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1 Abstract

In this article, a new force law between current elements is proposed which holds the 3rd Newton’s Law and
concides with known experimental measurements avoiding the contradictions of Ampère and Grassman
expressions. Likewise, an interaction expression between point charges is postulated which satisfies action
reaction principle and is Galileo Invariant. This opens the way to a revision of the concept of magnetic
field and a further study of the interaction between moving charged bodies.

Keywords: Grassman, Ampère, Whittaker, Maxwell, Lorentz Force, Third Newton’s Law, Action-
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2 Introduction

After the publication, July 21st 1820 [15], of Oesterd’s obsevations about the effects of a current on a
magnetized needle, Jean-Baptiste Biot and Felix Savart show, October the 30th 1820 [6], their results
about the force on a magnet precticed by a stationary current in a wire.

Ampère extends this phenomenon to the interaction between currents. He assumes the impossibility
of making and insloated measurement of the influence of a piece of a circuit on another piece of the same
circuit and, from the Newtonian point of view, establishes his law of interaction between current elements.
His works are published between 1820 and 1825 [1].

Grassman, in his work titled ”A new Theory of Electrodynamics” (1845) [17], criticizes Ampère’s Law
pointing that the force of interaction vanishes when the current elements form a determinated angle with
the line that links them both. He postulates a new expression compatible with Biot-Savart law and,
knowing that his expression does not satisfy the Action-reaction principle, asserts that the action all over
the circuit must be consider for evaluating the force of a part of the circuit to another properly and giving
the same results as Ampère’s Law. He also prouposes some experiments for trying to discern the validity
of one or other expression.
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Maxwell analizes in ”A Treatise on Electricity and Magnetism” (1865) [8], several force laws within
current elements which give the same results being integrated on closed paths. Moreover, from Ampère’s
Law, he developes the different expressions of Gauss and Weber who were looking for justifying the
intereaction between currents starting from known electrical phenomena.

Whittaker, analizing Ampère and Grassman expresions in his book ”Theories of Aether and Electricity”
(1910) [21], shows that the first expression is condicioned for giving a force in the direction of the linking
line among current elements and adds a second term to Grassman expression for satisfying 3rd Newton’s
law and whose contribution vanishes integrating its action on a closed path. The expression which he
obtains coincides with one considered by Maxwell [12].

We can think that the Ampère’s belief that the force direction was on the liking line one prevented
him to get the correct solution. The expression of Maxwell and Whittaker safisfies the 3rd Newton’s Law
without that condition:

d2Fba =
µ0

4π

IbIa
|rba|2

[dlb(dla · rba) + dla(dlb · rba)− rba(dla · dlb)] (1)

Despite of obeying the Action-Reaction principle and predicting the experimental results, this ex-
pression has not received any attention and the dispute has been reduced within Ampère and Grassman
(equivalent to Biot-Savart Law or Lorentz Force) expressions. Dispute which is not settled, nowadays,
as some authors consider that Ampère’s Law could explain some experimental issues and, furthermore,
discard the necesity of using the Special Theory of Relativity [2][16][20][7].

The different experiences for supporting the Ampère expression are, basically, ”Ampère’s boat” mod-
ifications [9]. On the other hand, experiences based on capacitor discharges or ”wire explosions” are
proposed where some authors assert the existence of longitudinal forces [4][19][11]. It is not necessary to
call into question those evidences as the discharges give autoinduction and oscillating phenomena where
those forces would be justified. Summing up, no experience is decisive.

In this article a way of obtaining the Maxwell-Whittaker is discribed, based on the experimental obser-
vations and considering the 3rd Newton’s Law. Likewise, we transform the Maxwell-Whittaker expression
taking the field concept and a possible law, Galileo invariant, of interaction between charges is postulated.

3 Experimental Observations

A typical example of the experimental montage for proving the validity of the Ampère or Grassman
expression consist in the measurement of the practised force of one part of the circuit on another[2][11].

The circuit is divided in two parts: A and B. The eletrical continuity is guaranteed by two mercury
contacts C1 and C2. A force F appears on part B. The measurement method is not shown.

The obtained values of F coincide, despite of experimental errors, with the theorical values obtained
with Ampère’s Law:

FAB =
µ0

4π

∫
A

∫
B

I2

[
3

(
drb ·

rab
|rab|

)(
dra ·

rab
|rab|

)
− 2 (dra · drb)

]
rab
|rab|3

(2)

On the other hand, they also coincide with the values obtained appliying the Lorentz’s Law:

FAB =

∫
B

Idri ∧
µ0

4π

∮
A+B

I (drj ∧ rij)

|rij|3
(3)

However, for obtaining the same results appliying Lorenz’s Law, the second integral has been extended
to the total circuit A+B[10].
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Figure 1: Circuit Scheme

Summarizing, for obtaining the force of A performed on B applying Ampère’s force we would consider
the action of each element of A on each element of B and, on the other hand, appliying Lorentz’s force we
would consider the action of the whole circuit on B. Following this procedure, we would obtain the same
result compatible with the experimental measurements.

In these terms, the experience does not allow to make a distinction between Ampère’s and Lorentz’s
Law. If we consider, as we do, the validity of the 3rd Newton’s Law we would consider the Ampère’s
expression as the correct one from a physical point of view and Lorentz’s one would be relegated to a
”mathematical artifice”.

4 Neither Ampère nor Grassmann: Deduction of a new expres-
sion

Figure 2: Two closed circuits interacting

Experimentally, we could not evaluate the force practised by an element on another of the same circuit.
However, we can measure the force of a closed circuit, contained in a volume Vb, on an element of another
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circuit contained in a volume Va. From this moment, we would consider a ”Grassman force” type:

Fba =

∫
Va

JadVa ∧
µ0

4π

∫
Vb

Jb ∧ rba

|rba|3
dVb (4)

We would admit, based on the experimental observations, that the same type of force on a volumen
element is given:

dFba = JadVa ∧
µ0

4π

∫
Vb

Jb ∧ rba

|rba|3
dVb (5)

Now, we will deduce an expression of the force between two volumen elements dVa and dVb, both
electrically neutral:

Figure 3: Two neutral volumen elements interacting

The previous considerations could imply that:

d2Fba = JadVa ∧
µ0

4π

Jb ∧ rba

|rba|3
dVb (6)

However, the force on the element dVb by dVa:

d2Fab = JbdVb ∧
µ0

4π

Ja ∧ rab
|rab|3

dVa (7)

which collide with the 3rd Newton’s Law as it does not always hold:

d2Fba = −d2Fab (8)

Let’s consider the experimental evidences and imposing the 3rd Newton’s Law. Without loss of gener-
ality, we are able to suppose:

d2Fba = JadVa ∧
µ0

4π

Jb ∧ rba

|rba|3
dVb + B1a + B2a (9)

d2Fab = JbdVb ∧
µ0

4π

Ja ∧ rab
|rab|3

dVa + A1b + A2b (10)

Through expression (8) we can say:

B1a = −JbdVb ∧
µ0

4π

Ja ∧ rab
|rba|3

dVa (11)
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and

A1b = −JadVa ∧
µ0

4π

Jb ∧ rba

|rba|3
dVb (12)

We would obtain:

d2Fba = JadVa ∧
µ0

4π

Jb ∧ rba

|rba|3
dVb + JbdVb ∧

µ0

4π

Ja ∧ rba

|rba|3
dVa + B2a (13)

d2Fab = JbdVb ∧
µ0

4π

Ja ∧ rab
|rab|3

dVa + JadVa ∧
µ0

4π

Jb ∧ rab
|rab|3

dVb + A2b (14)

Now, we have to determine B2a and A2b, we know by (5):

∫
Vb

[
JadVa ∧

µ0

4π

Jb ∧ rba

|rba|3
dVb + JbdVb ∧

µ0

4π

Ja ∧ rba

|rba|3
dVa + B2a

]
= JadVa ∧

µ0

4π

∫
Vb

Jb ∧ rba

|rba|3
dVb (15)

Using the vectorial identity: A ∧ (B ∧C) = B(A ·C)−C(A ·B) we can obtain:

∫
Vb

JbdVb ∧
µ0

4π

Ja ∧ rba

|rba|3
dVa =

µ0

4π
JadVa

∫
Vb

Jb · rba

|rba|3
dVb −

∫
Vb

µ0

4π

(Ja · Jb)rba

|rba|3
dVadVb (16)

In Appendix 1 is demostrated that, if Jb is contained in the volume Vb and ∇ · Jb = 0 in every point
of Vb:

∫
Vb

Jb · rba

|rba|3
dVb = 0 (17)

So, we obtain:

∫
Vb

JbdVb ∧
µ0

4π

Ja ∧ rba

|rba|3
dVa = −

∫
Vb

µ0

4π

(Ja · Jb)rba

|rba|3
dVadVb (18)

and equation (15) is satisfied if:

B2a =

∫
Vb

µ0

4π

(Ja · Jb)rba

|rba|3
dVadVb (19)

Analogously:

A2b =

∫
Vb

µ0

4π

(Ja · Jb)rab
|rab|3

dVadVb (20)

And:

B2a = −A2b (21)

We have no experimental evidences which justify that the interaction between elements is:

d2Fba = JadVa ∧
µ0

4π

Jb ∧ rba

|rba|3
dVb + JbdVb ∧

µ0

4π

Ja ∧ rba

|rba|3
dVa +

µ0

4π

(Ja · Jb)rba

|rba|3
dVadVb (22)
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Nevertheless, action-reaction principle holds and the expression is compatible with the experimental
results for any volume Vb.

If we were dealing with current elements we could write the previous expression as:

d2Fba = Iadla ∧
µ0

4π

Ib(dlb ∧ rba)

|rba|3
+ Ibdlb ∧

µ0

4π

Ia(dla ∧ rba)

|rba|3
+
µ0

4π

IaIb(dla · dlb)rba

|rba|3
(23)

Using the same vectorial identity A ∧ (B ∧C) = B(A ·C)−C(A ·B) as before:

d2Fba =
µ0

4π

IaIb
|rba|3

[dlb(dla · rba) + dla(dlb · rba)− rba(dla · dlb)] (24)

Obtaining Maxwell-Whittaker expression.

5 Interaction between point charges

As we have seen until now, the interaction between current elements would be given by:

d2Fba = JadVa ∧
µ0

4π

Jb ∧ rba

|rba|3
dVb +

µ0

4π
JadVa

Jb · rba

|rba|3
dVb (25)

instead of:

d2Fba = JadVa ∧
µ0

4π

Jb ∧ rba

|rba|3
dVb (26)

From the equation (26) below, has been extrapolated, without experimental evidence, an equation
which describes the interaction between charges, accepted until today:

Fba = qava ∧
µ0

4π

qb(vb ∧ rba)

|rba|3
(27)

We could extrapolate Maxwell-Whittaker equation (25), postulating that the interaction between
charges is due to their relative velocity:

Fba = qa(va − vb) ∧ µ0

4π

qb(vb − va) ∧ rba

|rba|3
+
µ0

8π

qaqb [(va − vb) · (vb − va)] rba

|rba|3
(28)

From this expression, Maxwell-Whittaker equation (25) is deduced in the Appendix 2.

6 Conclusions

As a result of this work, we are able to say that neither Ampère’s and Grassman’s formulas describe properly
the interaction between current elements, nor Lorentz’s Law the interaction between point charges as being
an extrapolation of Grassman’s formula. Thus, we propose a Force Law for current elements (22) and for
point charges (28), which are free of the problems carried by the previous expressions and satisfy 3rd
Newton’s Law.

On the other hand, a revision of the concept of magnetic field is proposed since Biot-Savart Law, which
describe the magnetic field created by a current element, is not consistent with the proposed expression.
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Appendix 1

Let Vb a region of the space where the current density is confined and ∇ · Jb = 0. Then:

∫
Vb

Jb · rba

|rba|3
dVb = 0 (29)

Proof:

We can rewrite the previous integral as:

−
∫
Vb

Jb · ∇
(

1

|rba|

)
dVb (30)

Using the vectorial identity: ∇ · (ψA) = ∇ψ ·A + ψ(∇ ·A) the previous integral results:

−
∫
Vb

∇ ·
(
Jb

1

|rba|

)
dVb +

∫
Vb

1

|rba|
(∇ · Jb)dVb (31)

We said that ∇·Jb = 0 so the second term of the sum vanishes. The first integral, using the divergence
theorem, results:

∮
∂Vb

1

|rba|
Jb · dS = 0 (32)

which is zero as all the density current is contained in the volume Vb and there is no flux through the
surface that enclose it.

So, the integral (29) is equal to zero.

Appendix 2

In this appendix, Maxwell-Whittaker expression will be obtained from the equation (28).

Let be two conductors, electrically neutral, of volumes Va and Vb motionless respect each other. The
interaction between two elements of the conductors will be due to their moving charges:

d2Fba = dqa(va − vb) ∧ µ0

4π

dqb(vb − va) ∧ rba

|rba|3
+
µ0

8π

dqadqb [(va − vb) · (vb − va)] rba

|rba|3
(33)

Rewriting the expression below in terms of charge density:

d2Fba = ρadVa(va − vb) ∧ µ0

4π

ρbdVb(vb − va) ∧ rba

|rba|3
+
µ0

8π

ρaρbdVadVb [(va − vb) · (vb − va)] rba

|rba|3
(34)

Suppose, now, that we integrate the contribution of a volume element ∆Vb to another ∆Va which both
contain several moving particles inside but they are small enough from the vector rba.

Fba =

∫
∆Va

∫
∆Vb

ρadVa(va−vb)∧ µ0

4π

ρbdVb(vb − va) ∧ rba

|rba|3
+

∫
∆Va

∫
∆Vb

µ0

8π

ρaρbdVadVb [(va − vb) · (vb − va)] rba

|rba|3
(35)
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Developing the vectorial product of the first term and the scalar product of the second one, we get:

Fba =
µ0

4π

∫
∆Va

∫
∆Vb

ρaρb
|rba|3

[va ∧ (vb ∧ rba)− va ∧ (va ∧ rba)− vb ∧ (vb ∧ rba) + vb ∧ (va ∧ rba)] dVadVb

+
µ0

8π

∫
∆Va

∫
∆Vb

ρaρb

[
2(va · vb) + |va|2 + |vb|2

]
rba

|rba|3
dVadVb

(36)

Since we consider rba constant because we are integrating in very small volumes, the terms which do
not depend on both velocities vanishes because of the electrical neutrality of the conductors.

∫
∆Va

ρadVa = 0 ,

∫
∆Vb

ρbdVb = 0 (37)

Then:

Fba =
µ0

4π

∫
∆Va

∫
∆Vb

[ρava ∧ (ρbvb ∧ rba) + ρbvb ∧ (ρava ∧ rba)]

|rba|3
+
µ0

4π

∫
∆Va

∫
∆Vb

ρaρb(va · vb)rba

|rba|3
dVadVb (38)

As Ji = ρivi, we obtain:

Fba =

∫
∆Va

∫
∆Vb

{
JadVa ∧

µ0

4π

Jb ∧ rba

|rba|3
dVb + JbdVb ∧

µ0

4π

Ja ∧ rba

|rba|3
dVa +

µ0

4π

(Ja · Jb)rba

|rba|3
dVadVb

}
(39)

and:

d2Fba = JadVa ∧
µ0

4π

Jb ∧ rba

|rba|3
dVb + JbdVb ∧

µ0

4π

Ja ∧ rba

|rba|3
dVa +

µ0

4π

(Ja · Jb)rba

|rba|3
dVadVb (40)

Which is Maxwell-Whittaker expression. In terms of linear current elements:

d2Fba = Iadla ∧
µ0

4π

Ib(dlb ∧ rba)

|rba|3
+ Ibdlb ∧

µ0

4π

Ia(dla ∧ rba)

|rba|3
+
µ0

4π

IaIb(dla · dlb)rba

|rba|3
(41)
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[1] Ampère, A. M. Mémoires sur l’Électrodynamique, vol. 1. Gauthier Villars, 1882.

[2] Cleveland, F. F. Magnetic forces in a rectangular circuit. Phil.Mag.57 Vol 21 (1936), 416.

[3] Graneau, P. Phys. Lett. A Vol 97 (1983), 253.

[4] Graneau, P. J. Appl. Phys. Vol 55 (1984).

[5] Graneau, P., and Graneau, P. N. Appl. Phys. Lett. Vol 46 (1985).

[6] Hoppe, E. Histoire de la Physique. Payot, 1928.

[7] Jonson, J. O. A detailed “Wesley Evaluation” of the Pappas, Moyssides experiments on Ampère
brigde compared to Jonson´s evaluation using Coulomb´s law and The Special Relativity Theory.
www.worldsci.org (10/02/2018).
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