus
revealed as an exception to the general rule, not to be repeated as
the frequencies increase.

At this point one might concede that the superficial

° Note that the open weave pattern comes in left- and right-handed versions,
whereas the closed weave is statically symmetrical.

7 A further note on the labels for the phase angle. In general, the number of
times an L-fig. oscillates between its two identifiable patterns is controlled
by the frequency on the axis that does not have the phase angle. In the
present examples, the phase angle is added to the x-axis, so the frequency on
the y-axis controls the oscillation. For L-fig. (10:7), that’s seven cycles in
25t radians.

¥ See Figs. 8-4, 8-5, 8-6, 8-7.

resemblance of low-order Lissajous figures to some of the
projections of QSOs is simply coincidence — and they would be
right, to a point. Still, much remains to be said before we leave
the topic of L-figures and their relationship to QSOs.

Quasi-Cylindrical Orbits

By definition, Quasi-Spherical Orbits occur on a sphere.
Equation 2-8a guarantees that.

X (sinbgt) ( cosagt)
y| = | (sinbgt) ( sinagt)
z cos bgt

Eqn. 2-8a
The QSO equation in Cartesian notation
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However, the QSO can be unwrapped from the sphere by
removing the (sin bgt) terms from the expressions for x and y.

X cosagt

y| = | sinagt

z cos bgt
Eqn. 8-4

The parametric equation for Quasi-Cylindrical Orbits

The effect of this modification is to create a Quasi-
Cylindrical Orbit, or QCO.’ The QCO equation, on the x- and y-
axes at least, looks very much like equation 8-1c which
generates L—figures The difference between QCOs and QSOs is
immediate and dramatic.

’ Kelleher (1994) wrote an equation very similar to Eqn. 8-4. Neither of us
realized at the time that it generated a curve on a cylinder rather than on a
sphere.

Fig. 8-14
QSO (2:3) [red]
QCO (2:3) [black]

In figure 8-14, QSO (2:3) appears conventionally on the unit
sphere. The Quasi-Cylindrical Orbit (2:3) appears on the unit
cylinder, wherer=1and z: -1 ... 1.
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Fig. 8-15 Fig. 8-16
QSO (2:3) [red] QSO (2:3) [red]
QCO (2:3) [black] QCO (2:3) [black]

View from the x-axis View from the y-axis
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The comparison is between QCO (2:3) and L-fig. (2:3). First the L-fig.,

02t 12t  22m  32m 42t 52 62t 72m 8 2m
873 873 873 873 873 873 873 873 873
Fig. 8-17
L-fig. (2:3)
...and then the QCO.

Fig. 8-18
QCO (2:3)
The view of the QCO is from the y-axis, but since this is an Extrapolating from the present example, we can predict that

actual 3-D curve, we can rotate it around the z-axis. The QSO, Lissajous figures are in general the 2-D projections of 3-D
the unit sphere, and the equator are all suppressed, but the unit Quasi-Cylindrical Orbits. Both curves will have the form (c, s),
cylinder is left in to give a sense of front and back. The 2-D and both will go through the same number of cycles in 25
aspects of the QCO and the L-fig. are for all intents and radians. The formal proof of these observations, as always, is
purposes identical, and both curves change three times faster left to persons more mathematically adventurous than the author.

than L-figures with the form (n:1) where # is a positive integer.



Chapter 9

Space Curves

Space curves are one-dimensional curves that exist in three-

dimensional space. All QSOs are space curves, but not all space
curves are QSOs.

The Conical Helix

X jtcosmt
y| = |ktsinm
It
Fig. 9-1 Eqn. 9-1"

The conical helix

The conical helix, for example, is not and cannot be related
to any QSO. Even in its two-dimensional embodiment as
Archimedes’ spiral, it cannot correspond to the projection of any
QSO. No spiral can. The reason is found in the fact that spirals

' The equations for the space curves in this chapter are from Gray, 1998,
appendix B. Equivalent expressions are found in many places. Although
Gray uses the conventional “a, b, ¢, d...” for his variables, we replace them
here with “j, k, I, m...” because “a, b...” etc. are already in use for QSOs.

and helices grow without limit whereas QSOs and the
projections of QSOs are bound in the first case by the unit sphere
and in the second by the unit circle. Even the irrational QSOs are
bound this way, while spirals and helices are not. The 3-D
astroid is a different matter.

The 3-D Astroid

The 3-D astroid is the three-dimensional analog of the 2-D
astroid, which itself is a hypocycloid.?

P o It \ A
! / 05 \‘\ > ,
‘o/ /‘ b h Y '\
s i . 3
L’ -~ | X ( cost)
o N . .
,‘\ N \ X } y k (sint)
’.\ -\-0,5 ’,’ ‘-',i"
v,‘\rh .\ 'f '"/(
Fig. 9-2 Eqn. 9-2

The 2-D astroid @ 95% of a cycle’
? For a discussion of hypocycloids, see Hypotrochoids, p. 125.

* See Gray, 1998, p. 892.
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To generate the 3-D astroid we add a cosine term to the
z—axis. The coefficient k£ on the y-axis has arbitrarily been set to
2 in order to display the curve more effectively.

A circle of radius r/4 rolls around the inside of a circle of
radius 7. A point on the circumference of the rolling circle traces
the 2-D astroid.
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Isometric view
Fig. 9-3

The 3-D astroid*

X j( cosgt)3

y k ( singt)3
Z 1(cos2gt)

Eqgn. 9-3
The 3-D astroid

* See Gray, 1998, p. 927.

The 3-D astroid in a cube

Fig. 9-4b
View from +z

Returning the coefficients of the x-, y-, and z-axes to unity
yields a 3-D astroid that now occupies a cubical space. An
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opaque sphere (r = 0.5) has been added to help tell front from
back. The sphere is tangent to all four branches of the astroid.
As we saw in chapter 6, page 103, Graphing Calculator draws a
true 3-D picture, so we see all 12 edges of the cube in the
foreshortened view from the z-axis. Close examination of this
sketch reveals that the 3-D astroid has two cusps on the edges of
the cube nearest the reader, and two on the edges away from the
reader.

Fig. 9-6
The cubical 3-D astroid
with its circumscribed tetrahedron, inscribed sphere,
and QSO 1(3:2) @ 100% of a cycle

We mentioned in chapter 2 that connecting the events of QSO
Fig. 9-5 1(3:2) makes a tetrahedron, so we add this QSO to the display.’
The cubical 3-D astroid
with its circumscribed tetrahedron and inscribed sphere

Connecting the cusps of the cubical 3-D astroid results in a
tetrahedron. The short horizontal edges of the tetra are 2 units
long, while the longer edges are \/g units long. In this view the

cubical box has been replaced by the standard orthogonal axes
and an equator (r = 1). > See also chapter 10, p. 158, and chapter 11, p. 185.
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Fig. 9-7 Fig. 9-8
The QSO astroid Fitting the central sphere to the QSO astroid
with its circumscribed tetrahedron
and QSO 1(3:2) @ 100% of a cycle The final step is to fit the central sphere to the QSO astroid
by setting »= (cos 30°)/2. Although the relationship between
The 3-D astroid and its circumscribed tetrahedron can be some space curves and certain QSOs may seem at first
fitted to the QSO by letting farfetched, there is sometimes a surprising connection.
j=cos 30°
k = cos 30°
1 =sin 30°

The central sphere is now tangent to the horizontal edges of
the tetrahedron, but at »= 0.5 it’s no longer inscribed in the
astroid.
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The Baseball Seam

Fig. 9-9 Fig. 9-10
The baseball seam by Gray (1998) The QSO baseball seam Gray’s baseball seam and QSO 1(1:2)
However, graphing the curves together reveals that they are
j (sin (g - (g - k) (cost) ) ) (COS (% Tk sin2t) ) not identical. Although they both begin at the north pole and
X both cross the equator at the same four places, a less obvious
vyl = | (sin <g - <§ - k) (cost) )) (sin (g +k sin2t)) difference makes it unlikely that Gray’s baseball seam can ever
be massaged into the QSO.

i (e0s (3 - (5 ) Ceomn))

Eqn.9-4,j=1,k=0,1t:0 ... 4w
The baseball seam (Gray, 1998)

Gray (1998) gives a fairly complex expression for a curve he
calls the baseball seam. At first glance it looks a lot like QSO
1(1:2).
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i=1,k=0.1 i=1,k=02 i=1,k=03

Fig. 9-11

i=1,k=04 i=1,k=0.5

Transforming Gray’s baseball seam

Holding j = 1 while increasing £ 0.1 unit at a time reveals
that what appear to be polar events in Gray’s baseball seam are
actually cusps. Ask increases slowly, the cusps withdraw from
each other and transform into lobes until, at about £ = 0.4,
Gray’s curve approximates the seam on a real baseball.® The
transformation does not stop there, of course. There are some
interesting curves as k increases even further. There are also
some interesting curves at negative &, but these seem less and
less related to QSOs and are left for the reader to explore.

Holding j = 1, £ = 0 and animating the curves, we find that
the dynamics of Gray’s curve and QSO 1(1:2) reveal insights
not available from the static analysis. In the following
illustrations the rotational rates have been adjusted so Gray’s
baseball seam and the QSO both go to completion in 27t radians.

¢ Banks (1999, pp. 232-46) derives a formula for the length of a baseball
seam that includes a quantity called the “minimum latitude.” For a real
baseball, the minimum latitude is 25°. For the monopole QSO (1:2)
it’s 0°. See also chapter 3, p. 35, footnote 1.

0%
The curves both start at (0, 0, 1).

7

*
8.333...% 16.666...%
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Gray’s baseball seam (blue) and QSO 1(1:2) (red) are shown
as orbital traces developing around a translucent central sphere
(r=0.5). They begin together at (0, 0, 1). Although the QSO
seems to be leading, both curves cross the equator
simultaneously and at the same point at 12.5% of the cycle (not
shown). They also reach the south pole at the same time, but
then the major difference between the curves shows becomes
apparent. While the QSO continues smoothly through the pole,
Gray’s curve “bounces.” It reverses course and takes off in a
direction approximately diametrically opposed to the QSO,
confirming, if there was any doubt, that the polar trace is a cusp.

At 50% of the cycle the curves reach the north pole. We
pause here to note that if we were to consider only the static
appearance of the curves, we could easily come to believe that
they are the same curve, one branch of which has experienced
two 90° rotations compared to the other. But they’re not the
same curve, which is apparent as the traces continue to develop.
Gray’s curve bounces again, and then travels to the south pole
where it bounces once more. It then returns to the north pole

where it would form the fourth cusp if it were to go into the

100% second cycle of rotation.

Fig. 9-12
QSO 1(1:2) and Gray’s baseball seam
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The Spherical Cardioid

Like the 3-D astroid, the spherical cardioid is the three-
dimensional analog of the 2-D cardioid.

Fig. 9-13
The 2-D cardioid’ (black) and the 3-D cardioid (blue)

Xl = d(k + 2ccos2mt) cos 2t
y sin2 7t

Eqgn. 7-13
The 2-D cardioid

7 Deleting the z-term in Gray’s equation gives the same curve as
Equation 7-13.

2j(cosgt) —j(cos2gt)
2j( singt) —j( sin2gt)

&-j (cosgzt)

Eqgn. 9-5
The 3-D cardioid

N

Fig. 9-14
The 3-D cardioid and QSO 1(3:1) @ 100%

In chapter 7 we learned that the plane cardioid was not
congruent with the projection of QSO 1(2:1) on the xy-plane.*
We suspect that’s true here as well, so we’ll try something
different. QSO 1(3:1) is shown above with the spherical
cardioid. It’s obvious that they don’t fit either.

¥ See p. 116, Fig. 7-21.
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Fig. 9-15a Fig. 9-15b
The spherical cardioid
with QSOs 1(4:1), left, and 1(5:1), right.

%

It may seem that increasing the a-rotation of the QSO ratio
might ultimately result in a QSO that has an event at the same
point as the spherical cardioid. Whether this is true or not is a =
moot point, because such an increase results in multiple loops of 58.333...% 66.666...%
the QSO around the unit sphere, eliminating all hope that the two
could ever match.

Dynamically, we find in figure 9-16 that the spherical
cardioid behaves very much like Gray’s baseball seam.

/ 83.333...% 91.666...%

Fig. 9-16
The spherical cardioid and QSO 1(3:1)
0%



154

QSO - The Mathematics and Physics of Quasi-Spherical Orbits

While the QSO goes smoothly through its events, the
cardioid bounces off its cusps, as did Gray’s curve. If one is
willing to relax the restriction that the spherical cardioid be
identical with a QSO, some other interesting things happen. For
instance, the square root spreads the curve vertically. For
j=1/3, k=0 you get the 2-D cardioid. Forj=1/3 andk =8,
the spherical cardioid is on the unit sphere. If you delete the
initial twos in the x- and y-terms, the curve has polar loops like
QSO (3:1), but is not on the unit sphere. If you delete the initial
twos, let j = 0.5, and £ = 4, the curve is identical to QSO 1(3:1),
but it’s no longer the spherical cardioid.

£ N
<7

Fig. 9-17
A modification of the spherical cardioid (blue)
that looks like QSO 1(1:1) (red)

(cosgt) — 0.5 (cosgt)
X (singt) - 0.5 ( singt) -0.5
_ singt) — 0.5 (sin
J| = g gh | 4 0
gt
z cos — 0

Eqn. 9-6, g=4m, t: 0 ... 1
A modification of the spherical cardioid
that looks like QSO 1(1:1)

Deleting the twos in the arguments of the trig functions
results in a curve that resembles QSO (1:1) precessed 180°
around the z-axis, above, and if you delete the initial twos, let
j=0.5, and k = 0, the spherical cardioid becomes the
limagon.

The Clelia

The Clelia was named by Grandi (1671-1742) after the
Countess Clelia Borromeo.” It is a rosette space curve with
multiple lobes emanating from (0, 0, 1). The Clelia curve occurs
only on the positive side of the z-axis. It is the 3-D analog of the
rhodonea curves."

* O’Connor, J. J. and Robertson, E. F.
' Grandi also studied rhodonea. See chapter 7, p. 128.
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Fig. 9-18a
The Clelia (blue)

Fig. 9-18b
QSO 1(1:5) @ 100% (red)

A five-lobed Clelia is shown above left with its thodonea
projection on the xy-plane. The lobes of the Clelia terminate in
cusps at the equator, but the lobes of the rhodonea are smoothly
rounded at the same points. We learned in chapter 7 that the
rhodonea curves correspond to the projections of QSOs of the
form (1:b). Mapping the five-lobed Clelia together with QSO
(1:5) in figure 9-18b confirms that they match, at least north of

the xy-plane. The reason for this equivalence is not hard to find.

X jk(cost) (sinmt) X (sinbgt) ( cosagt)

y| = jk('sint) ( sinmt) y| = | (sinbgt) ( sinagt)
Z j'\/l - (k sinrnt)2 cos bgt
Eqn. 9-7 Eqn. 2-8a
The Clelia The parametric QSO equation

The expression for the Clelia, left, is similar to that for
QSOs, right. Both have a sine-cosine term on the x-axis and a
sine-sine term on the y-axis. The terms on the z-axis differ only
in the expression for the cosine. The QSO expresses the cosine
directly, and thus exists in the range z: —1 ... 1. The Clelia uses
an expression for the cosine from the identity

(sin6)2+ (cose)2 =1

Solving for the cosine,

cosO = A/l — (sine)2

Because the root is forever positive, the Clelia exists only at
positive z.

The variable m in equation 9-7 controls the number of lobes
of the Clelia curve. It corresponds to QSO rotation variable b
when a is fixed at unity. Atm =5, as in figure 9—18a, the lobes
of the Clelia perfectly match the northern
half of QSO 1(1:5). Here, withm =4,
the Clelia has eight lobes, only the left or
right half of which overwrite the QSO.
Both curves go to completion in 2st.

Fig. 9-19
Clelia, m =4, t: 0 ... 2;, with QSO 1(1:4) @ 100%
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For m = 3, the correspondence of the
Clelia with the northern half of the QSO
is again perfect. Although the Clelia
completes a cycle in st radians, the QSO
still takes 2.

Fig. 9-20
Clelia, m =3, t: 0 ... &, with QSO 1(1:3) @ 100%

Atm = 2 the Clelia has 2m lobes,
but only half of each lobe maps onto the
QSO. The Clelia and the QSO both
complete their cycles in 27t radians.
Note that the Clelia outlines half of a

regular octahedron. This corresponds to Fig. 9-21
the northern half of the regular octahedron Clelia
formed by QSO 2(1:2) [0,0] [0,x]. m=2,t.0... 2w,

with QSO 1(1:2) @ 100%

Atm =1 the Clelia is identical to the
northern half of QSO 1(1:1). It takes 7
radians to draw the single lobe of the
Clelia. The QSO takes 27 to draw its
two lobes.

Fig. 9-22
Clelia, m= 1, t: 0 ... &r, with QSO 1(1:1) @ 100%

Fig. 9-23
Clelia, m=0.5,t: 0 ... 4m,
with QSO 1(2:1) @ 100%

There is also some interesting math in the range m: 0 ... 1.
Here, with m = 0.5, the Clelia conforms to the northern half of
QSO 1(2:1). Other correspondences await the curiosity of the
reader.
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Viviani’s Curve

Fig. 9-24a Fig. 9-24b
Viviani’s curve (Gray, 1998) QSO 1(1:1)
@ 90% @ 90%

The final comparison is between our old friend QSO (1:1)
and Viviani’s curve. The expression for Viviani’s curve given
by Gray (1998, p. 933) is

a(l+ cost)
X
_ a ( sint)
Y t
2a ( sin-
-~ ( 2> -
Eqgn. 9-8

Viviani’s curve (Gray, 1998)

This results in a curve that begins at (1, 0, 0) and rotates like
Loftus’ original QSO, but which is statically indistinguishable
from QSO 1(1:1)."

Fig. 9-25
Viviani as the intersection of a sphere and a cylinder.
Shown @ 95% of a cycle

Banchoff (1998) points out that another way of looking at
Viviani is as the intersection of a sphere of radius and a
cylinder of radius of #/2. He calls this construction “The Temple

of Viviani.”"”

"' See chapter 1, pp. 5-10, chapter 6, pp. 79-80.

"> The Temple of Viviani <http://alem3d.obidos.org/en/struik/viviani/
comm>. See also <http://www.math.umbc.edu/~rouben/dynagraph/gallery/
viviani.jpg>.



Chapter 10

Monopole Polygons & Polyhedra

First Tetrahedron

In early 1991 the only tool available for studying QSOs was
David Loftus” “3-D Combined Rotation Plotter.”" About that
time Michael Burke wrote, “[The program] clutters the screen
with orbital track when all I really want is to see the Crossings
or Events (and to triangulate them) all of which I now have to do

by peering and counting.””

But peer and count he did, and in the
spring of that year he made an astounding discovery. QSOs
were not only beautiful and intriguing curves, but when you
connected the “Crossings or Events” you got known geometric

figures. The first of these was a tetrahedron.

' See p. 78.
21991 Jun 7. Letter from Michael Burke to the author.

Angular velncity of the disc, u (radians per second1? 1,5 !
Angular velority of the pnoirt around the disc. v? |
Kaximum t7 12.57

Increment for t? @1 I3
Titference in t between mucressive markers? 1 [ ]

oo gl di2
y

Fig. 10-1
The first QSO tetrahedron

Here reproduced from the original printout is what Burke
saw when he graphed “QSO 1.5:1.” Burke’s handwritten
annotation affirms that this is “Ratio 3:2.” Although he got the



159

Monopole Polygons & Polyhedra

direction of the rotations wrong for part of the curve,
nevertheless he definitely recognized the tetrahedron. He wrote
“Tetrahedral form” in the upper left quadrant of the paper and
sketched a tetra in the upper right. Years later I asked him,
“Were you looking for a tetra?” He replied, “No, this was pure
luck. It was a Eureka moment. I said, ‘By God, we’ve got
something going on here!”” But for our purposes now the

QSO (3:2) tetrahedron is not a good place to start. Instead we
will begin the study of QSO geometric figures along the edges of
the QSO landscape.

(6:1)
(5:1)
(4:1)
3:1

T (2:1)
a [(1:1)
(a:b)

(6:2)
(5:2)
(4:2)
(3:2)
(2:2)
(1:2)

(6:3)
(5:3)
(4:3)
(3:3)
(2:3)
(1:3)

(6:4)
(5:4)
(4:4)
(3:4)
(2:4)
(1:4)

(6:5)
(5:5)
(4:5)
(3:5)
(2:5)
(1:5)

(6:6)
(5:6)
(4:6)
(3:6)
(2:6)
(1:6)

b —»

Table 10-1
The QSO landscape

2004 Jan 16 & 19 Interview of Michael Burke by the author.

The QSO landscape consists of all possible combinations of
the QSO ratio (positive integers only!) beginning with QSO (1:1)
in the lower left corner. Variable a increases as you move from
bottom to top. Variable b increases as you move from left to
right. Table 10-1 shows only the first 36 ratios. A variant of
this landscape was seen in table 5-2 and figure 5-2. The (a:1)
series refers to those QSOs in the first column on the left, QSOs
(1:1), (2:1), (3:1), etc., where a is changing, but b is held
constantat b = 1. By placing a “1” in front of the ratio, we limit
the curves — for the time being — to monopoles.

The 1(a:1) Series

We saw at the end of chapter 3 that the events of the dipole
(3:1) lie on an ellipse when viewed from 45° between the x- and
y-axes. In that case the projections of the events onto the flat
page were connected with a smooth curve. We look now at the
monopole (3:1) where we will connect the actual events in space
with straight lines.
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Isometric view View from the x-axis
Fig. 10-2
QSO 1(3:1)

Connecting the three events of QSO 1(3:1) gives a triangle in
the yz-plane. One vertex is at (0, —1, 0), while the other two are
at (0, cos 60°, £sin 60°). Compared to the radius of the unit

sphere, the sides of the triangle are each 1.73205..., or \/?
units long.

Although the vertices are located at the events of the QSO, it
is evident from the side view that two of the three event-vertices
do not coincide with the wave crests of the projection of the
curve in the yz—plane. The first six QSOs of the 1(a:1) series are
shown next with their inscribed polygons.

- # s g t - N
., . .
~ -~ D
\\\ ) ».,v_-"_‘.f
\
\ e _,,/
) £ s
| 7 &
/ ( R
1(1:1) 12:1) 1(3:1)
S ey S
/’f-;-_ .’Z»AF . ¢ ; .4'-—‘— ¥ { '\!’,‘*'-Ib\ i &
|‘ - ( N \ . \ ‘1 .'ﬁ- M ‘\, by
% Y, '.‘ LW v \J {)ﬁ ,M;' ‘.‘)\ N L
LR S o'ty AN e \ - )
. ,l' “ g o 1‘}-\. ;y T1 - l\" ‘ % ‘.Jt
T 3/ { Y B ¥ 'v-»‘-'\\é
f . SR BT g
/P". vm“
" 1 N s ‘
. |/ \ N T T
“ll .'; ' f

T(4:1)

Fig. 10-3
The first six 1(a:1) QSOs and their inscribed polygons
Isometric (above) From the x-axis (below)
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The first six QSO polygons of the 1(a:1) series reveal the
classic point-line-plane progression. The “polygon” formed by
QSO 1(1:1) is merely the point at the event. QSO 1(2:1) has two
events. Connecting them gives a line segment which passes
through the center of the system. It is thus a diameter. QSO
1(3:1) and all ensuing QSOs have three or more events disposed
equally around a single great circle in the yz-plane. Given that
the QSO ratio is (a:b), each curve of the form 1(a:1) generates
a events. When these are connected, they form regular
polygons having a sides.

Chord Lengths

The chord lengths of a polygon are calculated in a
straightforward manner. If C represents the central angle
subtended by a chord, then the general expression for the length
d of any chord of a unit circle is

d= 2sin£
2

Eqn. 10-1
Chord length d

In the QSO 1(6:1) hexagon there are six short chords around
the circumference of the hexagon. These subtend central angles
of 60° each. There are six intermediate chords that span two of
the short chords and subtend 120°, and three diameters that span
three circumferential chords and subtend 180°.

|
)

(A_v
!

-}
-
4

e
*

=60" C=120° C=180°

Fig. 10-4a
The three unique chords of the 1(6:1) hexagon
and their central angles

Fig. 10-4b
The 15 chords of the 1(6:1) hexagon
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Calculating,

Short chords:

Diameters:

d = 1.00000... (= )
Intermediate chords: d =1.73205... (= A3 )
d =2.00000... (= /4)

In this way all the chords of the first six 1(a:1) polygons

may be found.

Number of chords & their
QSO Polygon lengths (d)
1(1:1) Point 0 @ 0.00000... (= 40)
1(2:1) Line 1 @ 2.00000... (= 1[4)
1(3:1) Triangle 3@ 1.73205... (= A3)
1) Square 4@ 1.41421... (= \R)
2 @ 2.00000... (= [4)
. 5@ 1.17557... (2 sin 36°)
1G:1) | Pentagon 5@ 1.90211... (2 sin 72°)
6 @ 1.00000... (= A1)
1(6:1) Hexagon 6 @ 1.73205... (= A3)
3 @ 2.00000... (= 1[4)
Table 10-2

The first six 1(a:1) QSO polygons and their chords

In table 10-2 most of the chord lengths can be expressed as
second roots. These are just the sides of the respective polygon.
The two that don’t fit, the sides and diagonals of the pentagon,
have no simple second root representation.

Tipping Angle

In figure 10-3 the x-axis is perpendicular to the page. It
sticks directly out at the reader. In these illustrations the
polygons are all rotated around the x-axis, resulting in figures
that seem to be tipped from their vertical positions. The polygon
1(4:1) provides the example.

The QSO 1(4:1) square rotated around the x-axis

In the QSO ratio (a:b), variable a controls the number of
edges of the polygon. Thus, the QSO 1(4:1) polygon has four
edges which are equally disposed around a great circle in the
yz—plane. This makes the figure a square. Variable a also
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controls rotation of the QSO around the z-axis. In chapter 2 we

called this the O-rotation. Likewise, variable b controls rotation

from the z-axis, or what we called the ¢-rotation in

chapter two.* It may be a little surprising then, to find that a,
not b, controls the rotation of the QSO polygons around the

x—axis. In general, the expression 90% gives the number of

degrees from (0, 0, 1) to the first event of the QSO. This in turn
marks the location of a vertex of the polyhedron.

The inverse relationship between a and the angle of rotation
results in diminishing angles as a increases. If the series
I(1:1) ... 1(6:1) is read backwards, even the “polygon” of QSO
1(1:1), which is only a single point, fits the progression.

Variable 90°
a Va
6 15°
5 18°
4 22.5°
3 30°
2 45°
1 90°
Table 10-3

The tipping angles for QSO polygons 1(6:1) through 1(1:1)

* See Fig. 2-1, Eqn. 2-4.

The 1(1:b) Series

If the monopole (a:1) series of QSOs generates polygons in
the yz-plane, one might expect the 1(1:b) series to do something
similar.

QSO 1(1:3)

From the z-axis

Isometric

The 1(1:3), which from the z-axis is identical to the trifolium
of chapter 7, generates a triangle in the xy-plane.” Furthermore,
when the two polar events are taken into account, there is a
chord along the z-axis from z = —1 to z = 1. Connecting the two
polar and three planar events yields a hexahedron, or two face-
bonded tetrahedra.® We have moved into the third dimension.

* See p. 129.

® In his amazingly detailed and apparently endless reviews of the basic
polygons, Buckminster Fuller made practically no reference at all to the face-
bonded pair of tetrahedra which seems to fall between the tetrahedron and the
octahedron. One wonders why it was of so little interest. Didn’t it fit?
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The first six QSOs of the 1(1:b) series and their inscribed
polyhedra illustrate the similarities and the differences between
these and the monopole (a:1) curves. For instance, all of the
1(1:b) polyhedra show the chord along the z-axis, while none of
the former curves have this feature. The 1(1:b) polyhedra
develop polygons in the xy-plane, whereas the 1(a:1) series has

r N A~ - them in the yz-plane.
' ‘ | \ _ N Q‘t‘.": q '._3’ However the most striking difference between the two series
Sa e’ I T W S '—x,—- °/»  isprobably that the 1(1:b) curves generate polyhedra only when

[ - ' ™ | {1 7 b is odd, whereas in the former series every curve generates a
e R tw)’ polygon. Translucent unit spheres added to the views of the

1(1:6) help show why this curve and its even numbered cousins

generate only the polar diameter. There are simply no equatorial

events, a fact that becomes increasingly difficult to appreciate as

b increases.

Chord Lengths

The lengths of the chords of the 1(1:b) polyhedra can be
calculated in the same way as those of the 1(a:1) series. A
tabulation of the results shows that many of the chords are
identical to those previously calculated.

1(1:6)

"1(1:4).;

Fig. 10-7
The first six 1(1:b) QSOs and their inscribed polyhedra
Isometric (above) From the z-axis (below)
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Number of chords & their
Pol
QS0 oveon lengths (d)
1(1:1) | Point 0 @ 0.00000... (= 0)
1(1:2) | Line 1 @ 2.00000... (=4/4)
Hexahedron 6@ 1.41421... (= \R)
1(1:3) | (2 face-bonded 3@ 1.73205... (= \3)
tetrahedra) 1 @ 2.00000... (= \[%)
1(1:4) | Line 1 @ 2.00000... (= 4[4)
Decahed 10 @ 1.41421... (= \R)
11:s) ;fca : r;”:i 5@ 1.17557... (2 sin 36°)
' (2 face-bonde 5@ 1.90211... (2 sin 72°)
hexahedra)
1 @ 2.00000... (= [4)
1(1:6) | Line 1 @ 2.00000... (= 1[4)
Table 10-4

The first six 1(1:b) QSO polygons and their chords

Table 10-4 reveals that the chords in the xy-plane, if they
exist, are identical to the corresponding chords of the 1(a:1)

series in the yz-plane. New in the 1(1:b) series are the diameters

along the z-axis and the chords in the positive and negative

z-hemispheres. A number of second roots are again apparent,
but any relationship between these and the elements of the QSOs
remains undiscovered.

Reversal of Orientation

The 1(1:b) polyhedra and polygons do not show rotation
around any axis as do the 1(a:1) polygons. Instead, there is a
periodic reversal of the orientation of the polyhedron with
respect to the y-axis. The event of QSO 1(1:1)isaty =1. For
the 1(1:3) polygon, there is an event at y = —1. For 1(1:5), it’s
back toy = 1 again. Every other odd b results in a polyhedron
with an event the other end of the y-axis.

Loftus QSOs: The L-1(a:1) Series

All of the QSOs and their inscribed polygons and polyhedra
seen thus far have been generated with equation 2-8a.

X (sinbgt) ( cosagt)

y| = | (sinbgt) ( sinagt)
cos bgt

Eqn. 2-8a
The QSO equation in Cartesian notation
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However, in chapter 2 it was pointed out that there are at
least 763 variations of this equation. The original QSO equation
by Loftus combines two of these.

X (cost) (cost)
y| = | (sint) (cost)
(sint)
Eqn. 6-1

The original QSO equation

Like equation 2-8b, Loftus’ equation exchanges the x- and
y—axes. It also exchanges the sine and cosine functions, as in
equation 2-8h. The resulting QSOs and their inscribed figures
are statically and dynamically quite different from those
generated with equation 2-8a. For one thing, QSOs generated
with equation 2-8a begin at (0, 0, 1), whereas those generated
with Loftus’ equation begin at (1, 0, 0). To keep things simple,
we will look here only at the static curves at 100% of a cycle.*
To distinguish Loftus’ curves from those generated by equation
2-8a, we will place an upper case “L” for “Loftus” in front of the
QSO ratio, e.g. QSO L-1(a:b). We begin with QSO L-1(3:1).

7 See p. 87.
* For equation 2-8a, t: 0 ... 1. However, for Loftus’ equation to display a
complete curve on Graphing Calculator, the range of # must be defined as
t:0... 2m
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Fig. 10-8
QSO L-1(3:1)
Isometric From the y-axis

The L-1(3:1) has three events. One event is at (1, 0, 0),
while the other two are at (—cos 60°, 0, £sin 60°). Connecting
these events gives a triangle in the xz-plane. This is in contrast
to the QSO 1(3:1) of figure 10-2 which had the triangle in the
yz—plane. The sides of the triangle are again 1.73205... each, or
\E units long relative to the radius of the unit sphere. The first

six QSOs of the L-1(a:1) series are shown next with their
inscribed polygons.
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1 : On first impression, the L-1(a:1) polygons seem to be flip-
: p " flopping between planes. The single event of QSO L-1(1:1) is in
| p (A7 e |,/ the xz-plane. QSO L-1(2:1) draws a diameter in the yz-plane,
."’».; ’ ol A ~ and for the L-1(3:1), it’s back to the xz-plane again. Looking
' o T rf' o more closely, the reason for this behavior becomes apparent.
— S The northernmost loop that connects the z-axis with the event
/’/ ) ‘_,.r;;".:-"' nearest to (0, 0, 1) tells the story. For the QSO L-1(1:1), the
' / loop “points” toward +x. It points toward +y in the L-1(2:1),
’ I but in the L-1(3:1), the loop points toward —x. The loop of
N\ ¢ \\‘\r-_\ L—-1(4:1) points toward —y, and so on. The L-QSOs are actually
" e - precessing around the z-axis. One may speculate that irrational
L-1(1:1) L-1(2:1) L-1(3:1) or fractional L-QSOs exist between the vertical planes, but are

(-\ LL2 A3 ; not observable. The rational L-QSOs may then become apparent
\f i‘.‘ _\\ ' v ~ ‘ ',u';'fq‘f 4 L \ only as the precession passes through increments of 90°. It’s
4 i ‘*L _ ' L~ /o T | L7 :.:;l “.‘x _..:-{ : ;lr interesting to observe that even while the L-QSOs are pirouetting
' I“ N ~'~.‘ '“"{.g" “ .,_r_-‘ff'. ":' t A % )'", ,’,L}"‘}v X around the z-axis, the chord lengths and the angle of rotation
N N i SN, from the z-axis to the first event, what we called the tipping
: > { - = angle above, retain the same values they had in the previous
f*.-;-\ ‘N\..\ .Cl"*" : I(a:1) series.
p— .c : f ,L.._*‘“ ,'.‘-r’.' Loftus QSOs: The L-1(1:b) Series
: ..,,, {/) "'Je-"' o Like the monopole (1:b) series of QSOs based on equation
L-1(4: 15 L-1(5:1) L-1(6:1) 2-8a, the Loftus 1(1:b) QSOs generate polyhedra with a regular
polygon in the xy-plane. They also alternate between polyhedra
Fig. 10-9 and a single chord along the z-axis. The exploration of L-1(1:b)
The first six L-1(a:1) QSOs and their inscribed polyhedra polyhedra begins with the L-1(1:3).

Isometric (above) From the y- or x-axis (below)
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Fig. 10-10
QSOL-1(1:3)
Isometric From +z

The L-1(1:3) polyhedron looks very much like the variant
generated with equation 2-8a. Two face-bonded tetrahedra
occur in the positive and negative hemispheres of the z-axis with
a vertical diameter between their apexes. The difference here is
the orientation of the polyhedron around the z-axis. The former
1(1:3) hexahedron had a vertex at (0, —1, 0), whereas this time
it’s at (1, 0, 0). The polyhedron seems to have been rotated
either 30° clockwise or 90° counterclockwise around the z-axis.
The first six QSOs of the form L-1(1:b) show the same puzzling
rotation around the z-axis suggested by the L-1(1:3). To
emphasize the fact that the L-QSOs generate only the vertical
diameter when b is even, a translucent gray unit sphere has been
added to the views of the Loftus monopole (1:6).

Aa, T \
. ~ - AN
v Vs Vs N, N J \
‘\ 3 . 'Y
P " o ) N " !
W - - y . 3 7
. . \ 't & ,"
7 ) \ \ s
. « ¥ ca s
L) -yt

L-1(1:4) L-1(1:5) L-1(1:6)

Fig. 10-11
The first six L-1(1:b) QSOs and their inscribed polyhedra
Isometric (above) From the z-axis (below)
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Compared to the 1(1:b) series, the L-1(1:1) has been rotated
either 90° clockwise or 270° counterclockwise. The L—-1(1:2)
has been rotated 45° one way or the other, and the L—1(1:3), as
we said, shows either a 30° clockwise or a 90° counterclockwise
rotation. Applying Ockham’s Razor’ we choose the simpler of
the two explanations. Looking at only the clockwise rotations,
the L-1(1:1) rotates 90°, the L-1(1:2) rotates 45°, the L-1(1:3)
rotates 30° and so on. The angles of rotation are similar to the
tipping angles listed in table 10-3, and are calculated the same
way, as are the chord lengths. We leave these diversions for the
reader.

a-gons & b-gons

The 1(a:1) polygons all occur in the yz-plane. Ignoring for
the moment the chords along the z-axis and their related
triangular faces, the 1(1:b) polygons occur in the xy-plane.
Loftus’ L-1(1:b) series follows suit, while the precessing
polygons from his L-1(a:1) series appear in the xz- or yz-planes
and nowhere else.

° Entia non sunt multiplicanda praeter necessitatem. (Entities should not be
multiplied beyond necessity.) Attributed to William of Ockham, English
philosopher of the early 14th century. Often called the Law of Parsimony,
in modern English it might come out as the KISS principle: “Keep it
simple, Simon!”

I(a:1) [ 1(1:b)

Eqn. 4

251;31 yz -
Z-axis

XZ Xy

Loftus or +
yz Z-axis
Table 10-5

Planes of monopole (a:1) and monopole (1:b) polygons

QSOs along the edges of the QSO landscape seem to create
polygons in a single plane. To test whether this observation is
generally applicable, we need to go inland. We begin with QSO
1(1:5) and its attendant pentagon.
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Fig. 10-12
QSO 1(1:5) and its attendant pentagon'

' To emphasize the chords inside the QSO, the colors for the QSO and the
chords have been reversed. The opaque form of the standard unit sphere is
employed with the difference that the front hemisphere, i.e. that part of the
sphere toward the reader, has been removed. The QSO trace is retained as a
reference, but it’s not the focus of attention it was previously. The point-

of-view remains unchanged.
BS

Current display and
point-of-view

Previous display and
point-of-view

QSO 1(1:5) is shown in figure 10-12. In order to focus on
the pentagon, the chords connecting events in the xy-plane with
the polar events have been deleted, as have the interior chords of
the pentagon itself. Missing also is the chord along the +z-axis.
Given that the QSO ratio is (a:b), there are a “b-gons,” or one
5—gon, created by the QSO. The QSO ratio predicts the number
and kind of figures to be found within the curve. The 5-gon lies
in the xy-plane. Its edges are 1.17557... with respect to the unit
radius, and there is a vertex at (0, 1, 0)

Fig. 10-13
The two 5-gons of QSO 1(2:5)"

QSO 1(2:5) offers two 5-gons. They lie in planes parallel to
the xy-plane and at a distance of +sin 45° from it.

(0 =90°7a=45". Then 90° — 45° = 45° measured from the

"' To better show the figures in the QSO, the coordinate system has been
rotated slightly from the isometric view.
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xy-plane.) The edges of both 5-gons are 0.831254... w.r.t. the

unit radius. Although they appear to be 180° out of phase, a

rotation of 72°/2 = 36° around the z-axis by either of them would

bring them into alignment.

Fig. 10-14
The three 5-gons of QSO 1(3:5)

QSO 1(3:5) has three 5-gons. The larger of these lies in the
xy-plane. It is identical to the 1(1:5) pentagon, and appears to
be 180° out of phase with it. Where the 1(1:5) pent has a vertex

at (0, 1, 0), the large pent of the 1(3:5) has a vertex at (0, —1, 0).

However, a rotation of 36" around the z-axis would make it
congruent with the former polygon. The two smaller 5-gons lie
in planes parallel to the xy-plane and +sin 60° from it.

(b =90°7/a=30". Then, 90° — 30" = 60° measured from the

xy-plane.) Their sides are 0.587785... w.r.t. the unit radius.
They are in phase with each other, and 36° out of phase with the

large 5-gon.

Fig. 10-15
The four 5-gons of QSO 1(4:5)

QSO 1(4:5) has four 5-gons. The two large 5-gons lie in
planes parallel to the xy-plane and +sin 22.5° from it.

(9 =3(90°/a) = 67.5°. Then, 90° — 67.5° = 22.5° from the
xy-plane.) They are 36° out of phase, and their edges are

1.08608... w.r.t. the unit radius. The two smaller 5-gons lie in
planes parallel to the xy-plane and at a distance of sin 67.5°

fromit. (¢ =90°/a=22.5°. Then 90° —22.5° = 67.5° from the

xy-plane.) The edges of the smaller 5-gons are 0.449871...
w.r.t. the unit radius. They are 36° out of phase w.r.t. each
other and also w.r.t. the nearest large 5-gon.

In each case the ratio (a:b) predicts the polygons within the
QSO. Variable a determines how many n-gons there will be
while variable b specifies the number of edges they will have. In
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the examples, all of the 5-gons occur either in the xy-plane or in
planes parallel to it, decreasing in size as they near the poles.
Each is out of phase with its nearest neighbor, but in phase with
its next nearest, if any. Put another way, the phase angles of the
pentagons oscillate by 36° along the z-axis.

Fig. 10-16
QSO 1(5:5)

With QSO 1(5:5), the prediction formula seems to fail.
There is only the single event at (0, 1, 0), identified here by a
small red sphere. No pentagons are visible, and certainly not the
five pentas predicted by the ratio. The difficulty can be partially
resolved by remembering the definition of an event from chapter
four. An event is created when the rotating point passes a
minimum of two times through at least one location on the unit
sphere. This definition implies that two or more passes through
the same point create only a single event. If instead we count

each pair of passes as an event, then the 1(5:5) creates, not a
single 10-pass event, but 5 two-pass events per cycle. Next,
when ais odd the 1(a:5) QSOs all have a 5-gon in the xy-plane.
Thus the five events of the 1(5:5) can be seen as a pentagon that
has collapsed into the point at (0, 1, 0). This analysis still leaves
four 5-gons unaccounted for.

Fig. 10-17
The five 4-gons of QSO 1(4:5)

Having climbed up the QSO ratio from 1(1:5) to 1(5:5), let’s
now turn around and climb back down. Figure 10-17 shows
QSO 1(4:5) again. Recently we saw that this QSO creates four
5-gons, a fact predicted by the QSO ratio read left to right.

Here, reading the ratio in reverse, i.e. right to left, we see that it
also predicts five 4-gons in the same QSO. Each of the 4-gons

is a square with sides of 1.41421... w.r.t. the unit radius. The

squares lie in vertical planes which are disposed around the
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z—axis every 72° of arc. The angles at which the 4—gons are
tipped from the vertical are calculated as above.

90°/a =22.5°

Previously, we called the pentagons of the 1(a:5) series
“b—gons,” after the variable that determines the number of
edges. The present figures, and all figures similarly predicted
by the QSO ratio read in reverse, are “a—gons” because the
rotation variable a determines how many edges each will have.

Fig. 10-18
The five 3-gons of QSO 1(3:5)

The five 3-gons of QSO 1(3:5) are equilateral triangles. Like
the five 4-gons of the 1(4:5), the five 3-gons are in vertical
planes arrayed around the z-axis every 72°. The tipping angles
are all 30° and the edges are uniformly 1.73205... w.r.t. the unit

radius. One edge of each triangle is vertical; the opposite vertex
is on the equator.

Fig. 10-19
The five 2-gons of QSO 1(2:5)

Reading the QSO ratio right to left, there should be five
2—gons in QSO 1(2:5). Although the concept of a “2-gon,” a
two-sided polygon, is unfamiliar, it’s not unreasonable.

Perhaps the math is telling us to count, not sides or edges, but
vertices. In that case a 2-gon consists of two vertices with a
single relationship between them. That is, a 2-gon is two QSO
events connected by a single chord. There are five such objects
in the present QSO. They are diameters, each of which connects
a non-polar event in the northern hemisphere with its diametrical
opposite event in the southern hemisphere.
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Fig. 10-20
The five 1-gons of QSO 1(1:5) Fig. 10-21
The five 1-gons of QSO 1(5:1)

By the revised definition of a polygon developed for the

1(5:5), the five 1-gons of QSO 1(1:5) are the five events in the The QSO ratio read left to right predicts five 1-gons in QSO
xy-plane, here identified by five small red spheres. They are 1(5:1). These consist of the five events of the QSO, taken
counted, not as a single group of five, which would yield one individually. They are in the yz-plane and occur every 72°
5—gon, but as five individual points — five 1-gons. around the x-axis. In the figure the five 1-gons are marked by
small red spheres. There are no events at the poles, and the
The z-axis z—axis is not needed to satisfy the prediction formula.

The 1(a:5) QSOs all form polar events. Yet none of these
events has figured in the polygons just discussed. The question
becomes, is the z-axis ever needed in constructing a—gons or
b—gons? Previously we began with QSO 1(1:5). To investigate
the involvement of the z-axis in a- and b-gons, we begin with
the inverse of QSO 1(1:5), which is to say, QSO 1(5:1). The
plan will be to work our way across the 1(5:b) row and back,
just as we’ve gone from 1(1:5) to 1(5:5) and back.
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Fig. 10-22a
Five 2-gons of QSO 1(5:2)

The five 2-gons of QSO 1(5:2) consist of four horizontal

lines connecting the non-polar events of the curve two at a time.
The z-axis, which connects the north and south polar events, is

needed to complete the total of five 2-gons. In figure 10-22a
there is one long chord and one short chord in each vertical
plane. The red chords are in the yz—plane; the blue ones are in
the xz—plane. The long chords are 1.90211... w.r.t. the unit
radius; the short ones are 1.17557.... We recognize the short
chords as the sides of inscribed pentagons, while the long
chords are diagonals.” The actual pentagons will appear
shortly. The long chords are +sin 18° from the xy-plane and
parallel to it. The short chords are +sin 54° from the xy-plane,
and also parallel to it. The chords in the southern hemisphere
are precessed 90° around the z-axis from their northern

2 See Tables 10-2 & 10-4.

counterparts. Finally, the yellow chord corresponds to the
diameter (d = 2.0000...) of the unit sphere along the +z-axis.

Fig. 10-22b

Five 2-gons of QSO 1(5:2)
Fig. 10-22¢

View from the x-axis

Fig. 10-22d
View from the y-axis

Alternately, four of the five 2-gons in the 1(5:2) can be
counted as the four diagonal lines which connect an event in the
northern hemisphere with one in the southern hemisphere. The
red and blue chords are in the same vertical planes as in
figure 10-22a. The red chords are in the yz-plane and the blue
chords are in the xz-plane. In contrast, here all four chords are
the same length, d = 1.90211..., which we again recognize as
the diagonal of a pentagon. As in figure 10-22a, the z-axis is
needed to complete the total of five b-gons. Figures 10-22¢ &
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10-22d show the x- and y-axis views of figure 10-22b. Many
other ways of connecting the events of QSO 1(5:2) with five
2—gons are possible. Some of these involve the z-axis and some
do not. These alternatives have not been explored.

Fig. 10-23
The five 3-gons of QSO 1(5:3)

Reading the QSO ratio forward, QSO 1(5:3) forms five
3—gons. The chord connecting the polar events is not needed.
The largest of the 3-gons is in the xy-plane with a vertex at
y =—1. Edges of the large 3-gon are 1.73205..., thus making
it identical to the 3-gon of QSO 1(1:3). The next largest 3-gons
are 120°/2 = 60° out of phase with the large one, but in phase
with each other. They’re in planes parallel to the xy-plane and
+sin 36° from it. Edges are 1.40125.... The small yellow
3—gons near the poles echo the orientation of the large red one
and of each other. They are in planes parallel to the xy-plane

and +sin 72° from it. The edges of the yellow 3-gons are
0.535233.... It’s worth noting that the five 3-gons of QSO
1(5:3) read forwards are not the same as those of the 1(3:5) read
in reverse. The 3-gons in the present example are in horizontal
planes whereas those of the former QSO are in vertical planes.
In general, the a- or b-gon of a given QSO is not identical to the
b- or a-gon of its inverse.

Fig. 10-24
The five 4-gons of QSO 1(5:4)

Four of the five 4-gons of the QSO are immediately
apparent. There are two large squares with sides of 1.34499...
at distances of +sin 18" from the xy-plane. They are out of
phase by 90°/2 = 45°. There are also two smaller 4-gons with
sides of 0.831254... at distances of +sin 54°. These too are out
of phase by 45° with each other and also with their nearest large
neighbor. This leaves the z-axis to complete the fifth 4-gon. By
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the revised definition of an event, there are four passes of the
rotating point at each of the poles which create two events at
each pole. Thus the z-axis connects four events, two atz = 1
and two atz = —1, making the 4-gon.

Fig. 10-26
The four 5-gons of QSO 1(5:4)

As advertised, we’ll now take a look at the 1(5:b) series

Fig. 10-25 reading the QSO ratio in reverse. The first of these is QSO
QSO 1(5:5) 1(5:4) which creates four 5-gons. They are arrayed around the
z-axis in vertical planes 45° apart. In the illustration, two red
The problem with QSO 1(5:5) is the same as before. There pentagons are in the xz- and yz-planes, and two blue ones are in
should be five 5-gons, but even with the revised definition of an  vertical planes rotated 45° from the orthogonal planes. The two
event, only one can be found. Where are the other four? A red 5-gons have vertices at z = 1, while the blue ones have

similar situation occurs in all of the equal ratio QSOs. One a- or vertices at z =—1. The sides of all four figures are 1.17557....
b-gon will be found, but not the multiples suggested by the QSO The z-axis is not needed.
ratio.
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Fig. 10-27
The three 5-gons of QSO 1(5:3)

The three 5-gons of QSO 1(5:3) are arrayed in vertical planes
every 120° around the z-axis. The red a-gon is in the yz-plane
with a vertex at y =—1. The yellow 5-gon is rotated —120°, and
the blue one is rotated +120° from the y-axis. The tipping angle

for all three is ¢ = 90°/a = 18°, while the edges are all 1.17557...

relative to the unit radius. Again the z-axis is not needed to
make any of the polygons.

Fig. 10-28
The two 5-gons of QSO 1(5:2)

The two 5-gons of QSO 1(5:2) occur in the xz- and
yz—planes. The red 5-gon in the yz-plane has a vertex at z = —1,
whereas the blue one in the xz-plane has a vertex atz = 1. The
sides of the pentagons are 1.17557..., as usual. Each 5-gon can
be seen as tipped from the pole opposite the pole with the vertex.

The tipping angle in both cases is ¢ =2(90°/a) = 36°. A chord

along the z-axis is not needed to make either 5—gon.
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Fig. 10-29
The single 5-gon of QSO 1(5:1)

The five events of QSO 1(5:1), when taken together, make a
single 5-gon in the yz-plane. The edges are 1.17557... w.r.t.
the unit radius, and it’s tipped at ¢ = 90°/a = 18" from the north
pole.

So far the 1(a:5) and the 1(5:b) QSOs have shown little
propensity to form n-gons with the z-axis. Only the 1(5:2) and
the 1(5:4) have such chords, and even that’s only when the QSO
ratio is read left to right. Fortunately, with a little patience this
dearth of data can be turned into a pattern.

Left to right N Y N Y N
The QSO ratio|| 5:1 52 53 | 54| 55
Right to left N N N N N
Left to right N N N N N
The QSO ratiof| 4:1 4:2 4:3 4:4 | 4:5
Right to left N N N N N
Left to right N Y N Y N
The QSO ratioff 3:1 3:2 33 3:4 | 3:5
Right to left N N N N N
Left to right N N N Y N
The QSO ratio| 2:1 222 | 23| 24| 25
Right to left N N N Y N
Left to right N Y N Y N
The QSO ratio|| 1:1 1:2 1:3 1:4 [ 1:5
Right to left N N N N N

Table 10-6
z-axis chords in the QSO landscape

The pattern of z-chord involvement in the polygons of the
first 25 QSOs is revealed in table 10-6. An upper case “N” for
“No” indicates that the z-chord is not present, whereas an upper
case “Y” for “Yes” indicates that it is. The table tabulates only
the presence or absence of a chord along the z-axis. No other
attributes of the curves are recorded. As noted above, even with
the revised definition of an event, the equal rate QSOs seem to be
missing some polygons. However, outside the central diagonal,
the pattern seems to be that the z-chord occurs only when the
QSO ratio is read left to right, a is odd and b is even. This is
deceptive, though. The 1(2:4) uses a z-chord coming and going,
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while the 1(4:2), does not need the z-chord at all. Curiously,
neither of these curves makes the full compliment of chords
predicted by the QSO ratio. The 1(2:4) read left to right makes
only one 4-gon, not the two predicted by the ratio. Similarly,
the 1(4:2) read left to right makes only two 2-gons, not the
anticipated four. Reading right to left, the 1(2:4) creates only
two of the four predicted 2-gons, while the 1(4:2) has only half
of its presumed compliment of two 4-gons. One wonders if the
landscape were extended whether this pattern would persist at
higher frequencies.

From a-gons and b-gons to Polyhedra

Although this chapter is entitled “Monopole Polygons &
Polyhedra,” we have seen precious few polyhedra. Burke’s
1(3:2) tetrahedron was mentioned on the first page. The 1(1:3)
hexahedron and the 1(1:5) decahedron appeared briefly in both
their incarnations, that of equation 2-8a and Loftus’ version, but
that’s about it. Intending no slight to the three dimensional
objects, we will next assemble the a-gons, b-gons, diagonals
and diameters to make a complete polyhedron. The example will
be QSO 1(3:4).

Fig. 10-30
QSO 1(3:4)

QSO 1(3:4), seen here slightly rotated from the isometric
view, has four non-polar events in the northern hemisphere and
four more in the southern. Each of these is a two-pass event,
i.e. they are created by two passes of the rotating point. The
events at the poles are created by four passes of the rotating
point. Thus there are two events at each pole. Statically, the
QSO appears to have 10 events; dynamically it has 12. The QSO
is displayed on a translucent unit sphere. The sphere has no
structural meaning. It’s only purpose is to help differentiate
front from back.
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Fig. 10-31
The QSO 1(3:4) polyhedron

One chord @ 2.00000... (= 1/4)

We begin with the longest chords of the polyhedron, those
between the poles. Statically, we connect the north pole and the
south pole with a single chord. However, dynamically we’re
connecting two events at the north pole with two more at the
south pole. There are six relationships between four points."
Thus there are at least two chords present, and, if one counts all
the possibilities, as many as six. There are four nonzero-length
chords between the north and south poles, a zero-length chord
between the two north polar events and another between the two
south polar ones. The nonzero chords are 2.00000... long with
respect to the unit radius.

" The tetrahedron and the square are the classic examples of four events with
six relationships between them.

Fig. 10-32
The QSO 1(3:4) polyhedron
Eight chords @ 1.88697...

The next longest chords are those that connect the non-polar
events in one hemisphere to those in the other. There are eight
such chords, shown above in white. They are 1.88697... long.
We do not try to connect a given event in either hemisphere to all
non-polar events in the opposite hemisphere. To do so would
require chords that differ in length from those illustrated. The
small graphic keeps a running account of the chords as we build
the polyhedron.
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Fig. 10-33
The QSO 1(3:4) polyhedron

Twelve chords @ 1.73205... (= [3)

The next chords are those of the four 3-gons predicted by the
QSO ratio read right to left. There are four equilateral triangles
in vertical planes 45° apart. The two in the xz- and yz-planes
have a vertex at z = 1. Those in planes rotated 45° from the xz-
and yz-planes have a vertex at z =—1. These chords are all
1.73205... w.r.t. the unit radius.

Fig. 10-34
The QSO 1(3:4) polyhedron

Eight chords @ 1.22474... (= A.5)

The QSO ratio read left to right predicts three 4-gons. Two
of these are shown above, with edges of 1.22474.... The edges
of the 4-gon in the northern hemisphere are parallel to the x- and
y-axes. The diagonals of the one in the southern hemisphere are
similarly parallel to the x- and y-coordinate axes. Both 4-gons
are in planes parallel to the xy-plane and +sin 30° from it. The
third 4-gon is the collapsed polygon along the +z—axis."

" The polygon along the z-axis can be seen as the result of the collapse of a

square.
!

{

/\
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Fig. 10-35 Fig. 10-36

The QSO 1(3:4) polyhedron The QSO 1(3:4) polyhedron
Eight chords @ 1.19972... Eight chords @ 1.00000... (= )

The next to shortest chords are those that connect a non-
polar event in one hemisphere with its two nearest neighbors in
the opposite hemisphere. These eight chords are 1.19972...
long. They form a jagged ring around the equator of the QSO.
The small graphic shows an increasingly complex figure.

The shortest chords in the 1(3:4) polyhedron are those that
connect the two polar events in a given hemisphere with the four
non-polar events in the same hemisphere. These are 1.00000...
long.



184

QSO - The Mathematics and Physics of Quasi-Spherical Orbits

Fig. 10-37
The QSO 1(3:4) polyhedron

66 (45) chords The 16-hedron

Figure 10-37 on the left shows the complete QSO 1(3:4)
polyhedron against a backdrop of the concave opaque unit
hemisphere. Sixty-six chords are needed to connect its 12
events. However, only ten of these events are distinguishable to
the eye, so it appears as if there are only 45 chords in the sketch.
The reader is invited to figure out which chords are doubled
and/or quadrupled to account for the 21 chord difference.

In figure 10-37 on the right the three sets of the longest
chords have been deleted, as well as the QSO trace and the
background hemisphere. This leaves only the surface chords.
The polyhedron looks like a fairly ordinary 16-hedron. The
opaque sphere (r = 0.6) helps give depth to the figure.

The conventional approach to a polyhedron typically sees
only the surface chords as depicted on the right. In chapter one

we learned that we need to pay attention to all views of a QSO.
Looking at them from only one point-of-view gives incomplete
information and leads to misunderstanding. Here the lesson is to
pay attention to all the chords of QSO polyhedra. Otherwise we
again have incomplete information and may seriously
underestimate the complexity of the objects.



Chapter 11

The Platonic Solids

The Platonic solids are the five-and-only-five regular convex  icosahedron and dodecahedron. When the polyhedra all have

polyhedra with congruent faces, edges and angles. Although equal edges, as they do in Fig. 11-1, their volumes range from
evidence suggests that at least some of them have been known the tetrahedron, which has the smallest volume, to the

since prehistoric times, they figure prominently in the dodecahedron, which has the greatest. We began the last chapter
philosophy of Plato after whom they are named. with Burke’s discovery that QSO 1(3:2) generates a tetrahedron

when the events of the QSO are connected by straight lines. It’s
time to revisit that discovery.

The QSO 1(3:2) Tetrahedron

>

Fig. 11-1
The Platonic solids'
Fig. 11-2a
Reading counterclockwise from lower left, figure 11-1 QSO 1(3:2) and its inscribed tetrahedron

shows the tetrahedron, octahedron, hexahedron or cube,

' Photograph © David S. Gunderson, 2003. Used with permission.
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Ignoring for the moment the events at +z, when each of the
four non-polar events is connected to the other three they
generate a tetrahedron. The first thing we notice about the QSO
tetrahedron is its orientation. Although the Platonic solids are
often depicted as sitting on a face as in figure 11-1, the QSO
tetra has an edge-zenith orientation.”

Fig. 11-2b
QSO 1(3:2) and its inscribed tetrahedron (red)
compared to a regular tetrahedron (white)

Isometric view View from the x-axis

What may not be so obvious is that the QSO tetrahedron is
polarized. The two horizontal edges are 1.73205... with respect
to the radius of the unit sphere,’ while the other four are
1.58114.... Thus, the QSO polyhedron is not the Platonic
solid, but a polarized analog of that figure. The QSO

* This chapter continues the practice of displaying the chords connecting the
events of the QSO inside a hollow unit radius hemisphere.
* See also Figs. 10-3 & 10-9, and Tables 10-2 & 10-4.

polyhedron is an oblate tetrahedron. Its vertical dimension is
less than its equatorial diameter. By way of comparison, the
edges of the regular tetrahedron, when inscribed in the unit
sphere, are 1.63299... w.r.t. the unit radius.

Fig. 11-2¢
QSO 1(3:2) with the fully connected inscribed polyhedron

To complete the polyhedron, each event must be connected
to every other event. Since there are six total events, there are
fifteen total chords.* Put another way, each event must connect
to five others. This makes a fairly complex figure. In addition
to the original tetrahedron, there are two low altitude isosceles
triangles at the poles and two equilateral triangles, one in the
xz—plane and one in the yz—plane. Last, there is a chord along

the z—axis connecting north and south poles. The QSO 1(3:2)
* The number of unique chords 7n needed to connect n events is

T =n(n-l)

See also Fig. 10-4b and Table 10-2.
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tetrahedron is shown above in red with the additional chords to The QSO 1(2:3) Octahedron
and from the polar events in yellow. Structurally and
conceptually there is no difference between the red and yellow
chords. They all represent a linear relationship between two
events. Color is used solely to distinguish the tetrahedron from
the chords added later. Chord lengths are tabulated in the
following table.

The QSO 1(3:2) polyhedron

4 @ 1.0000... (= A1)
4@ 1.58114... (= \R.5)

Fig. 11-3a
6 @ 1.73205... (= 43) QSO 1(2:3) and its inscribed octahedron

1 @2.0000... (= \/Z) The inverse of QSO 1(3:2) is QSO 1(2:3), which also
The regular tetrahedron generates an analog of a Platonic solid. Ignoring again the

3 events at +z, the three non-polar events in the northern

6 @ 1.63299... (= 1'—) hemisphere, when connected to the three non-polar events in the
3 ..

south, form an octahedron. This is not the octahedron that was

used to illustrate Bucky Fuller’s great circle railroad tracks of
Table 11-1

The chords of the QSO 1(3:2) polyhedron
compared to those of the regular tetrahedron

energy in the introduction, a topic to which we will return briefly
in the next chapter. The orientation is more conventional than
that of the QSO 1(3:2) tetrahedron. The QSO 1(2:3) octahedron
sits on a face with the opposite face toward the zenith.
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Fig. 11-3b
QSO 1(2:3) and its inscribed octahedron (red)
compared to a regular octahedron (white)

Isometric view View from the x-axis

Like the QSO 1(3:2) tetrahedron, the QSO 1(2:3) octahedron
is also polarized. Unlike the QSO tetrahedron, the QSO octa is
clearly taller and skinnier than its regular counterpart. It’s a
prolate octahedron with the vertical dimension greater than the
equatorial diameter. The six horizontal chords in the northern
and southern hemispheres are 1.22474... while the six chords
connecting them are 1.58114... compared to the unit radius.

Fig. 11-3¢
QSO 1(2:3) with the fully connected inscribed polyhedron

There are 28 total chords in the QSO 1(2:3) polyhedron.’
Connecting the polar events to the three non-polar events in their
own hemisphere adds two low-altitude tetrahedra at the north
and south poles. Connecting each polar event with the three
non-polar events in the opposite hemisphere yields two more
isosceles tetrahedra,’ and connecting each of the four northern
events with its southern counterpart creates four diameters. As
before, there is nothing structurally or conceptually different
about the red and yellow chords. They all connect two events.
Color is used solely to distinguish the octahedron from the

* See p. 186, footnote 4.

¢ The conventional meaning of “isosceles” is “having two equal legs.”
However, the notion of “two” is absent from iso- [equal, identical, similar],
as it is from skelos [leg]. Thus we may permit ourselves to identify a
tetrahedron having three isosceles triangles as faces as an “isosceles
tetrahedron.” Note that the two low-altitude tetrahedra at the north and south
poles are also isosceles tetras.
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chords added later. The chord lengths are tabulated next. The QSO 1(2:5) Icosahedron

For reasons which will become apparent in the next chapter,
The QSO 1(2:3) polyhed
cQ (2:3) polyhedron we will skip the cube for now and go directly to the icosahedron.

6 @ 0.765367... (=2 sin 22.5°)

6@ 1.22474... (= l.5)
6@ 1.58114... (= \R.5)

6 @ 1.84776... (= \/2+ \2)
4 @ 2.0000... (= 1/4)

The regular octahedron

12@ 1.41421... (= \R)

Table 11-2
The chords of the QSO 1(2:3) polyhedron
compared to those of the regular octahedron

Fig. 11-4a
QSO 1(2:5) and its inscribed icosahedron

An icosahedron is generated by QSO 1(2:5). The five
non—polar events in the northern hemisphere, when connected to
the north polar event, form a pentcap of the icosa. The same is
true of the five non-polar events in the southern hemisphere.
Connecting the five non-polar events in each hemisphere with
their opposite number completes the figure.
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Fig. 11-4b

QSO 1(2:5) and its inscribed icosahedron (red)

compared to a regular icosahedron (white)
[sometric view View from the x-axis

Again we see that a QSO polyhedron is polarized compared

to its regular counterpart. The QSO 1(2:5) icosahedron is clearly
prolate, perhaps even more so than the 1(2:3) octahedron. The
10 chords connecting the north and south poles with the five
nearest events in each hemisphere are 0.765367.... The 10
horizontal chords in each hemisphere are 0.831254... , and the
10 connecting the hemispheres are 1.4802... w.r.t. the unit
radius.

Fig. 11-4c
QSO 1(2:5) with the fully connected inscribed polyhedron

Like its regular counterpart, the QSO 1(2:5) icosahedron has
twenty faces, twelve vertices and thirty edges. However, the
twelve event-vertices imply a total chord count, not of thirty, but
of sixty-six chords necessary to complete the figure. Above
without further analysis is the fully connected 1(2:5)
polyhedron. The 66 chords of the fully connected polygon are
tabulated next.
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The QSO 1(2:5) polyhedron

10 @ 0.765367... (= 2 sin 22.5%)

10 @ 0.831254... (= (cos 45°)(2 sin 36°))

10 @ 1.3445...

10 @ 1.4802...

10 @ 1.81907... (= A3+ c0s72")

10 @ 1.84776... (= \2 + P )

6 @ 2.00000... (= 1/4)

The regular icosahedron

30 @ 1.05146... (=2 sin (0.5 tan™ 2))

Table 11-3
The chords of the QSO 1(2:5) polyhedron
compared to those of the regular icosahedron

In Pursuit of the Elusive Dodecahedron

6Dl 6] 6:3)] 63 6:5]6:6)

G:D 2?2 1(5:3)|(5:4)[ (5:5)| (5:6)

@)@ @3] @@ e

a:n| T lea|ea]as]ee

T an]ea| )| e @ (2:6)

« l[anlaolanlas|as|ae
(ab)| b —p

Table 11-4
The QSO landscape with the three QSO analogs to the
Platonic tetrahedron, octahedron and icosahedron

A polarized tetrahedron is created by QSO 1(3:2). Its
inverse, QSO 1(2:3), creates a polarized octahedron. It seems
reasonable then, to look for the dodecahedron, polarized or not,
in the inverse of QSO 1(2:5), which is to say QSO 1(5:2).

7 Inversion is a better tool to look for the dodecahedron than is the concept
of duals. The dual of the tetrahedron is the tetrahedron itself, which says
nothing about the octahedron. The dual of the octahedron is the cube, which
we haven’t found yet, and, while the dual of the icosahedron is the
dodecahedron, knowing that gives no indication of where to look for it.
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Fig. 11-5a
The Platonic dodecahedron

QSO 1(5:2) and its
inscribed polyhedron

On the left, the QSO 1(5:2) polyhedron. On the right, the
Platonic dodecahedron. The QSO polyhedron appears inside a
hollow unit hemisphere to remind us that it is the result of
connecting the events of a QSO curve. The Platonic solid is
shown in a more conventional setting with an opaque sphere
(r=0.6) inside the figure since there is (so far) no QSO that
creates it.

One thing is certain, and that is that the QSO polyhedron is
not the Platonic solid we sought. Undeterred, we count the
vertices, edges and faces of the present figure. There are eight
vertices, eighteen edges and twelve triangular faces. Amazingly,
it’s a dodecahedron, just not the Platonic dodeca. If the faces
were equilateral triangles, the figure would be the snub
disphenoid, one of the 92 Johnson solids. Specifically it would

be #J34.° Would it be fair to refer to the QSO polyhedron as the
“QSO0 snub disphenoid”? Or, following a suggestion in
chapter 7, perhaps “Burchester snub disphenoid” would
suffice.’

Fig. 11-5b
QSO 1(5:2) dodecahedron (red)

compared to the snub disphenoid (white)
[sometric view View from the x-axis

Here again we find that a QSO polyhedron is the polarized
analog of a known geometric figure. There are six chords at
1.17557... , eight at 1.22474..., and four at 1.4802... compared
to the unit radius. Like the 1(3:2) tetrahedron, the QSO 1(5:2) is
an oblate figure. One wonders if all of the QSO polyhedra
where a > b are in fact oblate when compared to their regular

¥ Thanks to Drs. Rachel Hastings and Rob Knapp of The Evergreen State
College, Olympia, WA, for the identification of the Johnson solid. See
<http://en.wikipedia.org/wiki/Snub_disphenoid> for more information.

’ See p. 116.
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counterparts. The corollary would be that polyhedra generated

by QSOs where b > a might all be prolate.

Fig. 11-5¢
QSO 1(5:2) with the fully connected inscribed polyhedron

Although the fully connected 1(5:2) polyhedron has only 45
chords compared to the QSO 1(2:5) icosahedron’s 66, it’s an

unfamiliar figure and hard to grasp visually. There are multiple
surface and interior chords which seem to go every which way
without order or sequence. Only the QSO trace hints at the
underlying regularity. In figure 11-5c the QSO 1(5:2)
polyhedron appears in red; additional chords are yellow. Table

11-5 tabulates the chords.

We began this section with the intention of finding the
Platonic dodecahedron. Although we did find a dodecahedron,
the QSO figure is not the classical dodecahedron of Plato’s

The QSO 1(5:2) polyhedron

4 @ 0.618034... (The Golden Mean — 1)

10 @ 1.17557... (2 sin 36°)

8 @ 1.22474... (= \1.5)

4 @ 1.4802...

4 @ 1.61803... (The Golden Mean)

4@ 1.81907... (= A[3+cos72")

10 @ 1.90211.... (= 2 sin 72°)

1 @ 2.0000... (= 1[4)

The snub disphenoid (Jg4)

18 @ 1.08...

Table 11-5

The chords of the QSO 1(5:2) polyhedron
compared to those of the snub disphenoid (Jg4)

grow by about 8%, a fact reflected in table 11-5.

Although the snub disphenoid is conventionally represented
with unit edges, when inscribed in the unit sphere the edges

philosophy. So far Plato’s dodeca eludes us. We will return to
the search in the next chapter. For now the reader is encouraged

to explore the polygons and polyhedra made by dipole, tripole,

and multipole QSOs, which are as interesting, as varied, and as
diverse as the monopole objects.



Chapter 12

Commencement

The American Heritage Dictionary of the English Language
(1970) says that the verb “commence” means to begin, start, or
come into existence. It derives from the Middle English word
commencen, which comes from Old French comencer.
Comencer in turn traces its origin to cominitiare (unattested) in
Vulgar Latin which is from Late Latin cominitiare, a word
composed of the intensifier com- and the root initiare, to begin
or initiate. This is appropriate. One of the main goals of this
book has been to initiate the study of Quasi-Spherical Orbits.

Janus

Janus was the Roman god of gates,

doorways, hallways, beginnings and endings.' Typically

' Public domain photograph of a Roman statue of Janus in the Vatican
Museum from <http://en.wikipedia.org/wiki/Janus_%28mythology%629>.

shown with two faces, he looks both forward and back.” In this
last chapter we will try to do likewise. We will look back at
what has been learned, and look forward to preview a little of
what may come.

5P |

“Chance favors the prepared mind.”
--Louis Pasteur (1822-1895)

“ Looking back, the genesis of Quasi-Spherical
Orbits perfectly illustrates Pasteur’s words. In 1960 Michael
Burke was unhappy. He read widely, especially in the sciences,
and he was dissatisfied with the generally accepted ways
mathematics and physics conceptualized and displayed dynamic
three-dimensional phenomena. The usual representation was —
and to a great extent still is — to draw a two-dimensional static
picture. That which could not be displayed statically and in two
dimensions was said to be conceivable only in abstract
mathematical terms. Such phenomena were said to be off-limits
to the mathematically uninitiated.

* The month of January is named after Janus, as are janitors, the custodians
of doorways and hallways. A good summary of Janus and his position in
the Roman pantheon is found at
<http://www.novareinna.com/festive/janus.html>.
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The phenomenon of spin was particularly troubling. Burke
asked what was spinning. The answer, he was told, was that —
at least at the atomic level — “spin” is just a word used to
describe a certain phenomenon. Nothing is really spinning at
all. Intuitively he thought there must be a better way.

Little came of this displeasure however, until Burke had a
conversation with a man who wanted to extract some of the
energy generated in a centrifuge and use it for propulsion. The
man and his ideas passed on into oblivion, but Burke was left
with the question, “What happens when you generate centrifugal
force on two axes simultaneously?” He proceeded to find out.
Using his son’s Meccano® set, he built a mechanism that rotated
a mass in the required way. It generated the first QSO (1:1).

Fig. 12-1
David Burke with Meccano® QSO generator, c. 1960

* Photograph © by Michael Burke, 1960. Used with permission.

After a long period of incubation and thoughtful waiting, the
story resumes in chapter 1 where we discovered that QSOs are a
subset of space curves, single dimensional lines that exist in
three-dimensional space. Two-dimensional QSOs were
mentioned briefly, and several limiting simplifications were
made. These included using only two spin axes and specifying
the angular relationship between them as 90°. QSOs were also
limited to a unit radius virtual sphere. QSO (1:1) was generated
with a unicycle metaphor. We learned that the dynamics of QSO
curves are often obscured by the static pictures. We also learned
to pay attention to more than one point-of-view.

S

Janus’ other face looks forward, to a time when
investigators may explore the effect of relaxing some of the
restrictions introduced in chapter 1. Spin axes may number
more than two, for instance, and the angular relationship
between them may vary. It would be interesting to find out if
varying the size of the sphere on which QSOs are traced has any
effect on their properties. One may wonder what relationships
would be revealed between QSOs generated on spheres of
different but related radii. What about concentric spheres?
Many phenomena depend on distance from a center. Do QSOs
behave likewise? We can also wonder what happens when the
virtual sphere isn’t a sphere Oblate and prolate QSOs, which are
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generated on ellipsoidal surfaces, were mentioned in chapter 1.
Variations on the theme abound.

Another area ripe for exploration is that of point-of-view.
With few exceptions, notably those in chapter 4, the points-of-
view in this book have been limited to views from the three
Cartesian axes and the isometric view. What QSOs look like
from other places is still relatively unknown. What may be
learned from these other points-of-view is yet to be discovered.

Then there is the question of 2- and 3-dimensional QSOs.
Two-dimensional QSOs were defined as the surfaces traced by
the radius of the rotating point, but little was made of that fact.
Three-dimensional QSOs haven’t even been defined, let alone
studied.

In physics QSO seeds a nice theory of virtual particles.
Since there appears to be a minimum Planck time, and a
minimum Planck length, we may speculate that there must be a
minimum level of perceptibility beyond which lies the virtual. If
virtual particles are unobservable, that may be because they have
but a single “spin,” whatever that means. The close passage or
impact of a similar entity might send one or both into a QSO.
By stretching its orbit and multiplying its velocity and
acceleration, the new particle would acquire mass and be
catapulted into the real, i.e. observable, universe. It is the
addition of a rotation or “sense of spin” that transforms the
virtual into the real. One may also speculate that, instead of a
close passage or impact, the two virtual particles merge.
Entwined somehow, they produce a particle with not one, but
two “spins” which would then be observable or “real.”

Chapter 2 described three coordinate systems in
Wthh QSOs may be generated and discussed their advantages
and drawbacks. It was pointed out that QSO equations based on
the spherical coordinate system were closely related to the
mechanics of the rotating point itself. This makes spherical
equations intuitively easier to use than equations based on other
coordinate systems. The advantage of the Cartesian coordinate
system is that of wide acceptance. Although less intuitive than
spherical coordinates, parametric vector equations in the
Cartesian system can be manipulated easily, translating and
rotating QSOs in ways the spherical system cannot. One
disadvantage of both spherical and Cartesian coordinates is the
fact that stasis, not change, is implicit in their representations.
However, a more important disadvantage was said to be the fact
that nature isn’t using either system. Fuller’s Isotropic Vector
Matrix was presented as the more realistic, but relatively
unknown, alternative. The chapter closed with an extended
development of 763 variations on the basic QSO equation.
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A convention was established in chapter 2 to
write the QSO ratio as (0:¢9), and not (¢:0). However, it was

noted that in the natural world the order of the rotations may in
fact differ from the convention. One wonders what natural
phenomena may depend on the order of the rotations.
Furthermore, although Fuller’s Isotropic Vector Matrix was
offered as a more realistic alternative to the older systems, no
one to this writer’s knowledge has attempted to model QSOs in
IVM coordinates. This area is ripe for further exploration. The
chapter closed with the speculation that some of the 763
variations of the parametric QSO equation might be more
interesting, more elegant, or more useful than the standard
version. These represent 763 opportunities to further the work

Chapter 3 was about the elements of the QSO
ratio. Fractional, exponential, irrational and continuously
varying ratios were discussed. The concept of a pole was

introduced and monopoles, dipoles and multipoles were briefly
explored. The chapter closed with a presentation of the Event
Constellation and its geometric interpretation.

& Chapter 3 did not discuss imaginary numbers in
the QSO ratio. Whether these have any application in QSO is
unknown. When the ratio was varied continuously from QSO
(1:3) to QSO (2:3), it was noted that complexity occurs on either
side of simplicity, limiting and containing the simpler orbits.
The closer one approached the integer ratio, the more complex
the orbit got, but this pattern was not characterized
mathematically. Smoothly varying the second element of the
QSO ratio was just barely mentioned, and its development was

left to the reader.

g I . Events were the topic of chapter 4. Two types
were discussed: the intersection event and the tangent event. A
graphical display method was developed and used to analyze the
timing and direction of the events of monopole QSOs 1(1:2),
1(2:1), and dipole 2(1:1) [0,0] [0,x]. The chapter also
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suggested a convention for listing and analyzing the events of
QSOs. It was based on numbering them sequentially according
to the first time the rotating point passes over an event location.
It was pointed out that they can be further distinguished by
noting how many and which of the rotating points make them.

; Although chapter 4 was about events created by
rotating points, the potentially significant topic of the velocity
and acceleration of a rotating mass at the event was mentioned
only in passing. There was also speculation in chapter 4 about
the relationship between a surface angle of the QSO and the
central angle of the icosahedron, but that investigation was left to
the reader, as was the examination of the polar events of QSO
2(1:2). Although a convention for naming and analyzing events
was defined, at the same time we had to wonder if there would
be any advantage to alternate methods of listing or analyzing
them. The polar events of QSO 1(1:2) have a 90° relationship
between them. It has been suggested that this out-of-phase
skewing might account for the fundamental difference between
northness and southness, positive and negative, or the
underlying polarity that characterizes any dipole.*

* Michael Burke, private communication with the author, 1992 Mar 9.

| s / 1 Where chapter 4 was about events, chapter 5 was
about orbits. A recursive algorithm was developed and the
orbital lengths of the first twenty-five QSOs were calculated. It
was found that when these are plotted on a 3-D graph, the orbital
lengths create a “landscape” with an equal-rate valley along the
(n:n) diagonal. Several “dimples” were noted in the landscape,
as well as the fact that the landscape is tipped — one side is higher
than the other. The chapter concluded with illustrations of the
first 100 monopoles as seen from all three Cartesian axes and
from the isometric point-of-view.

Chapter 5 touched on, but did not explore in any
meaningful fashion, the velocity and acceleration of the rotating
mass around the entire Quasi-Spherical Orbit. The meaning of
the “dimples” in the QSO landscape needs to be clarified, as does
the relationship between them and the central valley. It would be
interesting to see if these valleys of similarity have counterparts
in the macro or micro worlds. When the orbital lengths are listed
one above the other, beginning with the (1:1) on the lowest
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level, they are reminiscent of the energies of electron orbitals.
One wonders if there is more to the resemblance than mere
coincidence.

There is a potential link to string theory. In chapter 3 we
saw that smoothly varying one element of the QSO ratio leads to
increasingly complex orbits until the integer ratio is reached, at
which point complexity gives way to simplicity. In terms of
orbital length, the length of the Quasi-Spherical Orbit increases
until the integer ratio, at which point it snaps back into a much
shorter orbit. If the length of the orbit can be considered a
wavelength, then increasing one side of the ratio by 0.1
increases the wavelength by a factor of about 10. Increasing one
side of the ratio by 0.01 increases the wavelength by about 100,
and so on. We find that the smaller the change in one element of
the ratio, the larger the increase in orbital length.” Depending on
which version of string theory one considers, as many as 11
dimensions are required to describe reality at the very smallest
dimensions.® The theory postulates that these extra dimensions
are folded within minuscule volumes of space, but cannot give
specific demonstrations. QSO demonstrates that waves of
immense length can be rolled into volumes of exceedingly small
diameter, and that these can be easily specified, cataloged and
predicted. QSO further suggests that this can be accomplished
within the framework of the four known dimensions of space
and time, without the extra dimensions required by string
theory.

* Decreasing the ratio also increases the wavelength. It’s the size of the
change that matters, not whether it’s an increase or a decrease.
® Greene, 2003, p. 307.

y Chapter 6 departed from the exploration of QSOs
proper to examine several techniques that have been used to
display and study these curves. The early contributions of
Loftus, Kelleher, and the author were detailed, as well as a
number of more recent display techniques made possible by
contemporary software. These included the cone and disk, the
globe with latitude and longitude, and the three-in-one, a method
for showing all three Cartesian views at once.

=

2
‘.
‘r'
.

R One display technique that was mentioned only in
a footnote was plotting QSOs on a transparent plastic sheet such
as that used in overhead projectors. The sheet could then be
folded into an octahedron showing the QSO in a model that
could be held in the hand. For his part, Burke suggested
mapping onto a tetrahedron with the poles centered along
opposed edges. Fuller’s Dymaxion Sky-Ocean World Map
suggests that projection onto the icosahedron would be a useful
exercise.’

7 See Fuller (1946).
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The discovery of the equations for the 8-trace variation of the
cone and disk display, as well as the 4-trace pinwheel, was left
to the reader, as were other display techniques that can translate
and rotate QSOs in 3-space, slide them back and forth on any
axis, or make them spin like propellers. They can also grow or
shrink as the diameter of the central sphere (which is now no
longer a unit sphere) is changed. These transformations were
said to use well-known standard manipulations which readers
may discover for themselves.

A display technique that was not mentioned in chapter 6
involves modeling QSOs in real materials. Such models have
the advantage that they can be manipulated by hand, revealing
aspects of the theory that are not suggested by the math or by
staring at a screen. An example of this technique is shown next.

Fig. 12-2

A simple transformation results in an unknown QSO

In figure 12-2 QSO 1(1:1) is formed from the edge strips of
tractor-feed printer paper (this was a while ago!). By bringing
the north and south lobes of the curve together and through each
other, a new curve is formed. This simple manipulation
transforms the common (1:1) into a 3-event curve of unknown
ratio. The radius shrinks and the angular velocity of the rotating
point apparently increases. Furthermore, there no longer seems
to be a polar axis — or at least the curve now seems not to go
through the north and south poles. The mathematical and
physical properties of such curves are yet to be determined, as is
their relationship to the QSOs in this book.*

Mechanical devices to apply QSOs to the real world have
been little explored. There have to date been only a handful, and
all generated the 1(1:1). Burke’s device that generated QSO
1(1:1) was built long before Loftus’ computer program came
along, and both Burke and the author have investigated the
physical manifestations of the 1(1:1) in different ways. The
applications of QSOs in the physical world are ripe for
development.

¥ In some respects the curve resembles a Quasi-Cylindrical Orbit. See
Eqn. 8-4, Fig. 8-14.
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Fig. 12-3
QSO 1(1:1) generator

A QSO generator designed by the author in 1996. When the
vertical shaft is rotated, the red bolt head traces QSO 1(1:1).

per Chapter 7 looked into the relationship between
QSOs and some well-known and not-so-well-known plane
curves. These were the circle, the parabola, the lemniscate of
Gerono, the cardioid, and the limacon. It was also suggested
that QSOs are related to epitrochoids, hypotrochoids, and to the
rhodonea curves. In each case it was the projection of the QSO
on one of the Cartesian planes that resembled the plane curve.

The most obvious need in this area is for
convincing mathematical proofs of the claims of this chapter.
Another option would be to expand the roster of plane curves
subsumed by QSOs. With respect to the epitrochoids, we
speculated that the QSO corresponding to an epitrochoid with
variables (R, s) is of the form QSO (R + 2s : R), but no proof
was offered. The relationship between the hypotrochoids and
the projections of the QSOs is even less clear. Finally, we noted
that the rhodonea curve with & = 1/3 is the limagon. This implies
some interesting relationships not only between rhodonea, QSOs
and the limagon, but with the trochoid curves as well. These
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relationships, if any, need to be fleshed out and examined.

Chapter 8 continued the study of the relationship
between QSOs and plane curves by focusing on Lissajous
figures. Although a superficial relationship seemed to exist
between certain QSOs and L-Figs. (1:1), (2:1), and (3:1), we
failed to find a general relationship until we introduced the idea
of Quasi-Cylindrical Orbits, or QCOs. Extrapolating from the
comparison between the L-Fig. (2:3) and QCO (2:3), we
predicted that Lissajous figures are in general the 2-D projections
of 3-D Quasi-Cylindrical Orbits. Both curves, we said, will
have the form (c, s), and both will go through the same number
of cycles in 27 radians.

The formal proof of these observations was, as
usual, left to persons more mathematically adventurous than the
author. Furthermore, although one suspects that three-
dimensional Lissajous figures are in fact Quasi-Cylindrical
Orbits, this possibility has not been investigated.

& ~ Chapter 9 explored the relationship between QSOs
and some well-known space curves such as the conical helix, the
3-D astroid, and the baseball seam by Gray. It was pointed out
that neither the conical helix nor its 2-D cousin, Archimedes’
spiral, could ever be related to any QSO because spirals and
helices grow without limit whereas QSOs and their projections
are limited to either the unit sphere or the unit circle. However, a
relationship emerged between the 3-D astroid and QSO 1(3:2)
when it was found that the tetrahedron formed by connecting the
cusps of the astroid could be massaged into the QSO. Gray’s
baseball seam and his spherical cardioid turned out not to be
related to QSOs, despite their superficial similarities. The Clelia
curve yielded more positive results when it was identified with
the northern halves of QSOs of the form (1:b). To close the
chapter, Viviani’s curve was recognized not only as being
identical to QSO 1(1:1), but also as the intersection of a sphere
and a cylinder.
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{ Given that the 3-D astroid makes a tetrahedron,
and that said 4-hedron can be massaged into a QSO 4-hedron, at
least two questions occur. First, do any other space curves
make polyhedra, and second, can any of those polyhedra also be
transformed into a QSO version? With respect to Gray’s
baseball seam, it was pointed out that there are some interesting
curves at negative k, but that these seem unrelated to QSOs. A
convincing proof of that assertion would be welcome.
Furthermore, although the Clelia seems perfectly matched to the
northern halves of QSOs (1:b), only a single example was given
for m < 1. This area needs to be mined for more information.

, Chapter 10, Monopole Polygons & Polyhedra,
began with a brief mention of Burke’s discovery — and ensuing
amazement — that connecting the events of QSO 1(3:2) forms a
tetrahedron. The idea of a-gons and b-gons was developed, and
the polygons in the (a:1) series and the (1:b) series of QSOs
were examined. Chord lengths and tipping angles were
calculated, and a curious reversal of orientation of the 1(1:b)

polyhedra and polygons was noted. The Loftus series of QSOs
was also examined. A flip-flopping phenomenon of the Loftus
polygons was attributed to precession of the figures around the
z-axis, and it was observed that this phenomenon does not occur
in QSOs generated with equation 2-8a. QSO 1(3:4) was
developed as a way to show the assembly of the a-gons, b-gons,
diagonals and diameters to make a complete polyhedron.

It was noted in the development of the 1(3:4)
polyhedron that when viewed statically the QSO appears to have
10 events and 45 chords, although dynamically the true numbers
are 12 events and 66 chords. The reader was (and still is)
invited to figure out which chords are doubled and/or quadrupled
to account for the 21 chord difference. From a chemical
perspective, one wonders whether the single, double, and/or
quadruple chords correspond in any way to single, double,
and/or quadruple bonds in molecules. Continuing the chemical
metaphor, one may wonder if there are any triple chords in
QSOs.

In physics there is the problem of superdeformed nuclei.
These nuclei, which are the result of an off-center collision, lose
energy in steps emitting a gamma ray at each step. The
emissions produce a characteristic band of energy spikes, all
spaced equally apart. It turns out that the spectra of different
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superdeformed nuclei are almost identical. The different nuclei
have similar moments of inertia and lose angular momentum in
the same steps.’

Burke points out that this bears a surprising resemblance to
the flip-flopping characteristic of the Loftus 1(a:1) polygons. As
the greater term of an integer spin ratio falls, the great circle of
events flips from the xz-plane to the yz-plane to the xz-plane and
so on. As the spin rate of a superdeformed nucleus decays, the
integer rates, which align events, may emit a signal recognized
as a gamma ray, indicating the lost energy. The gamma ray will
be emitted, Burke speculates, in the transition through an
irrational ratio.

By placing a “1” in front of the ratio, we limited the curves
in chapter 10 to monopoles. A cursory review of multipole
QSOs reveals that many QSOs make the same static figure. For
example, although the dynamics differ enormously, QSOs

2(1:1) [0,0] [0,7e],

2(1:1) [0,0] [7,0],

2(2:2) [0,0] [0,7],

2(4:1)[0,0] [0,7t],

4(1:1) [0,0] [7v/2,0] [7c,0] [37/2,0], and

4(4:1) [0,0] [7v/2,0] [72,0] [37/2,0]
all make squares of one kind or another. When it comes to
polyhedra, the situation is even more complex. QSO 2(1:2)
[0,0] [0,rt], the baseball seam, which in its monopole form
produces only a diameter of the unit sphere along the z-axis, in
its dipole form gives a regular octahedron with squares in all

’ See Yam (1991).

three Cartesian planes.” Regular octahedra are also produced by
QSOs

2(1:2) [0,0] [7w/2,0],

2(1:2) [m,0] [0,],

4(1:2) [0,0] [7/2,0] [7t,0] [375/2,0], and

8(1:2) [0,0] [0,7] [7v/2,0] [7v/2,7t] [7x,0] [7t,ot] [37¢/2,0]
[37/2,7].

Polarized octahedra are found in QSOs

2(2:3) [0,0] [0,7t],

2(2:3) [0,0] [27/3,0], and

3(2:3) [0,0] [27¢/3,0] [42%/3,0].

QSO 2(2:5) [0,0] [0,7t] makes a polarized icosahedron which
is statically similar to QSO 1(2:5) [0,0].

QSO0 2(1:5) [0,0] [0,7t] makes a 20-hedron too, but it's not the
QSO analog to the Platonic solid. The study of these and other
multipole polyhedra will surely provide many hours of
enjoyment for the geometrically adept.

In table 10-2 there appears to be a relationship between the
chord length and its second root in all but the pentagon.
Whether this is a meaningful observation or the coincidental
workings of polygons is unknown.

Table 10-4 reveals that the chords in the xy-plane, if they
exist, are identical to the corresponding chords of the 1(a:1)
series in the yz-plane. New in the 1(1:b) series are the diameters
along the z-axis and the chords in the positive and negative
z-hemispheres. A number of second roots are again apparent,

but any relationship between these and the elements of the QSOs
' This is the QSO polyhedron that was used to illustrate Fuller’s great circle
railroad tracks of energy in the introduction.
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remains undiscovered.

The precession of the L-QSOs around the z-axis deserves
further study, as does the failure of the prediction formula in
QSO 1(5:5). The problem is that there should be five 5-gons,
but even with the revised definition of an event, only one can be
found. Where are the other four? A similar situation occurs in
all of the equal rate QSOs. One a-gon or b-gon will be found,
but not the multiples suggested by the QSO ratio.

A related problem is revealed in the pattern of z-chord
involvement in the polygons of the first 25 QSOs as shown in
table 10-6. The pattern seems to be that the z-chord occurs only
when the QSO ratio is read left to right, a is odd and b is even.
However, some QSOs form a z-chord when the ratio is read the
other way, while others do not need the z-chord at all. One
wonders whether this pattern persists at higher frequencies.

It was mentioned that there are many other ways of
connecting the events of QSO 1(5:2). Some of these involve the
z-axis and some do not. These alternatives have not been
explored.

"  Chapter 11 dealt with the Platonic solids and their
relationship to QSOs. It was perhaps a little surprising that none
of the Platonic polyhedra seemed to be generated by connecting
the events of QSOs. What we found instead were three analogs

to the Platonic tetrahedron, octahedron and icosahedron. These
were formed by QSOs 1(3:2), 1(2:3), and 1(2:5), respectively.
Although all three are polarized along the z-axis, the QSO
tetrahedron turned out to be an oblate figure while the QSO
octahedron and icosahedron are prolate figures. Note was made
of the fact that the QSO icosahedron seems to be more prolate
than the QSO octahedron. The idea of a fully connected
polyhedron was introduced and a formula was offered for the
number of unique chords 7# needed to connect n events.

A search for the QSO analog to the Platonic dodecahedron
failed to reveal any such figure. What was found instead was
the snub disphenoid, the Johnson figure Jg4. The QSO version,

was predictably polarized. The missing polyhedron was the
cube.
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The Last Platonic

To find the QSO analog to the cube we begin with QSO
1(3:2).
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Fig. 12-4a Fig. 12-4b

QSO 1(3:2) [0,0] @ 98% QSO 1(3:2) [0,t] @ 98%

The familiar monopole (3:2) with phase angles of [0,0] is
shown on the left at 98% of a cycle. On the right a phase angle
of 180° has been added to the second rotation, resulting in an
apparent 90° precession of the curve around the z-axis. Note

that although the phase angle was added to ¢, the precession of

the curve is in ©." The coordinate system in the illustrations has

"' In general, increasing 0 results in eastward precession around the z-axis,
whereas increasing ¢ goes the other way. The precession of the curve in all
cases is governed by a simple ratio. It will be left to the reader to discover
the details of this behavior.

been rotated slightly away from the isometric view to allow a
better appreciation of the polyhedron which will develop.

Fig. 12-5
QSO 2(3:2) [0,0] [0,7] @ 98%

Combining the two monopoles results in the dipole
2(3:2) [0,0] [0,7], shown here at 98% of a cycle.” This is the

simultaneous energetic dipole described by Burke.

QS0 2(3:2) [0,0] [st,ot] results in a similar static figure, but the dynamics
are entirely different.
" Burke, 1992, p. 4.
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Fig. 12-6
QS0 2(3:2) [0,0] [0,7] @ 100%
with inscribed tetrahedra

As we know, each branch of the QSO generates a
tetrahedron, so we draw them in. The branches themselves are
traced in lighter shades while the tetrahedra take the original
color of their parent curves. Things are getting a little
complicated visually, so an opaque sphere is placed at the center
of the system. The radius of the sphere is 0.5, the same as the
distance of the horizontal edges of the tetras from the xy-plane.
Thus the sphere is tangent to the horizontal edges of the
4—hedrons.

Fig. 12-7
The 2(3:2) tetrahedra generate a QSO cube

Removing the QSO traces considerably simplifies the
illustration. The next step is to connect the vertices of the
tetrahedra. The resulting 6-hedron looks very much like a cube.
Each face is defined by two edges, one from each QSO
tetrahedron. Since the tetras are polarized, we expect that the
QSO 6-hedron will also be polarized. To show this we need one
final graphic.
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Fig. 12-8
The QSO 6-hedron (black)
compared to the
regular (Platonic) cube (white)

The two QSO tetrahedra and their related 6-hedron are
compared to a regular (Platonic) cube inscribed in the unit
sphere. The concave unit hemisphere provides a dark backdrop
so the white figure can be seen. When the regular cube is
inscribed in the unit sphere, its edges are

il=l.1547...
3

The volume is thus an irrational

() -vve.

By way of comparison, the horizontal edges of the QSO

6—-hedron are
\/gz 1.2247...,
V2

and the vertical edges are 1.0.... The volume is thus a very
rational 1.50....

The missing Platonic is the dodecahedron. To understand
why we have not found the Platonic dodecahedron, and why it
will likely never be found among QSOs, it’s necessary to take a
short excursion through the synergetic geometry of Buckminster
Fuller.

Fuller on Structure"

Buckminster Fuller was an original. Born eight years before
the Wright brothers’ first flight, by the end of his life he had
taken the measure of Universe and all it contains.” He insisted
that his mathematical and geometric explorations, like all else that
he did, were strictly based on experimental data. Thus when it
came to understanding structure, Fuller started with an
experiment.

Make a necklace, Fuller said. This particular necklace is
made from a multiplicity of identical hollow tubes — soda straws
will do. Lace them through with a string. Pull the string tight
and tie it so that there is as little string as possible showing

" The discussion presented here is based on that in Fuller (1975), §600.00,
and especially §§608.00-610.00.
" Fuller always capitalized “Universe” and never used the article “the.”
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between the straws. As you hold the necklace and manipulate it
in your hands, you find that the necklace is flexible. You can
easily drape it over a nearby book, bowling ball, or your pet cat.
It has no structural integrity of its own. Since the dimensions of
the soda straws themselves do not change, we discover that the
flexibility is due solely to the angular variability between the
straws.

Remove a straw and repeat the experiment. The necklace is
still flexible. Repeat this operation until you have only three
straws left. Now the 3-straw necklace holds its shape. It has
become a structure, by which Fuller meant a self-stabilizing
pattern. The triangle is the only self-stabilizing polygon, he said.
The experiment with the soda-straw necklace shows that any
polygon with more than three sides is unstable. Thus if
structural systems, which are composed of many subunits, are
to be similarly stable, they must be made of triangles.

Next Fuller asked how many triangles can be assembled
around a vertex to make a stable polyhedron. To find out he
performed another experiment. Again using soda straws or the
equivalent, he constructed various polyhedra. He required that
the lengths of the tubes be identical. Only the angles between
the tubes were allowed to vary in any way they might. He
found that three, four, or five equiangular triangles assembled
around a vertex make stable polyhedra. With three triangles
around each vertex you get a tetrahedron. Four triangles around
each vertex result in the octahedron, and five triangles around
each vertex give the icosahedron.

Fuller found, again experimentally, that any polyhedron

bound by polygonal faces with more than three sides is unstable.
Only polyhedra bound by triangular faces are inherently stable.
Furthermore, you can’t put six equiangular triangles around a
vertex because that gives the infinite plane, a concept acceptable
to theoretical mathematics, but not to Fuller’s experimentally
based geometry. Thus there are three and only three Prime
Structural Systems, the tetrahedron, the octahedron, and the
icosahedron.” The cube, which has square faces, can exist in
Fuller’s geometry, as it can in QSO, only as the synergetic
combination of two tetrahedra.'” The Platonic dodecahedron,
which has pentagonal faces, cannot exist unless it’s
omnitriangulated. Fuller gives a method for constructing it; QSO
has yet to discover one.® On the other hand, the Jg4 was found

in the exact location where we expected a dodecahedron. It’s
omnitriangulated and stable, but it’s not regular and it’s not a

Platonic.

' Fuller further pointed out that these three are smoothly transformable one
into the other. He called this process the “Jitterbug.” See Fuller (1975),
§460.00.

"7 Note that a single tetrahedron stabilizes the cube, but it takes two to create
it. This is reminiscent of what is perhaps Fuller’s best known dictum,
“Unity is plural, and, at minimum, two.”

" When he learned of this situation, Burke wrote, ... it used to worry me
that the ‘Platonic solids’ generated by QSO were ‘imperfect’, i.e. polarised.
This now seems to me to indicate that QSO as descriptive of this universe is
superior to theoretical maths in that the Universe does not contain straight
lines, or symmetrical crystals, or true circles, or, presumably, non-polarised
Platonic solids. All these perfect mathematical concepts ARE concepts
only, generalised definitions of, in fact, infinitely [though minutely] variable
classes of phenomena. One can conceive of these items, but nowhere in the
universe will you [or can you] actually sight them.” --Personal
communication with the author, 2008 Apr 18.
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Fuller’s comments about structure and QSO’s
failure to find a polarized analog to the Platonic dodecahedron
seem to put an end to the search. Still, one would like to have a
convincing proof of that assertion. As far as the polarized nature
of QSO polyhedra, one wonders if all of the polyhedra where

a > b are in fact oblate when compared to their regular
counterparts. Equally, we wonder whether polyhedra generated
by QSOs where b > amight all be prolate. One may further
question whether the observed polarization of QSOs is a result
of graphing them in the Cartesian coordinate system. Perhaps
Fuller’s Isotropic Vector Matrix would yield perfectly regular
polyhedra. As of yet these areas are Terra Incognita.

Finally, Fuller has suggested that the photon can be
characterized as a tetrahedral energy package.” One may ask
whether Fuller’s tetrahedral photons are related in any way to the
4-hedron in QSO monopole (3:2). If so, what does this imply
for other basic particles?

 Fuller, 1975, §541.30-36
-------- , 1979, Color Plate 10
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The Analemma

This book began with the hippopede of Eudoxus. Although
Eudoxus’ twin crystal spheres failed to explain the retrograde
motion of the planets, they come very close to describing
another astronomical phenomenon. We close with this stunning
photograph of the analemma by the modern Greek astronomer
Anthony Ayiomamitis.” The analemma is created by the
simultaneous rotation of the Earth on two axes, the very
definition of a QSO.

With the analemma we have come full circle. Eudoxus
might have been familiar with this place. Perhaps he gazed at
the sky-wanderers from some of these very stones.

* Sometimes called the Equation of Time, the analemma is inscribed on
globes and sundials to indicate the sun’s declination for every day of the
year. To take a picture of the analemma you expose the film at the same

Fig. 12-9
time, typically local noon, at regular intervals for a year. The 44 solar Analemma with the Temple of Zeus (340-330 BC)21

images in Ayiomamitis’ picture suggest that he exposed the film weekly,
with a few gaps. *' Photograph © 2003 by Anthony Ayiomamitis. Used with permission.




Appendix 1

Simulating the Unicycle

The unicycle QSO generator portrayed in chapter 1 consists
of eight elements:

1) A fork

2) Anaxle

3) Two small spheres to give the axle a finished look
4) A hub

5) The spokes

6) A small sphere that rotates in sync with one spoke
7) The wheel

8) The QSO

We will discuss each of these in turn. For completeness, we
will also briefly present a tubular QSO

The Fork

v
|

Fig. Al-1
The fork

The fork consists of four separate surfaces. In this exploded
view, there are two vertical tubes at positive and negative y, a
semicircular tube in the yz-plane, and a vertical tube along the

7—axis.
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X cosag —sinag 0 S cos2mu
y| = |sinag cosag O|| (S sin2mu) — 0.28
0 0 1 -V
Eqn. Al-1

The vertical tube at negative y

X cosag — sinag 0 S cos2mu
y| = |[sinag cosag Of| (S sin2wu) + 0.28

0 0 1 -v

Eqn. A1-2
The vertical tube at positive y

cosag —sinag 0

sinag cosag 0

0 0 1
0.145 (0.28 sin (27v) )

0.28 (= cosmu) (1+0.145 (cos (27mv)) )
0.28 (—sinmu) (1 +0.145(cos (2mv) )) — 1

Eqn. A1-3
The semicircular tube

X S cos 2mu
y| = | Ssin2mu
0.6v-1.9

Eqn. Al-4

The vertical tube along negative z

All four surfaces are generated parametrically. The
introduction of parametric surfaces immediately requires
variables u and v. The ranges of u and v are automatically set by
the software, but they can be changed by the user. While we’re
at it, we’ll list the ranges for x, y, z, and ¢ as well.

x:—-1...1
yi—1...1
z.—1...1
t:0...1
uo0...1
v:0...1

The diameter of the parametric tubes is
S =0.04

To animate the curve, define
g =2mn

and let n go from 0 to 1 in 100 steps.



214
QSO - The Mathematics and Physics of Quasi-Spherical Orbits

The Axle and Since the members of the fork and axle are hollow tubes, the
Two Small Spheres to Give the Axle a Finished Look  90° angles at which the axle and the two vertical members of the
fork meet have open ends. They appear unfinished. To give
these areas a more finished look, two small spheres with the
same radii as the tubing are added.

L \
2 X cosag — sinag 0| [ sin2;wbu- sin2mav
y| = S|sinag cosag 0 cos2mbu — 7
z 0 0 1| [ sin2ztbu- cos2mav
\J Eqgn. A1-6
I The small sphere at negative y
Fig. Al1-2 X cosag — sinag 0| [ sin2;wbu- sin2mav
The axle and two small spheres y| = S|sinag cosag 0 cos27tbu + 7
z 0 0 1| | sin 2tbu- cos2mav
An axle 1s added to the fork.
Eqn. A1-7

X cosag — sinag 0 S cos?27tu The small sphere at positive y

y| = |sinag cosag 0}/0.55v - 0.275 Note the placement of the diameter of the spheres in front of

0 0 1 S sin27wu the rotation matrix. In this location it can be used as an On-Off
switch. Set S = 0 and the small spheres disappear. This same

trick can be used with any part of the illustration to turn it on or
off from a central location.

Eqn. Al1-5
The axle.
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The Hub

Fig. A1-3
The hub

A hub is added to the fork-and-axle assembly. The hub
comes in two saucer-shaped pieces.

X cosag —sinag 0[|0.1 ( cos2mu) (1+ cos (2mv))
y| = |[sinag cosag 0 —0.05 sinmv
0 0 I{] 0.1 (sin27mu) (1 + cos (2mv) )
Eqn. A1-8

The half-hub at negative y

X cosag —sinag 0[[0.1 ( cos2mu) (1 + cos (2mv))
y| = | sinag cosag 0 0.05 sintv
0 0 1{]1 0.1 (sin27mwu) (1 + cos (27mwv) )
Eqn. A1-9

The half-hub at positive y

The Spokes

Fig. A1-4
The spokes

Although in the finished unicycle it looks like there are six
spokes, there are actually only four. Two of these extend
through the axle, making two spokes in one. The other two are
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normal spokes, extending from the axle to the wheel. One of view the half-hub nearest the reader has been removed to show
these is colored violet to distinguish it from the others. In this the details of spoke construction.
X cosag —sinag 0| cos (—=bg) 0 —sin(-bg) S sin 27tu
y| = |[sinag cosag 0 0 1 0 0.95 S cos 2mtu
z 0 0 If| sin(-bg) 0 cos (—bg) \%
Eqn. A1-10
The violet spoke
X cosag —sinag 0| cos (—=bg) 0 —sin(-bg) S sin 27tu
y| = |[sinag cosag 0 0 1 0 0.95 S cos 2mtu
0 0 If| sin(-bg) 0 cos (—bg) -V
Eqn. Al-11

The spoke opposite the violet spoke
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X cosag —sinag 0|| cos (-bg+60°) 0 —sin(—bg+ 60°) S sin27u
y| = | sinag cosag 0 0 1 0 0.95(S cos2mu
z 0 0 1]| sin(-=bg+60°) 0 cos (—bg+60°) 2v -1
X cosag —sinag 0[] cos (-bg+120°) 0 —sin(—bg+ 120°) S sin2mu
y| = |[sinag cosag 0 0 1 0 0.951S cos2mu
0 0 1If[sin(-bg+120°) 0 cos (-bg+120°) 2v-1
Eqns. A1-12

The two long spokes

A Small Sphere That Rotates
in Sync With One Spoke

X sin2stbu- cos 2mwav (sinbg) (cosag)
y| = 0.075| sin2xtbu- sin2mav| T 0.925 | (sinbg) (sinag)
z cos2mbu cosbg
Eqn. A1-13
The small red sphere

Fig. A1-5
A small red sphere is placed at the end of the violet spoke.
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The Wheel

-

Fig. A1-6
The wheel

Adding the wheel of the unicycle obscures the ends of the
spokes and all but a small portion of the red sphere, which now
becomes the “patch” mentioned in chapter 1.

(cos2mu) (1+0.1cos(2mv))
0.1 sin (27v)
(sin2mu) (1+ 0.1 cos (2mv) )

X cosag — sinag 0
y| = | sinag cosag 0[0-9
0 0 1

Eqgn. Al1-14
The wheel of the unicycle

The QSO

Fig. A1-7
The QSO

Without rotation QSOs do not exist, so, in order to see the
QSO, we need to rotate the unicycle. Here, at 1/6 of a cycle, is
the beginning of QSO 1(1:1).

X (sinbgt) ( cosagt)
y| = | (sinbgt) ( sinagt)
z cos bgt

Eqgn. 2-8a
The QSO
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Clones

For a thicker, brighter line the QSO can be cloned. Define a
variable f such that f'is the separation between the cloned curves
and the original. A convenient value is

f=0.007

Define three variables, X, Y, and Z, such that

Then duplicate equation 2-8a six times. Add X, Y, Z to
three of these and subtract X, Y, Z from the other three.

X (sinbgt) ( cosagt)
y (sinbgt) ( sinagt) [ T X
Z i cos bgt

X (sinbgt) ( cosagt)
y (sinbgt) ( sinagt)
Z| | cos bgt

(sinbgt) ( cosagt)
(sinbgt) ( sinagt)
cos bgt

(sinbgt) ( cosagt)
(sinbgt) ( sinagt)
cos bgt

(sinbgt) ( cosagt)
(sinbgt) ( sinagt)
cos bgt

(sinbgt) ( cosagt)
(sinbgt) ( sinagt)

cos bgt

Eqn. 2-8a
Cloned curves

+Y

+7Z
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A Tubular QSO

Fig. A1-8
A tubular QSO

It is also possible to represent the QSO trace with a tubular
parametric surface.
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u() = «/( (ga)2 + (b)) sinlebt+ (4 (za)2 + (gb)?) (gb)2cos gbt

V(t) = «/(gb)6 + (ga)z(gb)4 (3+ cosngt) + (ga)4(gb)2 ((1+ 4cosngt) sinngqu 2sin4gbt) + (ga)6sin4gbt
X)) = ( (gb)3 + (ga)ng sinngt), Y(t) = ga(gb)zcosgat- singbu- cosgbt, Z(t) = ( (ga)2 + (gb)z) singbt
X=(2+0.2sin2mu) sindmv, Y = 0.2 cos2mu + 3 cos2mv, Z = (2 + 0.2 sin2mwu) cos4mv

Eqgns. A1-15
Common terms of the tubular equation’

singbu- cosgau + 0.02 (COSZJ'CV' (- cosgau-Z(u) —2gagb singau-cosgbu) . sin2mv- (- singau-X(u) + cos gau-Y(u)) )

U(u) V(u)

X _ _ .

'E singau- singbu + 0.02 ( cos2mv- (- singau-Z(u) +2gagb cosgau-cosgbu) . sin2mv- (cosgau-X(u) + singau-Y(u)) )
U(u) V(u)

2 . ] 2 3, .2 2 2
cosgbu +0.02[ (- cos2mv) (gb) cosgbu N sin2mv- ( (ga(gb) ™+ (ga)”) sin"gbu+2ga(gb) cos"gbu)
i U(u) V(u) i
Eqgn. Al-16

The tubular QSO’

' Notice that the definitions of X, Y, & Z differ from those on p. 219.
T am indebted to Chris Young of the Yahoo! Graphing Calculator users’ group for these expressions.
<http://tech.groups.yahoo.com/group/GraphingCalcUsers/>



Appendix 2

Three-Axis Rotation

A footnote in chapter 1 says that rotation on three mutually
perpendicular axes was explored by Kelleher in 1991 and by
Prodaniuk in 1992. Kelleher’s QSO (1:2:1) and QSO (3:4:3) are

PR is Kelleher’s shorthand for “Point Rotation,” the angular
rate of rotation on each of the three axes. VR is “View

Rotation,” which indicates the point-of-view. Other than these

displayed here. very preliminary efforts, little is known about rotation on three
axes.
PR 1600, 2.000, 1000 BT 1.000
| VR: 90.000, 0.000, 0.000 K- 361 FR: 3.000, 4.008, 3.000 0T: 1.000
| YR: 90.000, 90.880, 0.000 N: 360
i k! fl’ “\
{ e :
l‘\ .-"‘“..". r"
AR
Fig. A2-1
QSO (1:2:1)' Fig. A2-2
QSO (3:4:3)’

' Illustration © John Kelleher 1991. Used with permission. * Ilustration © John Kelleher 1991. Used with permission.
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Prodaniuk’s exploration of QSO (1:1:1) is next. Both
views, which are from the z-axis, show a curve similar to but

narrower than QSO 1(1:1)

(R S ®

Tnterval Co-ardinstes

-
Enragn'nccl Orbit

QRSOO131 VB
DsSE @ 1383 RSP

Fig. A2-3 Fig. A2-4
QSO (1:1:1y’ QSO (1:1:1Y’

* Design for Scientists and Engineers (DSE) © Roland Prodaniuk 1983.

Used with permission.
QSO illustration © Roland Prodaniuk 1992. Used with permission.

* Design for Scientists and Engineers (DSE) © Roland Prodaniuk 1983.

Used with permission.
QSO illustration © Roland Prodaniuk 1992. Used with permission.



Appendix 3

The Octet Truss

Chapter 2 discusses Fuller’s Isotropic Vector Matrix (IVM)
as an alternative coordinate system for calculating and displaying
QSOs. When the IVM is carried out as physical structure, it’s
known as the Octet Truss, where “octet” indicates the alternating
octahedral-tetrahedral nature of the framework.

Fig. A3-1
An aluminum tube Octet Truss

Figure A3-1 shows an aluminum tube Octet Truss built by
the author. The truss was constructed according to the
specifications in U.S. patent #2,986,241. The material was
0.25” aluminum tubing commonly available in hobby stores.
The tubing was cut to length and flattened at the ends.
One—eighth—inch holes were punched in the ends, and the struts
were bolted together with 4-40 x 1/2” machine screws. Finished
dimensions of the truss were 44.75” x 11.5” x 3.5”, making a
volume of about 1801 in’. The truss weighed 27.4 oz. Density
of the truss was therefore 1.52 x 10” oz/irt, or about the same as
expanded polystyrene foam.
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The Octet Truss

. '\ R

Y,

¢

Fig. A3-2
The aluminum tube Octet Truss undergoing stress testing

The Octet Truss was positioned between two supports
40.25” apart. A bucket was placed in the center of the truss and
filled with water in one pound increments. Deflection was

measured from the bottom of the truss to the surface of the table.

The smallest measurable unit of deflection was 1/64”. At the
maximum weight of 10 1b., no deflection could be measured.
This is consistent with the fact that the structure of the Octet
Truss is identical with the structure of natural diamond.

It was this combination of light weight and great strength
that led Alexander Graham Bell to investigate tetrahedral space
frames in the early 20th century.

Fig. A3-3
A tetrahedral kite

Bell, who was interested in aviation from the time he was
quite young, believed the safest way to get a man into the air
would be with some sort of kite. He experimented extensively
with kites made of tetrahedral cells." One such kite is shown in
the photo. The date, “1907 Sep 4,” can be seen faintly written in
the grass between the man’s feet and the edge of the kite. By
November of that year Bell would create the Cygnet, a
tetrahedral kite with over 3300 cells, which would succeed in
carrying a man into the air. The man in the picture is Hector

' Bell was granted three U.S. patents for his tetrahedral work: #757,012 for
an Aerial Vehicle, #770,626 for an Aerial Vehicle or Other Structure, and
#856,838 with Hector MacNeil for a Connecting Device for the Frames of
Aerial Vehicles and Other Structures.
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MacNeil who worked with Bell for many years building
whatever experimental apparatus Bell devised.

More recently the Octet Truss has been used for everything
from roofing at the Kennedy Space Center to the main structure
at Biosphere 2 in Oracle, Arizona.

Fig. A3-4
The Hobby-Eberly Telescope primary mirror truss’

Pictured here, the primary mirror truss of the Hobby-Eberly
Telescope at the McDonald Observatory, University of Texas.’
Dr. Frank Bash, the former Director of McDonald Observatory,
is second from left.

? © Hobby-Eberly Telescope Partnership. Used with permission.
* http://hyperion.as.utexas.edu/mcdonald/het/het_images/06truss_etal.html



Appendix 4

A Brief History of QSO Programming

Chapter 6 traces the early history of QSO programmers and their work. The people and their programs are

detailed here.
Year Programmer Program Language Computer Comments
1990 Loftus 3-D Combined BASIC IBM XT Isometric view
Rotation Plotter only
All four static
? Crosby Loftus, improved BASIC IBM 286 . VIEWS
simultaneously
and in color.
Individual views
1990 Loftus Second Stage BASIC IBM XT of ach axis in
rogram addition to the
isometric
Views rotate
1991 Kelleher QSO Simulator PASCAL Apple Ile around all three
axes
All four views
1992 Crosby ? BASIC? IBM AT or better developing
simultaneously
Spin Engine of a View rotates
1994 Kelleher p QEO BASIC Apple Ilgs around any

arbitrary vector




Appendix 5

Drawing QSO Polyhedra

One of the more interesting aspects of Quasi-Spherical Orbits
is the fact that when the events are connected by straight lines,
they form a plethora of polygons and polyhedra. The study of
these figures requires the ability to draw them. Although we
will focus here on the polyhedra of chapters 10 and 11, the
lessons learned will allow the reader to draw polyhedra for any
QSO. The first example is from chapter 10.

QSO 1(1:3), the Oblate Hexahedron

QSO 1(1:3) forms a hexahedron, or two face-bonded
tetrahedra. It consists of 10 chords: three in the xy-plane, three
in the northern hemisphere of the unit sphere, three in the
southern hemisphere, and one chord along the z-axis. It has five
events. Three are equally distributed around the z-axis in the
xy—plane, with one each at the north and south poles. Although
it was not specifically indicated in chapter 10, table 10-4 clearly
shows that the hexahedron is polarized in an oblate manner. The
extent of the figure along the z-axis is less than it would be if the
tetrahedra were regular figures. The perception is that they’ve
been compressed along the z-axis.'

' Due to its rotation, the Earth is an oblate spheroid. Its north-south axis is
slightly shorter than any of its equatorial diameters.

~" Fig. 10-6
QSO 1(1:3)
Isometric From the z-axis
QSO 1(1:3) is shown above as it appeared in chapter 10.

Although it may seem easier to begin with the chords that radiate
from the z-axis, the procedure is actually simpler for the triangle
in the xy-plane. In order to draw chords, we first define a new
variable, angle d.

b
Eqn. A5-1
Angle d
where b is the second element of the QSO ratio (a:b)

d
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A
N~ ;
N \\ y /S —d_.f_/_.. sind 'S —— I/_,/" A B
= \ \ /
/1\ cos d N N\ - X -
A=cosd —r y| = |0
I/ l\I
' 0
/ . d [ £
j T~ il B=sind
= ‘l - \\, ,/‘/ 7 L ) where . 0 ... I
— \ |/ - N
", 4
. y ‘\'
Fig. A5-1 / \ Fig. A5-2 Eqn. A5-2
Angle d L ) A radial horizontal chord
P The target chord is shown in light blue. It connects the two
Variables A & B

Angle d is shown in this view of the 1(1:3) from the z-axis.
It is the angle between a line from the Origin to the event in the
first quadrant of the xy-plane and the positive x-axis.” On the

right, the sine and cosine of d are labeled B and 4, respectively.

The labels have been placed outside the unit circle in order to
leave the QSO and its chords visually uncluttered. Let’s move
on to the horizontal chord in the xy-plane.

* Even without Eqn. A5-1, it’s pretty easy to show that d=30°. When the
QSO trace reaches the event at (A, B, 0), the b-rotation has rotated through
90° (see Fig. 3-1). However, the a-rotation, which rotates 1/3 as fast, has
only gone through 30°.

events in the first and second quadrants of the xy-plane.
Applying standard right-hand rotation around the Origin, the
chord begins at (A, B, 0) and ends at (—A, B, 0). Equation A5-2
draws a black radial horizontal vector along the negative x-axis.
At this point we are interested only in the fact that the parametric
variable 7 has the same sign as the target chord, so the vector is
drawn right to left. It begins at the Origin and ends at (-1, 0, 0).
This gives ¢ a negative sign.

* Although the range of the parametric variable ¢ may be defined differently
in different contexts, in this book ¢ always goes from zero to one unless
otherwise noted. See chapter 2, p. 13. For an exception, see chapter 10,
p. 166, footnote 10, Loftus’ equation.
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A A
A A d 4 i d
( N T—) B 1T B
e N/ f_/’ X —t+ A \ \_\ // f_,-/ X —2tA+ A
B - y| = B e y| = B
/
71\ /1\
z 0 z 0
s v
Fig. AS-3 Eqn. A5-3 Fig. A5-4 Eqn. A5-4
Moving the vector to the beginning of the target chord Completing the chord
To move the vector to the beginning of the target chord, we The length of the chord is 24, which is entered as a

add A4 to the x-term of the vector while B is added to the y-term. multiplier of . There is no extent of the chord along the y- or
z—axes, so no further changes are needed.
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A A
d - i d
X t \‘\t_\ \\. / ,f"/ X t—A
'x_ \| /S ——
/I N y| ~ [-ttB
\[ \
z 0 N z 0
N\,
s
Fig. AS5-5 Eqn. A5-5 Fig. A5-6 Eqn. A5-6
The second chord of the triangle Moving the vector to the beginning of the target chord.
To draw the second chord of the triangle, we again begin Subtracting 4 from the x-term of the vector and adding B to
with a radial vector. The vector equation is written such that all the y-term moves the vector to the beginning of the target chord,

variables ¢ have the same sign as the target chord. but does nothing for alignment or length.
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A
d
B
X tA-A
y| = |-t(B+1)+B
0
Fig. A5-7 Eqn. A5-7

Completing the second chord of the triangle

The length of the target chord in the x-direction is A, which
is entered as a multiplier of . In the y-direction, the length has
two parts, B, from the first chord to the x-axis, and 1, from the
x-axis to (0, —1, 0). In order to maintain a sense of direction,
the length is written as (B + 1), rather than (1 + B), even though
the scalar values of these expressions are identical.

A
d
B
\ — ,!' _-_~/
\ / '|\ ‘.f tA
\ / \ ,."J X
\\t },,f vl = [t +B) -1
\ / Z 0
W/
Fig. A5-8 Eqn. A5-8

The third chord of the triangle

The third chord of the triangle in the xy-plane is shown in
Fig. A5-8. Although this chord could be created by negating the
x-term of equation A5-7, in order to maintain the
counterclockwise movement around the z-axis, we write
equation A5-8 instead. In particular, the length of the vector
along the y-axis is now written as (1 + B) rather than the former
(B + 1). In general, this is the procedure we will follow — with
increasing complexity — to draw all the chords of any polygon:

* First define a suitable angle or angles. In the present
example only angle d was needed.

* Second, create a radial vector in the xy-plane such that all
variables ¢ have the same signs as the target chord.

* Third, move the vector to the starting point of the target
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chord, and
* Fourth, adjust the length of the vector along all axes.

Chord Lengths

In general, the length of a vector is given by the equation

J (A% + (Ay) 2+ (A2)?

Eqn. A5-9
A general expression for the length of an arbitrary vector*

The length of a vector along an axis is represented by the
multipliers of # on that axis. In the present case, the length of the
third side of the triangle is

J)2+ (1+B) 2+ (0)2=1.73205... =5

Eqn. A5-10
The length of the third side of the triangle in the xy-plane

This is the length that was recorded for this chord in
table 10-4. The reader is invited to confirm that the other two
sides of the triangle are identical, making the figure an equilateral
triangle.’
* Compare this equation with equation 10-1.

> QSO 1(3:1) creates an identical equilateral triangle, but in the yz-plane.
See Fig. 10-2 and Table 10-2.

Chords With a Z-Term

The 1(1:3) hexahedron has three chords in the xy-plane,
three in the northern hemisphere, three in the southern
hemisphere, and one along the +z-axis. We turn our attention
now to drawing one of the chords in the northern hemisphere.

Fig. A5-9
The target chord

The first target chord in the northern hemisphere will be the
one from (0, 0, 1) to (0, —1, 0).
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A
d
B
X 0
y = —
0
Fig. A5-10 Eqn. A5-11

A radial vector in the xy-plane

We begin, as usual, with a radial vector in the xy-plane. It
starts at the Origin and extends to (0, —1, 0). Equation A5-11
consists of a single variable ¢, which is negated to give the vector
direction from the Origin to y =—1. Although the vector could
certainly be drawn the other way, the author’s personal
preference is to draw from the pole to the equator.

Fig. A5-11 Eqn. A5-12
Placing the beginning of the vector atz = 1
View from the x-axis

The target chord begins at (0, 0, 1). This view from the
x—axis shows that equation A5-12 places the beginning of the
vector at z = 1. The green unit circle is a meridian which has
been drawn in the yz-plane. On the left side of Fig. A5-11 the
red QSO appears to be slightly inside the unit circle everywhere
except at the equator. This attests to the fact that the QSO is not
actually on the yz-plane, but slightly in front or in back of it
everywhere except at (0, —1, 0).
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X 0

y| © -t

z —-t+1
Fig. A5-12 Eqn. A5-13

Adjusting the length and direction of
the vector to match the target chord

The final step in drawing the chord is to realize that the
extent of the chord along the z-axis is negative . No other
changes are needed.

X 0

y| = | -t

z t—1
Fig. A5-13 Eqn. A5-14

A chord in the southern hemisphere

Equation A5-14 draws the corresponding chord in the
southern hemisphere. The equation reflects the author’s
preference for drawing from pole to equator, and not vice-versa.
The reader is invited to confirm that the length of the two chords

thus drawn is \/5, and that the angle between them is 90°.°

¢ \/5 < \/5 , thus verifying the oblate polarization of the hexahedron.
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X 0

y| © 0

z -2t+1
Fig. A5-14 Eqgn. A5-15

The chord along the z-axis

The chord along the z-axis may be drawn from south to
north or from north to south.” The chord here is shown
originating at the north pole and terminating at the south pole.

7 Although the direction of a vector is arbitrary in the static picture, when
the dynamics of a QSO are considered, the order and placement of the events
often suggest not only the order in which chords are created, but where they
begin and end. For example, a chord cannot exist before the two events that
create it. In monopoles, events are created sequentially. Therefore there
must necessarily be a first and a second event before the existence of the
chord. This suggests that the chord extends from the first event to the
second. Multipoles, which offer the possibility of simultaneous events and
multiple, overlapping chords, are more complex. For more on the order and
sequencing of events, see chapters 3 and 4.

Fig. A5-15
QSO 1(1:3) with six of its 10 chords

The figure confirms that we have correctly drawn six of the
ten chords of the QSO 1(1:3) hexahedron. The other four
chords in the northern and southern hemispheres are similarly
drawn. Their construction will be left to the reader.

QSO 1(2:3), the Prolate Octahedron

The second example of drawing a QSO polyhedron will be
QSO 1(2:3), the polarized octahedron from chapter 11. We will
find that whereas angle d and two variables, 4 & B, sufficed to
draw the QSO 1(1:3) hexahedron, the QSO 1(2:3) octahedron
will require four variables and a second angle to complete the
figure.
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Fig. A5-16
QSO 1(2:3)
View from the z-axis

Isometric view

The QSO 1(2:3) polarized octahedron is shown in
Fig. A5-16. An opaque central sphere (r = 0.6) has been
inserted to block some of the visual confusion resulting from
trying to see all 28 chords of the figure at once. The octahedron
has two low-altitude tetrahedra on its northern and southern
faces. One edge of the northern tetrahedron is colored light
blue, as is an edge of the octahedron itself. These are the target
chords for this section.

Fig. A5-17
Angle d

The first step in drawing QSO figures is to define suitable
angles. This view from the z-axis shows that angle d is defined
pretty much as before.
= 900 —

=

Eqn. A5-16
Angle d

d 30°

In fact, since b = 3 in both examples thus far, angle d has the
same value in each. However, the coordinates of the events do
not. In order to draw the chords of the 1(2:3) octahedron, a new
angle will be needed. We’ll call it angle ¢



238

QSO - The Mathematics and Physics of Quasi-Spherical Orbits

_ 90°
a
Eqn. A5-17

Angle ¢
where a is the first element of the QSO ratio (a:b)

C

Fig. A5-18
Angle c, variables C & D

The view from the x-axis shows that the north and south
non-polar events of the 1(2:3) octahedron are equidistant from
the xy-plane. If the angle between the xy-plane and one of these
events is ¢, then the events are at a distance of £sin ¢ from the
xy-plane, and cos ¢ from the z-axis. This allows us to define
two new variables.

C=cosc , D=sinc

Eqgns. A5-18
Variables C & D

tAC
= tBC
-t(1-D) +1
Fig. A5-19 Eqn. A5-19
Coordinates of the events The first target chord

A circle of radius C is drawn on the view from the z-axis.
The first target chord extends from (0, 0, 1) to (AC, BC, D).
The x- and y-terms of the vector are written using the compound
variables directly from the drawing. Negative ¢ in the z-term
indicates that the vector is drawn from the pole to the event at
(AC, BC, D). The only thing to remember here is to subtract D
from the unit radius to get the extent of the vector along the

z—axis. Having done so, you then add 1 to move the vector to
0,0, 1).
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X —tAC+ AC
y| = [t(C-BC) +BC
z -2tD+D
C
Eqn. A5-20

The second target chord

The equation for the second target chord, an edge of the
octahedron itself, is somewhat more complex than those seen so
far, but it follows the same rules. First write a radial vector in
the xy-plane. Then move it to the beginning of the target chord,
and finally write the extent of the vector along all three axes to
match the chord.

QSO 1(2:5), the Prolate Icosahedron

Fig. A5-20
QSO 1(2:5)
Isometric (left), z-, and x-axis views
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The 1(2:5) polarized icosahedron shows angles c and d as
before. Given that in the QSO ratioa=2and b =5,

d=18°
c=45°

The new feature in this QSO is the second angle as seen
from the z-axis. It will be found that this angle is an exact
multiple of angle d. In this case it is three times angle d, so K
rather than name it with a new letter, we’ll call it angle 3d.°

3d =54°

Using these three angles and their related definitions of
variables A, B, C, D, I, & J, the chords may be written as

before.
QSO 1(4:5), a 40-hedron
Fig. A5-21
QSO 1(4:5)
¥ These and all other angles associated with QSOs can be confirmed by Isometric (left), z-, and x-axis views

tracing the angular rotations of the QSO as it develops.
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QSO 1(4:5) creates a 40-hedron; its 22 events create 231
chords.” The QSO shows increasing complexity in the number
and placement of the defining angles, but no new features.
Angles d and 3d still appear in the view from the z-axis, and
their scalar values are identical to those in the previous example.
However in the view from the x-axis, angles ¢ and 3¢ differ
from the previous values. Variables A, B,C,D, [ J, K, & L
are needed to write the chords.

Variables Needed to Write the Chords
of the First 25 QSO Monopoles

The reader is perhaps wondering why the sine and cosine
variables are not named in sequence. Why, for instance, is there
a gap between D and I in the previous example. The answer will
be found in the following table.

’ These are the events counted statically. As we saw in chapter 10, p. 172,
multiple passes at the poles can be seen as creating multiple overlapping
events.



242
QSO — The Mathematics and Physics of Quasi-Spherical Orbits

5:115:2/5:3|5:4/5:5

[98)

4:4\4.

V)]

2:42:

V)]

1:111:2/1:3(1:4/1:512:112:2|2: 3:113:213:3|3:4/3:514:14:2|4:

[98)

A=cosd
B=sind

C=cosc

® e
® e
@@
@@

D=sinc

E =cos 2d
F =sin 2d
G =cos 2c
H =sin 2¢
I=cos 3d
J=sin3d

K =cos 3¢

©eee
©eee
©eee
©eee

® e
@@

@@
©eee
@@
©eee

@@
@@
@@
@@

® e
@@
©eee

L =sin 3¢
€ ) M =cos 4c
@ N =sin 4c¢
6

©eee

® e
® e
® e
® e

€
€
0/0[{2/0/4/2/,0/4/0/6/2 204 642 60 84 6 | 0| Total variables

Table A5-1
Variables needed for the chords of the first 25 monopole QSOs

Table A5-1 displays the first 25 monopole QSOs and the listed in order by size of their defining angle — first the unit
variables needed to write the chords for each. The QSOs are angles d and ¢, and then 2d and 2¢, 3d and 3¢, and so on. The
listed across the top of the table. On the right, the variables are sine and cosine of angle 4d are not listed because they’re not
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needed in the first 25, although it’s certainly reasonable to expect
them to be needed as the QSO ratio increases. Readers wishing
to explore beyond the limits of the table may need to create a
more general scheme for naming the angles.

Derivation of the Total Chord Formula

One of the main goals when drawing QSO polyhedra is to
know when you’ve got all the chords. A total chord formula was
presented without much justification in chapter 11, footnote 4.
As a last offering in this appendix we will derive the total chord
formula following a fairly intuitive line of reasoning. If we let a
red star represent an event, then...

*

...one event has no chords...

%

...two events have a single chord between them...

...three events, three chords...

...four events, six chords...

...five events, 10 chords...
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n(n-1)
2

Tn =

Eqn. A5-21
The total number of chords between n events

...nine events, 36 chords...

and so on.

If there are n events, then each event is connected to (n — 1)

others. This results inn(n — 1) chords. But if we count all

chords this way, we’re going to count each chord twice, once
coming and once going, so the thing to do is to divide by two.



References

Avitzur, Ron 2002. Learning math with graphing calculator.
Oakland: eeps media. <http://www.eeps.com>

Banks, Robert 1999. Slicing pizzas, racing turtles, and further
adventures in applied mathematics. Princeton: Princeton
University Press.

Brown, Kenneth A. 1988. Inventors at work. Redmond:
Tempus Books of Microsoft Press.

Burke, Michael 1992. Quasi spherical orbits. Unpublished
manuscript.

Coxeter, H. S. MacDonald (Donald) 1961, 1969. Introduction
to geometry, 2nd ed. New York: John Wiley & Sons, Inc.

Edmondson, Amy C. 1987. 4 Fuller explanation.
<http://www.angelfire.com/mt/marksomers/40.html>

Fuller, R. Buckminster 1946. Dymaxion map. U.S. Patent
2,393,676. Washington, D.C.: U.S. Patent and Trademark
Office.

—— 1975. Synergetics. New York: Macmillan Publishing Co.
<http://www.rwgrayprojects.com/synergetics/synergetics.ht
ml> Accessed 2008 Jul 15

—— 1979. Synergetics 2. New York: Macmillan Publishing Co.

— 1992. Cosmography. New York: Macmillan Publishing Co.
Gray, Alfred 1998. Modern differential geometry of curves and

surfaces with mathematica®, 2nd ed. Boca Raton: CRC

Press.

Greene, Brian R. 2003. The elegant universe. New York: W.
W. Norton & Company, Inc.

Hein, Morris 1990. Foundations of college chemistry, 7th ed.
Pacific Grove: Brooks/Cole Publishing Company.

Kelleher, John P. 1991. Screen shots. Personal communication,
Dec. 23, 1991.

——1994. QSO — A Newsletter of Quasi-Spherical Orbits, 2:1.
Intellectual Property Associates, Clearwater, FL, March
1994.

Kenner, Hugh 1976. Geodesic math and how to use it.
Berkeley: University of California Press.

Loria, Gino 1925. La finestra di Viviani in Curve Sghembre
Speciali, 1:201-3. Bologna: Nicola Zanichelli.

Morris, William, ed. 1970. The American heritage dictionary of
the English language. New Y ork: Houghton Mifflin Co.



246

References

O'Connor, John J. and Edmund F. Robertson 2008. Eudoxus
of Cnidus. <http://www-history.mcs.st-
andrews.ac.uk/Mathematicians/Eudoxus.html> Accessed
2008 Nov 18.

—— 2008. Jules Antoine Lissajous. <http://www-
history.mcs.st-
andrews.ac.uk/Mathematicians/Lissajous.html> Accessed
2008 Nov 18.

——2008. Leonardo Pisano Fibonacci. <http://www-
history.mcs.st-
andrews.ac.uk/Mathematicians/Fibonacci.html> Accessed
2008 Nov 18.

——2008. Luigi Guido Grandi <http://www-history.mcs.st-
andrews.ac.uk/Biographies/Grandi.html> Accessed 2008
Nov 18.

—— 2008. Richard Buckminster Fuller. <http://www-
history.mcs.st-andrews.ac.uk/Mathematicians/Fuller.html>
Accessed 2008 Nov 18.

—— 2008. Vincenzo Viviani. <http://www-history.mcs.st-
andrews.ac.uk/Mathematicians/Viviani.html> Accessed
2008 Nov 18.

Prodaniuk, Roland G. 1992. Graph of the QSO 1:1:1. Personal
communication, September 11, 1992.

Roberts, Siobhan 2006. King of infinite space. New Y ork:
Walker Publishing Co.

Roero, Clara S. 1986. L’Interet International d’un Probleme
Propose par Viviani in Actes de L’ Université sur L ’Historie
des Mathématiques 351-79. Toulouse: Université Paul
Sabatier.

—— 1988. The Italian challenge to Leibnitian calculus in 1692 in
Leibniz Tradition und Aktaulitdt. V. Internationaler Leibniz-

Kongrep, Vortrage, Hannover, 14-19 November, 1988,

803—10. Hannover: Gottfried-Wilhelm-Leibniz-Gesellschaft
e.V., Niedersiachsische Landesbibliothek.

Soukhanov, Anne H., ed. 1992. The American heritage
electronic dictionary. New York: Houghton Mifflin
Company.

Space curve gallery 2008.
<http://www.math.umd.edu/research/bianchi/Gifspacecurves
/spcu.html> Accessed 2008 Nov 18.

Yam, Philip 1991. Spin cycle. Scientific American 265:16.



Index

A

a (a rotation, first element of the QSO ratio), 13—14, 26
equal-rate valley, 72
and monopole QSO polygons and polyhedra, 161-162, 164,
171
in unicycle model, 33
Acoustic vibrations, 133
Aenigma geometricum (Viviani), X
Analemma, 211
Analytic geometry, x
Angle in a coordinate system, 11. See also Phase angle; Tipping
angle
angle c, 2c,3c, etc., 237-238, 241, 242
angle d, 2d, 3d, 44, etc., 228, 237, 240, 241-242

definition of Phi (¢), 87
regular icosaedge in icosahedron, 67
use of radian to express, 11
use of sine/cosine to express, 16, 17, 30-32
Archimedes’ spiral, 145
Architectural structure, 224-226
Asclepius’ staff, 50n11
Astroid. See 3-D astroid; 2-D astroid
Axes. See also x-axis view; y-axis view; z-axis view
about QSO, 2
colors of eight combinations of positive and negative QSO
axes, 26
exchanging, 21-23
in Lissajous figure, 133
orthogonal system, 18n5, 20
reversing polarity, 23-26

sine/cosine to express off-axis event, 61

three-axis QSO, 222-223

three-in-one QSO globe display, 95

visualizing, 3—-10

X, Yy, and z axes in a coordinate system, 11, 16, 17
Ayiomamitis, Anthony, 211

B

b (a rotation, second element of the QSO ratio), 13—14, 26
equal-rate valley, 72
and monopole QSO polygons and polyhedra, 161-162, 164,

171

in unicycle model, 33

Banchoff’s The Temple of Viviani, 157

Base 720 rather than base 10, 18n6

Baseball seam QSO, 35n1, 66-67, 71, 72
compared with monopole QSO (1:2), 149-151
event, 53
polar trace of Gray’s, 151

Bash, Frank, 226

Bell, Alexander Graham, 225-226

Bend Sinister, 72n2

Biosphere 2, 226

Borromeo, Clelia, 154

Burchester cardioid, 116

Burchester snub disphenoid, 192

Burke, Michael, 200, 204
and David Loftus’ QSO tool, 78, 158
generation of first QSO, 194-195
Octamap suggestion, 81n6, 199
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Burke, Michael, continued
on Platonic solid imperfection, 209n18
QSO tetrahedron discovery, 158, 180, 185
simultaneous energetic dipole, 206

C

¢ (variable for drawing chords), 237-238
Caduceus, 50n11
Cannonball stack model, 19
Cardioid, 114-116, 121n14. See also Spherical cardioid
relation to Pascal’s limacon, 117
Cartesian coordinate system, 16—18, 20, 196. See also Isotropic
Vector Matrix (IVM); Spherical coordinate system
de Castillon, Johann, 114, 116
Chester, Robert. See also Octamap
Octet Truss, 224-225
QSO generator, 201
Chirality, 28-30
Chord length. See also Line
I(a:1) QSO polyhedra, 161-162
1(1:b) QSO polyhedra, 164-165
in complete polyhedron example, 180184
equation, 233
L-1(a:1) series, 167
Platonic solids, 187, 189, 191
snub disphenoid, 193
Chordal increments of QSO (1:1), 69, 70
Chords of polygons
drawing, 228-233
new angles, 228, 237-238, 240241
total chord number formula, 186n4, 243-244
variables for writing chords in first 25 monopole QSOs,
241-243
z-axis chords in first 25 monopole QSOs, 179—-180

Chords of polygons, continued
with z-term, 233-236

Circle
latitude and longitude, 94
Lissajous figure, 135

Clelia, 154156, 203

Cone and disk display of QSO, 82-92

Cone of Phi (¢), 8687
second, 88—89
Conical helix, 145
Continuously varying QSO ratio, 40—42
Coordinate system. See Cartesian coordinate system; Isotropic
vector matrix (IVM); Spherical coordinate system
Cosine. See Sine/cosine
Crosby, Athol, 79, 227
Cube. See Hexahedron (Cube)
Cubical 3-D astroid, 146-147
Cuboctahedron, 67
Curly brackets, 21
Curve. See also Lissajous figure; Plane curve; Space curve;
specific types, e.g., Cardioid, Lemniscate, Viviani’s
window, etc.
cloned, 219
difference between monopole QSO (a:1) and (1:b), 164
geometric figures from QSO curve, 158
Gray’s baseball seam, 149—151
Loftus’ QSO series, 166
using Graphing Calculator to explore epitrochoid, 120n12
Cycle of QSO with irrational ratio, 38—40
Cycloid, 120-121
Cygnet (tetrahedral kite), 225

D

d (variable for drawing chords), 228, 237

A lower case letter “n” following a page number indicates a footnote.
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Decahedron, 164, 180
Descartes, René, 16
Diagonal line in Lissajous figure, 135
Diamond structure, 225
Dipole QSOs, 44-45. See also Monopole QSOs
Burke’s simultaneous energetic, 206
differences from monopole QSO figure, 204
polarity, 198
QSO (1:1), event examples, 62—67
QSO (3:1), 159
QSO (3:2), cube generated from, 206208
Disc and cone display of QSO, 82-92
Dodecahedron, 185, 191-193
dual, 191n7
possibilities for future study, 208-210
Drawing QSO polyhedra. See Chords of polygons
Dynamic view of QSO, 8-10. See also Static view of QSO

E

Eight curve (Gerono). See Lemniscate of Gerono
Einstein, Albert, 18
Element of QSO. See Event; Pole of QSO; QSO ratio
Ellipse in Lissajous figure, 135
Epicycloid, 121. See also Cardioid
Epitrochoid, 120124
Equation of Time. See Analemma
Equatorial event, 66—67
Eudoxus of Cnidus, ix—x, xii, 211
Event, 47-50. See also Intersection event; Tangent event
about, 47, 51
and chord, 236n7, 243-244
dipole QSOs, 62—67
distinguishing which branch of a QSO forms, 52n1
equatorial, 6667

Event, continued

event constellation, 4950

order of off-axis QSO event, 58-61

polar, 64

polygons and polyhedra from straight line, 228

possibilities for future study, 198

single- and two-pass, 172

and their geometric figures, 158-159
Exponential QSO, 36

F

Figure eight curve. See Lemniscate of Gerono
First Light, 78
40-hedron, monopole QSO (4:5), 240241
Four-gons, 181
Fractional QSO, 33-36, 167
Fractional ratio, 33-36
Fuller, Buckminster. See also Great circle railroad tracks of
energy; Isotropic Vector Matrix (IVM)
definition of synergy, 2n2
Dymaxion Airocean World patent, 8 1n4
Dymaxion Sky-Ocean World Map, 199
objections to orthogonal axis system, 18-20
on polygon shapes, 163n6
statement on minimum system, 10
on structure, 208-210
tetrahedron and octahedron, 27
theory of energy, xi—xii

G

g (variable in QSO vector equations), 15
Geometric curiosity of dipole QSO event, 66—67
Geometric figure from QSO curve, 158

A lower case letter “n” following a page number indicates a footnote.
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Gerono, Camille Christophe, xi, xii. See also Lemniscate of
Gerono
Globe display of QSO, 92-95
with three axial views at once, 95-104
Grandi, Guido, x—xi, xii, 128, 154
Graphing Calculator
about, 7n7
and equation for epitrochoid, 121n15
exploring epitrochoid curves with, 120n12
note about the slider, 83n9
problem using, for QSO globe display, 95
use of orthogonal axes, 20
Gray’s baseball seam, 149—151
Great circle railroad tracks of energy (Fuller), xi, 6667, 187,
204n10

H

Handedness of a pattern. See Chirality
Helix, 145
Hexagon, 162
Hexahedra, 165
Hexahedron (Cube), 163, 165, 185, 189, 206-208
monopole QSO (1:3), 228-236
QSO 6-hedron and the Platonic cube, 206208
Hippopede of Eudoxus, ix—x, xii, 211
Hobby-Eberly Telescope, 226
Hypocycloid, 145
Hypotrochoid, 125-128

[

Icosahedron, 67, 71, 72, 185
monopole QSO (2:5) prolate, 239-240
possibilities for future study, 198

Icosahedron, continued

QSO 1(2:5), 189-191

Intersection event, 51-53. See also Tangent event

notation, 47
single, 48

Irrational QSO, 3740, 167
Isometric view, 50

3-D astroid, 146

compared with vector diagrams, 50, 53

first 100 monopole QSOs, 77

icosahedron, 67

L-1(1:b) QSO and their polyhedra, 168

Loftus’ 3-D Combined Rotation Plotter, 79

Loftus QSO polygons and polyhedra, 166, 167

monopole (b:1) QSO polygon series, 163

monopole QSO (1:3), oblate hexahedron, 228

monopole QSO (2:3), prolate octahedron, 237

monopole QSO (2:5), prolate icosahedron, 239

monopole QSO (4:5), a 40-hedron, 240

monopole QSO and their Platonic solid, 186, 187, 188, 189,
190

monopole QSO polygons, 160

monopole QSO polyhedra, 164

monopole QSO triangle, 160

original QSO (1:1) display, 79

QSO (1:2), rose bud, 131

QSO (2:1), on xy-plane, 115

QSO L-1(1:3), 168

Isosceles tetrahedron, 188n6
Isotropic Vector Matrix (IVM), 18-20. See also Cartesian

coordinate system; Spherical coordinate system
carried out as physical structure, 224-226
modeling QSO in the, 197
possibilities for future study, 196

A lower case letter “n” following a page number indicates a footnote.
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J Lissajous figure, continued

possibilities for future study, 202
J84. See Snub disphenoid (J84) three-in-one QSO globe display resemblance, 101
Janus, 194, 195 Loftus, David, 78-79, 158, 227
Johnson solid, 192 Loftus QSO series

L-1(a:1), 165-167, 204
K L-1(1:b), 167-169
Kelleher, John, 79, 81, 142n9, 222, 227 M

Kennedy Space Center, 226
MacNeil, Hector, 225-226

L Mathematical concepts, 209n18
McDonald Observatory, 226
L-1(a:1) and 1(1:b) series. See Loftus QSO series Mechanical devices to display QSO, 200-201
L-figure. See Lissajous figure Monopole polygons and polyhedra. See also Chords of
Left-handedness. See Chirality polygons
Leibnitz, Gottfried, x about, 158-159
Lemniscate of Gerono, xi, 7 a-gons & b-gons, all four series, 169—174
equivalence with projection of QSO (1:1) on xz-plane, a-gons & b-gons, to polyhedra, 180—-184
110-114 drawing polyhedra, 228-244
and Lissajous figure, 136—138 I(a:1) series, 159-163, 169
Limagon, x, 117-120 1(1:b) series, 163—165, 169
relation to cardioid and spherical cardioid, 117, 154 Loftus L-1(a:1) series, 165-167, 204
relation with rhodonea, trochoid and QSO, 131 Loftus L-1(1:b) series, 167-169
Line. See also Chord length possibilities for future study, 203-205
monopole QSOs, 162, 165, 175, 180 reversal of orientation, 165
Lissajous, Jules Antoine, 133 z-axis view for constructing a-gons and b-gons, 174—180
Lissajous figure Monopole QSOs, 42—44. See also Dipole QSOs; Event;
about, 133 Monopole polygons and polyhedra
compared with QCO (Quasi-Cylindrical Orbit), 141-144 and 3-D astroid, 147-148
figure (1:1), 134-135 and the Clelia, 154-156
figure (2:1), 135-138 first 25, chord variables, 241-243
figure (3:1), 138-140 first 25, orbital length, 71, 72
figure (10:7), 141 first 100, 72-77
generating, 133-134 and Gray’s baseball seam, 149-151

A lower case letter “n” following a page number indicates a footnote.
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Monopole QSOs, continued
in QSO landscape, 159
reversal of orientation, 165
and spherical cardioid, 152154
static figure duplication, 204
and Viviani’s curve, 157
Multipole QSOs, 45-47, 236n7

N

n (slider variable in Graphing Calculator software), 14, 15
Notation. See QSO notation

O

Octahedron, 66, 67, 71, 72, 185, 224
monopole QSO (2:3) prolate, 236-239
produced by dipole QSO, 204
QSO 1(2:3), 187-189
and tetrahedron, 27

Octamap, 80-81, 93

Octet truss, 224-226

Off-axis event, 58-61

One-dimensional QSO space curve, 1

Orbital length. See also QSO landscape
calculating, 6870
for first 25 monopole QSOs, 71
possibilities for future study, 198-199
relation with rotational rate, 72

Orbital trace. See also Baseball seam QSO; Polar trace of Gray’s

baseball seam
difference between one and two axes, 68
in quadripole QSO display, 86, 87, 90, 91
in three-in-one QSO globe display, 100-101
with tubular parametric surface, 220-221

Origin of a coordinate system, 11
Orthogonal system of coordinates, 18n5
reasons for author’s use, 20
relationship with Fuller’s IVM system, 20

P

P (a point in a coordinate system), 11, 16. See also Point
formula for location of, 11
Point (1, 1, 1), 11

Parabola and plane curve, 107-110

Parametric sphere, 103

Particle theory, 196

Pascal, Etienne, x, xii. See also Limacgon

Pentagon, 170171
monopole QSOs, 162, 169—-172, 177-179
possibilities for future study, 204

Phase angle. See also Angle in a coordinate system
dipole and multipole QSOs, 44-47, 65-66
Lissajous figure, 135, 141n7
of monopole QSO pentagon, 172
omission, in some examples, 48n10

Phi (¢), 11, 12, 87. See also Cone of Phi (¢)
Physics
string theory, 199
superdeformed nuclei problem, 203204
virtual particles, 196
Plane, two-dimensional, 105-107
addition of parabola to, 107-110
for monopole (a:1) and (1:b) QSO, 169
Plane curve, 105. See also Lissajous figure; Space curve
epitrochoid, 120-124
hypotrochoid, 125-128
and lemniscate of Gerono, 110-114
and the Limagon, 117-120

A lower case letter “n” following a page number indicates a footnote.
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Plane curve, continued
and parabola, 107-110
possibilities for future study, 201-202
rhodonea, 128—132
Planetary motion, ix, 211
polar system, 42-47
Platonic solid, 185-193. See also specific type, e.g.
Dodecahedron, Icosahedron, Tetrahedron, etc.
definition, 185
possibilities for future study, 204, 205-208
Point. See also P (a point in a coordinate system)
five 1-gons, 174
monopole QSO, 162, 165
Point Rotation, 222
Polar event
of dipole QSOs, 64
monopole QSO Platonic solid, 186187, 188, 190
monopole QSO polyhedron, 181
and z-axis view of monopole QSO, 174
Polar trace of Gray’s baseball seam, 151
Pole of QSO, 42-47
Polygons and polyhedra, 71, 72. See also Chords of polygons;
Monopole polygons and polyhedra; Platonic solid;
specific types, e.g., Line, Triangle, Tetrahedra, etc.
can space curves make polyhedra, 203
reversal of orientation of polyhedron, 165
stability, 208-210
volumes of polyhedra, 193
Prodaniuk’s three-axis QSO, 223

Q

QCO. See Quasi-Cylindrical Orbit (QCO)
QEO. See Quasi-Elliptical Orbit (QEO)
QSO. See Quasi-Spherical Orbit (QSO)

QSO (a:b), 13-14, 26-27, 161-162, 164
reversal of orientation, 165
QSO (b:a), 26-32
total variations, 32
QSO (0:1), 135n4
QSO0 (0.5:0.5), 34
QSO (0.5:1), compared with QSO (1:2), 35
QSO (1:0.5), compared with QSO (2:1), 35-36
QSO (1:1), 6, 13
axial permutations, 23
calculating orbital length, 69, 70
compared with irrational ratio QSO, 3740
compared with three-axis QSO (1:1:1), 223
dipole version, QSO event examples, 62—-67
displayed with three axial views at once, 95-104
early QSO display, 79-80
equivalence to parabola when on yz-plane, 107-110
example, ix—x
with exchanged trig (sine:cosine) functions, 30—32
folded Octamap examples, 81
generating with inverted unicycle, 56
how it was first generated, 195
monopole version, and spherical cardioid, 154
monopole version, and the Clelia, 156
monopole version, and unicycle model, 218
monopole version, and Viviani’s curve, 157
monopole version, event example, 47, 48
monopole version, example, 51-53
monopole version, polygon, 161
with negative axes, 24, 25
orbital length for first 25 monopole QSOs, 71, 72
and quadrifolium, 129
rational ratio, 37
reversing chirality, 29
view from x- y- and z-axes, 31
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QSO (1:1), continued
and Viviani’s window, 6
on the xy-plane, 106-107
xz-plane projection equivalence with Lemniscate of Gerono,
110-116
QSO (1:2), 131
3-D rose bud view, 131
compared with QSO (0.5:1), 35
folded Octamap example, 81
monopole version, and the Clelia, 156
monopole version, compared with Gray’s baseball seam, 149
monopole version, event examples, 48, 53-58
QSO (1:3)
compared with exponential QSO, 36
continuous series into QSO (2:3), 4042
difference from other irrational ratio QSO, 39—40
monopole version, and the Clelia, 156
monopole version, drawing the, 228-236
monopole version, event examples, 49-50
and trifolium, 129
QSO (1:4), monopole version, and the Clelia, 155
QSO (1:5)
and the Clelia, 155
monopole version, and attendant pentagon, 170
monopole version, five 1-gons, 174
QSO (2:1)
8-trace variation, 92
cardioid, 115
Chester’s Octamap example, 81, 82
compared with QSO (1:0.5), 35-36
comparison with cardioid, 114-116
globe display example, 93-95
to illustrate Fuller’s great circle of railroad tracks of energy,
iX, 66
Limacon, 114-116

QSO (2:1), continued
and Lissajous figure (3:1), 138-140
monopole, dipole, and multipole QSO examples, 4347
monopole version, and spherical cardioid, 152
monopole version, and the Clelia, 156
off-axis QSO event examples, 58-61
quadripole, 89-92
rational ratio, 37
and rhodonea, 130
QSO (2:3), 1, 14, 15
compared with QCO (2:3), 142-143
compared with QSO (3:2), 27
continuous series generated from QSO (1:3), 4042
monopole version, drawing the, 236-239
monopole version, octahedron, 187189
and space curve, 27n13
QSO (2:4), monopole version, z-chord, 179, 180
QSO (2:5)
monopole version, drawing the, 239-240
monopole version, five 2-gons, 173
monopole version, icosahedron, 189—-191
monopole version, two 5-gons, 170
QSO (3:1)
compared to the limagon, 117-120
dipole version, 159
and Lissajous figure (3:1), 138-140
monopole version, and spherical cardioid, 152—-153
and rhodonea, 131
QSO (3:2)
Burke’s discovery of geometric figure from QSO event, 158
compared with QSO (2:3), 27
dipole version, cube generated from, 206-208
monopole version, and 3-D astroid, 147148
monopole version, tetrahedron, 185-186
QSO (3:4), monopole version, complete polyhedron example,
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QSO (3:4), continued
180-184
QSO (3:5), 3
hypotrochoid examples, 125128
monopole version, five 3-gons, 173
monopole version, three 5-gons, 171
rational ratio, 37
QSO (4:1), 3
monopole version, and spherical cardioid, 153
monopole version, polygon, 162, 163164
QSO (4:2), monopole version, z- chord 180
QSO (4:5)
monopole version, drawing the, 240-241
monopole version, five 4-gons, 172
monopole version, four 5-gons, 171
QSO (5:1), 31
monopole version, and spherical cardioid, 153
monopole version, five 1-gons, 174
monopole version, single 5-gon, 179
QSO (5:2)
monopole version, and Platonic dodecahedron, 191-193
monopole version, five 2-gons, 175
monopole version, three 5-gons, 178
monopole version, two 5-gons, 178
QSO (5:3)
epitrochoid examples, 122—124
monopole version, five 3-gons, 176
monopole version, three 5-gons, 178
QSO (5:4)
monopole version, five 4-gons, 176
monopole version, four 5-gons, 177
QSO (5:5), monopole version, five 5-gons, 172, 177
QSO (1:1:1) for three-axis QSO, 223
QSO (1:2:1) for three-axis QSO, 222
QSO (3:4:3) for three-axis QSO, 222

QSO (1:n) series, 32
QSO (n:n) where 7 is an irrational number, 40

QSO display. See also Isometric view; Unlcycle model; x-axis

view; y-axis view; z-axis view
3-D, 98
3-D graph of orbital length, 72
brief history of programmers and their work, 227
cone & disk display, 82-92
difference from Lissajous figure display, 141
early types, 78-81
globe with latitude and longitude, 92-95
possibilities for future study, 199
significance of sphere for Platonic solid, 180
static and dynamic, 7-10
QSO display colors
1-gons, 174
chords inside QSO, 170n10
eight combinations of positive and negative axes, 26
on globe with longitude and latitude, 94
irrational ratios, 37
QSO landscape, 72
red and blue, 22, 23
small red and blue spheres, 50
QSO equation. See also QSO (a:b); QSO (b:a)
in Cartesian notation, 1617
globe display, 93
Loftus’ equation, 165
original, 78
in spherical notation, 15
total number of variations, 32
variations, 21-32, 197
vector equation, rearranging terms within, 99—-100
vector equation, standard form, 21
QSO generator, 201
QSO landscape, 72—-77, 159
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QSO landscape, continued
possibilities for future study, 198-199
with QSO analogs of three Platonic solids, 191
single plane polygons, 169
z-axis chord in first 25 QSOs, 179-180
QSO notation. See also Variables used to express QSO
dipole QSO, 44
monopole QSO, 43
QSO ratio, 5, 197. See also QSO landscape
continuously varying, 4042
exponential, 36
fractional, 33-36
irrational, 3740
possibilities for future study, 197
rational, 37
standard form, 33
QSO trace. See Orbital trace
Quadrable Florentine sail. See Viviani’s window
Quadrifolium, 129, 132
Quadripole QSO, 89-92
Quasi-Cylindrical Orbit (QCO), 141-144, 200n8
QCO (2:3) compared with Lissajous figure (2:3), 144
QCO (2:3) compared with QSO (2:3), 142-143
Quasi-Elliptical Orbit (QEO), 2
Quasi-Spherical Orbit (QSO). See also Event; Graphing
Calculator; Orbital length; Pole of QSO
cloned, 219
coordinate system for graphic illustration, 11-20
definition, 1, 2, 195
definitional relation with space curve, 145
depiction in book’s diagrams, 1
Earth as, 211
generating with cone and disk display system, 87-88
history of study, 194—195
need to look at multiple views, 184

Quasi-Spherical Orbit (QSO), continued
negative or reversed, 22
possibilities for future study, 195-196
properties, ix, 3, 6, 145
properties of dynamic, 34
and QCO (Quasi-Cylindrical Orbit), 141-144
quadripole, 89-92
range and depth of the concept, ix—xii
real-world application, 200
three-axis, 222-223
tubular, 220-221
variables used to express, 12—15
vector expression for QSOs, 12
visualizing, 3-6, 11

R

r (radius in a coordinate system), 11

Radius vector in quadripole QSO display, 84, 87, 89-90
Ratio. See QSO ratio

Red sphere in unicycle model, 217, 218

Reference circle for three-in-one QSO globe display, 97

Reference sphere for three-in-one QSO globe display, 101-104

Retrograde motion of the planets, ix
Rhodonea, x, xi, 128—-132
relation with the Clelia, 154156
resemblance of QSO (1:n) series to, 32
Right-handedness. See Chirality
Roberval’s use of limacon, 117
Roemer’s model of cardioid, 114
Rotating circle with Cartesian axes and equator, 83, 84
in quadripole QSO display, 91
translucent disk display, 86
Rotating points
and orbital length calculation, 70
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Rotating points, continued
for single QSO event, 51-52
Rotation
after reversing chirality, 28-30
of dipole QSOs, 44
exchanging, 2628
of irrational ratio QSOs, 38-39
of multipole QSOs, 4647
notation for whether identical or not on both axes, 13-14
and orbital length, 68, 72
order of QSOs, 12
and QSO ratio, 34
series 1(a:1) and 1(1:b) QSOs, 165
three-axis QSOs, 222-223

S

Sine/cosine
to express angle in a coordinate system, 16, 17, 30-32
to express off-axis event in QSO, 61
variables used to write chord for first 25 monopole QSOs,
241-243
Sine waves, 70, 101
Single event, 47, 48
16-hedron, 184
Snub disphenoid (J84), 192, 193, 204-205
Space curve, 1-2, 105, 202. See also Plane curve
about, 145
baseball seam and QSO, 149-151
Clelia and QSO, 154-156
conical helix, 1
equations, 145n1
one-dimensional QSO, 1
polyhedra from, 203
possibilities for future study, 203

Space curve, continued
spherical cardioid, 152—154
3-D astroid, 145-148
and Viviani’s curve, 157
Sphere. See Red sphere; Virtual sphere
Spherical cardioid, 152—154. See also Cardioid
relation to Pascal’s limacon, 154
Spherical coordinate system, 11-15, 196. See also Cartesian
coordinate system; Isotropic Vector Matrix (IVM)
Spin, 195. See also Axes
Spiral and QSO projection, 145
Square
monopole QSOs, 162, 172-174, 176, 180
QSO 1(3:4) polyhedron example, 181
Square brackets for dipole and multipole QSOs, 44-45
Static view of QSO, 7, 8, 10. See also Dynamic view of QSO
String theory and QSO orbital length, 199

T

t (parametric variable), 13
Tangent event, 48, 53—58. See also Intersection event
Temple of Viviani, The (Banchoff), 157
Tetrahedra, 163, 165

and 4-hedron QSO monopole (3:2), 210
Tetrahedral space frames of Alexander Graham Bell, 225-226
Tetrahedron, 67, 71, 72, 185, 224

first, 158-159, 180

1sosceles, 188n6

monopole QSO (1:3) oblate, 228-236

and octahedron, 27

QSO 1(3:2), 185, 185-187

and QSO astroid, 147148

relationship to cube, 209n17

Theta (0), 11, 12
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Three-axis QSO rotation, 222-223
3-D astroid, 145-148
3-D cardioid, 152154
3-D Combined Rotation Plotter (Loftus), 78-79, 158
3-D QSO0, 2, 196
3-gons, 173, 182
Tipping angle, 162—163
Loftus QSOs, 167
Triangle
Buckminster Fuller’s theory of structure, 209
monopole QSOs, 160, 162, 163, 173, 176
QSO 1(3:4) polyhedron example, 181
Trifolium, xi, 129, 163
Trigonometry. See Angle in a coordinate system; Sine/cosine
Trochoid, 131
Tubular QSO, 220221
2-D astroid, 145
2-D cardioid, 152, 154
2-D QSO0, 1, 195, 196
2-gon, 173

U

u (parametric variable), 213
Uneventful lives of points in a 2-dimensional circular orbit, 47
Unicycle model
about, 3-5
cone & disk refinement, 82-92
manipulating, 33
r (radius), 11
simulating, 212-221
Unit circle and parabola on projection of QSO (1:1), 108
and lemniscate of Gerono, 114
University of Texas, 226

v

v (parametric variable), 213

Valleys of similarity 72—73, 198-199

Variables used to express QSO, 12—15, 26n12. See also a(a
rotation, first element of the QSO ratio); b (a rotation,
second element of the QSO ratio)

Vector Equilibrium (Fuller), 67

View Rotation, 222

Virtual particle, 196

Virtual sphere, 2-3

QSO (1:1),6
Viviani’s curve, 157
Viviani’s window, X, Xi, xil, 6

Y

Wavelength and QSO orbital length, 199

X

X-axis view
first 100 monopole QSOs, 74
first six 1(a:1) QSOs and their polyhedra, 164
icosahedron, 67
monopole QSO (2:5), prolate icosahedron, 239
monopole QSO (4:5), a 40-hedron, 240
monopole QSO polyhedra and their Platonic analogs,
186-190
of polygon tipping angle, 162—163
QSO (1:1), 31
QSO (2:3) and QCO (2:3), 143
of three-in-one QSO globe display, 100, 101, 103
xy-plane
cardioid and projection of QSO (2:1), 114116
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xy-plane, continued Z

circle, 105-107

drawing chords with z-term, 233-236 Z-axis view

limacon, 117-120 of the Clelia, 155

monopole QSO series, 169-174 for constructing a-gons or b-gons, 174—180

QSO (2:1), and rhodonea, 130 first 100 monopole QSOs, 76

QSO (3:1), and rhodonea, 131 first six 1(1:b) QSOs and their polyhedra, 164

QSO (3:5), and hypotrochoid, 125-128 Graphing Calculator view of Cartesian coordinate system

QSO (5:3), and epitrochoid, 122124 from, 95

QSO geometric shapes, 164 Kelleher rotation QSO display, 79

vs. 3-D view of QSO (1:2), 132 monopole (b:1) series of QSO polygons, 163
xz-plane projection of QSO (1:1), 110-113 monopole QSO (1:3), oblate hexahedron, 228

monopole QSO (2:3), prolate octahedron, 237
Y monopole QSO (4:5), a 40-hedron, 240
possibilities for future study of QSOs, 205

y-axis view QSO (1:1), 31

first 100 monopole QSOs, 75 QSO (2:3) and QCO (2:3), 142

Loftus QSOs, 166, 167 in three-in-one QSO globe display, 101, 103

QSO (1:1), 31 unicycle model, 212

QSO (2:3) and QCO (2:3), 143 in vector diagram, compared with isometric view, 54

three-in-one QSO globe display, 101, 103
Young, Chris, 221nl
yz-plane

monopole QSO series, 169

parabola, 107-110

QSO geometric shapes, 164

in unicycle model, 212
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The author lives in Tumwater, WA.
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Why should “spin” be of necessity a two-dimensional phenomenon?

Quasi-Spherical Orbits, or QSOs, are the dynamic three-dimensional curves that result when a point

rotates simultaneously about two or more axes. Although the historical record is littered with hints, many of

which are cited in this book, there are no precedents for QSOs. These intriguing curves provide insights and

yield results in mathematics and physics alike.

In mathematics, QSO (1:1) is produced by equal rates

of rotation on the vertical and horizontal axes. This curve also
goes by the name of Viviani's Curve (Vincenzo Viviani, 1622 -
1703), although Viviani probably never thought it could be
generated dynamically. The projection of QSO (1:1) on the
xy—plane is a circle. On the yz—plane it's a parabola, and on the
xz—plane it's the Lemniscate of Gerono. Pascal's Limagon is the
projection of a QSO, as are Grandi's Rhodonea and Lissajous'
figures. Three-dimensional curves subsumed by QSOs are the
Astroid, the Baseball Seam, the Clelia, and the epi- and
hypotrochoids. QSOs also generate all the Platonic Solids
except the dodecahedron. Instead of the regular dodecahedron,
QSO (5:2) generates the Johnson solid, J84, which is, in fact,
dodecahedral. It's just not the Platonic version.

On the physics side, the Hippopede of Eudoxus is a

QSO, as is the analemma. QSO (1:1) appears to characterize
aspects of the electron cloud of the nitrogen atom, and QSO (1:2)
may describe a special-case photon orbit around a Kerr black
hole. A number of QSOs seem to be related to Buckminster
Fuller's “Great Circle Railroad Tracks of Energy,” while QSO
(3:2) may support Fuller's suggestion of a tetrahedral photon.
QSOs seed a theory of virtual particles, describe the decay of
superdeformed nuclei, and explain how to fit waves of
enormous length into the minuscule volumes required by string
theory.



Errata

p- 241: Period to question mark.
As printed: Why, for instance, is there a gap between D and I in the previous example.
Change to: Why, for instance, is there a gap between D and I in the previous example?

p. 60: The order of Events.
Current language: Events are listed and analyzed in the order in which the rotating point first passes
through the location of the event.
But Events are created only by a second or subsequent pass of the rotating point, so it makes more sense
to list the events in the order in which they’re crated, i.e. by a second or any subsequent pass through
that same point.

QSOs on the WWW

1) http://www.youtube.com/watch?v=k9gRoo4cl.Tc

2) http://www.youtube.com/watch?v=pNGwa-ff9GQ
3) http://www.youtube.com/watch?v=_{fu6Mm9L06k
4) http://www.youtube.com/watch?v=GAg3em5SNY80
5) http://www.youtube.com/watch?v=tZM7u0jJ Y 5k
6) http://www.youtube.com/watch?v=AD{fJKmUwVtQ

http://www.quirkyscience.com/quasi-spherical-orbits/
http://curvebank.calstatela.edu/gsochester98/qsochester98.htm
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