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Abstract

Sakaton, S =
(
p
n
Λ

)
with integral charges, 1,0,0, respectively, and treated as

forming the fundamental representation of SU(3)F group, was successful in ex-
plaining the octet mesons but failed to describe the structure of baryons. This

was replaced by fractionally charged quarks. Q =
(
u
d
s

)
, providing the funda-

mental representation of the SU(3)F group. This has been a thumping success.
Thus a decent burial was given to the concept of the Sakaton. However, there
is another model, the Topological Skyrme model, which has been providing a
parallel and successful descrpition of the same hadrons. Nevertheless, some-
times this other model gives tantalizing hints of new structures in hadrons. In
this paper we prove that this topological Skyrme model, leads to a clear revival
of the above concept of Sakaton, as a real and a genuine physical entity. This
provides a new perspective to the hypernuclei. ’t Hooft anomaly matching gives
an unambiguous support to this revival of the Sakaton.
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In the Fermi-Yang model [1] the fundamental representaion of SU(2)I isospin
group with N = ( pn ), the newly discovered pions were treated as composites of
the N − N̄ pair. Sakata, [2] by extendng the group to SU(2)I × U(1)Y , and
including Λ as a representation of the U(1) group, assumed that hadrons could
be treated to be composites of these. Thus it was natural to take

S =

pn
Λ

 (1)

as the fundamenatl representation of a larger SU(3)F group [3]. It is called
Sakaton in anology with Nucleon of the isospin group. Note that the charges
in Sakaton are all integral: 1,0,0 respectively. The Sakata Model predicted the
mesons correctly as composites: 3× 3̄ = 1 + 8. However it failed to describe the
baryons as 3× 3× 3̄ = 3 + 3 + 6 + 15. In 1961, Gell-Mann and Ne’eman showed
that spin-1/2 integral charge entities behaved as per the Eightfold Way model
rather than like a Sakaton (see e.g. [4]). Later in 1963/64, Gell-Mann and
Zweig realized that the fundamental representation of the SU(3)F group were
quarks with fractional charges and thereby ruling out the Sakatons with inte-
gral charges. Subsequent successes of the quark model demolished the Sakaton
concept completely.

The next major development in the theory of hadrons was the topological
Skyrme model (see e.g. [4,5]). It is believed to give a parallel or a complementary
description of hadrons. Though the phenomenological predictions of this model
are not as accurate as those of the quark model, still this model tends to give
tantalizing new perspective and to open up new avenues in the study of hadrons.
In this paper we shall show as to how the Topological Skyrme model for three
flavours, allows us to revive the Sakaton as a real and a relevant physical entity.

The Skyrme Lagrangian [4,5] is,

LS =
fπ

2

4
Tr(LµL

µ) +
1

32e2
Tr[Lµ, Lν ]

2
(2)

where Lµ = U†∂µU . Here U(x) is an element of the group SU(2)F ,

U(x)SU(2) = exp((iτaφa/fπ), (a = 1, 2, 3) (3)

The solitonic structure present in the Lagrangian is obtained on making
Skyrme ansatz as follows [4,5].

Uc(x)SU(2) = exp((i/fπθ(r)r̂
aτa), (a = 1, 2, 3) (4)

This Uc(x) is called the Skyrmion. But on quantization, the two flavour
model Skyrmion has a well known boson-fermion ambiguity [4-6]. This is recti-
fied by going to three flavours. In that case we take,

U(x)SU(3) = exp[
iλaφa(x)

fπ
] (a = 1, 2..., 8) (5)
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with φa the pseudoscalar octet of π, K and η mesons. In the full topological
Skyrme model this is supplemented with a Wess-Zumino (WZ) effective action
[5-10]

ΓWZ =
−i

240π2

∫
Σ

d5xεµναβγTr[LµLνLαLβLγ ] (6)

on surface Σ. Thus with this anomaly term, the effective action is.

Seff =

∫
d4x Tr [LµL

µ] + n ΓWZ + quartic term (7)

where the winding numbber n is an integer n ∈ Z, the homotopy group of
mapping being Π5(SU(3)) = Z.

Next we embed the SU(2) Skyrme ansatz into U(x)SU(3) as follows for the
SU(3) Skyrmion [5-10],

Uc(x)SU(2) → Uc(x)SU(3) =

 Uc(x)SU(2)

1

 (8)

Let us insert the identity,

U(~r, t)SU(3) = A(t)U(~r)SU(3)
c A−1(t) A ∈ SU(3)F (9)

where A is the collective coordinate. Note that U(~r, t) is invariant under,

A→ AeiY α(t) (10)

where

Y =
1

3

 1 0 0
0 1 0
0 0 −2

 (11)

With this the quantum degrees of freedom manifest themselves in the WZ
term ( eqn. (6) ) as,

LWZ = −1

2
NcB(Uc)tr(Y A

−1A) (12)

where B(Uc) is the baryon number (winding number) of the classical configura-
tion Uc. The gauge invariance leads to changing LWZ to

LWZ → LWZ +
1

3
NcB(Uc)α̇ (13)

In the quantized theory A and Y are operators and from Noether’s theorem
one obtains ( with Ψ as allowed quantum state )

ŶΨ =
1

3
NcBΨ (14)
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This gives the right-hypercharge,

YR =
1

3
NcB (15)

where the baryon number B is necssarily an integer and colour Nc is an integer
too.

With B = 1 and Nc = 3 one gets YR = 1. This identifies the nucleon
hypercharge with the body-fixed hypercharge YR. This shows that the SU(3)
irreducible representation which is the lowest is the octet: [p,q] = [2,1]. Next
one finds that the right translation on [2,1] with YR = 1, gives correct spin and
isospin of the octet as IR = 1

2 = J .
This is standard manner of determining the lowest dimensional irreducible

representation to be [2,1] in SU(3) [5-10]. Note that this method determines the
hypercharges, isospins and spins of the various members of the octet. However it
has one shortcoming, and that is of not talking explicitly about the individual
electric charges of the members of the octet. Note that we can say that the
lowest member is the octet with confidence, only when we can also show that
the charges are as per the Gell-MannNishijima expression ( as in the Eightfold
Way model [4] ),

Q = I3 +
Y

2
(16)

This shortcoming was rectified by Balachandran et. al. [5]. Next we bring
in the electric charge explicitly, in the three-flavour Skyrme model [5,11], and
which we discuss in some detail below.

But before that, we study the structure of the electric charge in the SU(2)F
model, where one defines the electric charge operator as,

Q =

(
q1 0
0 q2

)
(17)

Upon quantization, one obtains inconsistent electric charges of proton and
neutron to be 1/2 and -1/2 respectively [5, p. 178]. This problem is rectified
by including the Wess-Zumino anomaly term for the SU(2)F electric charges.
As well known, even though the WZ anomaly term vanishes for two flavours,
its contribution to the electric charge current does not. This extra contribution
to electric charge was not present in the original Skyrme model. They find that
the SU(2)F Skyrme model with the WZ anomaly term included, does indeed
lead to properly quantized charge as [5, p. 209],

q1 =
2

3
, q2 = −1

3
(18)

Next, in going to SU(3)F , let the field U in eqn. (5) be transformed by an
electric charge operator Q as,

U(x)→ eiΛQU(x)e−iΛQ (19)
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where all the charges are counted in units of the absolute value of the electronic
charge.

Making Λ = Λ(x) a local transformation the Noether current is [5,11]

Jµ
em(x) = jµ

em(x) + jµ
WZ(x) (20)

where the first one is the standard Skyrme term and the second is the Wess-
Zumino term

jµ
WZ(x) =

Nc
48π2

εµνλσTrL
νLλLσ(Q+ U†QU) (21)

In the standard way [5,11], we take the U(1) of electromagnetism as a sub-
group of the three flavour SU(3). Its generators can be found by the canonical
methods. As the charge operator can be simultaneously diagonalized along with
the third component of isospin and hypercharge, we write it as

Q =

 q1 0 0
0 q2 0
0 0 q3

 (22)

The electric charge of pseudoscalar octet mesons demand,

q1 − q2 = 1, q2 = q3 (23)

Hence one obtains

Q = (q2 +
1

3
)13x3 +

1

2
λ3 +

1

2
√

3
λ8 (24)

Now we use U = A(t)Uc(x)A(t)−1 where A is the collective coordinate. We
obtain the B=1 electric charge from the Skyrme term in terms of the left-handed
generators Lα only as

Qem =
1

2
(L3 − (A†λ3A)8

NcB(Uc)√
3

) +
1

2
√

3
(L8 − (A†λ8A)8

NcB(Uc)√
3

) (25)

The Wess-Zumino term contributes

QWZ = NcB(Uc)(q2 +
1

3
+

1

2
√

3
(A†λ3A)8 +

1

6
(A†λ3A)8) (26)

Hence the total electric charge is [5,11]

Q =
1

2
L3 +

1

2
√

3
L8 + (q2 +

1

3
)NcB(Uc) (27)

This equation was used by the author [11] to obtain the proper colour de-
pendent electric charge of quarks [12], by ensuring that the proton charge was
integral.
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Here we study what was done by Balachandran et. al. [5, p. 210]. They
put q2 = − 1

3 in eqn. (27) above. Thus the last term in eqn. (27) goes to zero.
They then claimed that this gave them the expression of eqn. (16) which is the
Gell-Mann Nishijima expression Q = T3 + Y

2 of the electric charges of the octet
baryons.

Thus as per this result, the shortcoming of the above analysis of the octet
repesentation, was taken care of. As such this completes their proof that the
lowest dimensional irreducible representation to be [2,1] in SU(3) [5-10].

However this result of Balachandran et. al. [5, p. 210] giving final touch to
the earlier demonstartion [5-10] of (2,1) octet as being the lowest representation
of the complete Skyrme model for SU(3)F , is unfortunately wrong!

To understand this, let us point out a basic difference between the SU(3)F
Sakata model and the quark model [4,13]. In the quark model, electric charge
is defined as (note: in eqn. (16) I3 = F3 below)

Q = F3 +
1√
3
F8 =

 2
3 0 0
0 −1

3 0
0 0 −1

3

 (28)

While in the Sakata model it is,

Q = (F3 +
1√
3
F8) +

B

3
= 2

3 0 0
0 −1

3 0
0 0 −1

3

+

 1
3 0 0
0 1

3 0
0 0 1

3

 =

 1 0 0
0 0 0
0 0 0

 (29)

Where B is the baryon number. Note that in the Sakata model, the charges
are ”shifted” by B

3 = 1
3 with respect to the corresponding quark charges [4,13].

Thus a Sakaton has integral charges as above.
This shifting of charges is accounted for in a basic manner in the Gel’fand ba-

sis. The Gel’fand basis has an advantage over the Weyl basis, in that in general,
while the Weyl basis are not orthonormal, the Gel’fand basis by construction (
and hence by definition ) are orthonormal [14].

The SU(3) irreducible representation given by [p,q] has a geometric Gel’fand
pattern as [14],  p q 0

a b
c

 (30)

where the integers a,b,c obey the between-ness rule: a ≥ c ≥ b. The isospin and
hypercharge qunatum numbers are given as:

I =
a− b

2
; I3 = c− a+ b

2
; Y = 2(

a+ b

2
− p+ q

3
) (31)

Now for example:
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TRIPLET:
100 100 100
10 10 00
1 0 0

I : 1/2 1/2 0
I3 : 1/2 −1/2 0
Y : 1/3 1/3 −2/3

(32)

OCTET:

210 210 210 210 210 210 210 210
21 21 20 20 20 10 10 11
2 1 2 1 0 1 0 1

I : 1/2 1/2 1 1 1 1/2 1/2 0
I3 : 1/2 −1/2 1 0 −1 1/2 −1/2 0
Y : 1 1 0 0 0 −1 −1 0

(33)

The Gel’fand pattern can be expressed, first in terms of the I, I3, Y quantum
numbers, and subsequently in terms of the electric charge quantum number,
which is given by the Gell-Mann Nishijima expression of eqn. (16) as, p q 0

a b
c

 =

 p q 0
I + Y

2 + p+q
3 −I + Y

2 + p+q
3

I3 + Y
2 + p+q

3



=

 p q 0
Qmax + p+q

3 Qmin + p+q
3

Q+ p+q
3

 (34)

Thus the Gel’fand pattern directly involves the electric charges of a multiplet
shifted by the value p+q

3 . Interestingly this number p+q
3 is exactly of the form

that the entries in the Gel’fand pattern are integers, like in the Sakaton charge
eqn. (29).

So explicitly, the charge of the fundamental representation Sakaton [1,0], of
the group SU(3)F is integral,

Q = I3 +
Y

2
+
p+ q

3
(35)

As the octet and the decuptet representations have integral charges too, the
Gel’fand pattern is able to accomodate both the integral charges in the Sakata
model and the octet-decuptet, in a most remarkable manner as [14],

Q = I3 +
Y

2
+

1

3
[(p+ q) mod 3] (36)

Most important to note that the last term is made up of product of two
independent terms, viz 1

3 and (p + q) mod 3. ( Remember that these charges

are for the group SU(3) and not of the SU(3)
Z3

sub-system ). Note that the term
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[(p+ q) mod 3] arises from the group SU(3) itself, from within the canonical
chain SU(3) ⊃ SU(2)× U(1) ⊃ SO(2) in the Gel’fand pattern.

Hence the first two terms would correspond to the Gell-Mann Nishijima
charge for the octet [2,1] and the decuptet [3,0], only when in the last term,
there exists dynamically a term 1

3 outside the term, e.g. (p + q) mod 3 =
(2 + 1) mod 3 = 0.

However this is in conflct with how the last term in eqn. (27), (q2 + 1
3 )NcB(Uc)

was taken to zero by Balachandran et. al. [5, p. 210], on taking q2 = − 1
3 . As

we saw above, the charge q2 = − 1
3 is a pure SU(2)F result (eqn. (18)). Though

it does sail through the quantization process in SU(3)F , it is not a pure SU(3)F
result per se. It is a kind of a memory of SU(2) sitting unchanged in SU(3).
Hence their conclusion is erroneous. Thus the term left behind, Q = T3 + Y

2 ,
is not the octet Gell-Mann-Nishijima expression, but should be interpreted, say
for neutron as,

Q(neutron) = −1

2
+

1

2
= −1

2
+ (

1

6
+

1

3
) = (−1

2
+

1

6
) +

1

3
(37)

This is the charge of neutron in a Sakaton, as in eqn. (35). Thus the
proton and neutron which arise here are part of a Sakaton and not that of the
octet. Hence the proper interpretation of the SU(3)F Skyrmion is that it is
not an octet, but a Sakaton. Therefore we are able to revive the Sakaton as a
real physical entity. This arises on going beyond the quark model, and which
demands a global topological interpretation as a Skyrmion. Hence a Sakaton
should be taken as a basic physical entity; actually as much so as the quarks
constituting a baryon..

How would this Sakaton help solve our current theoretical puzzles? Here
we use it to solve a basic issue which arises as a result of a common physical
application of the well known ’t Hooft anomaly matching condition [15]

If a theory is weakly coupled when we are above a certain energy scale λ,
’t Hooft showed [15] that then regardless of the strength of the interaction,
anomaly must be present on both sides of λ. This allows one to identify the
fermion sector of one’s effective theory. So composites of fundamental entities in
the chiral limit may match each other through the ’t Hooft anomaly matching
condition. This is possible if the sum of the anomaly coefficients A(r) for the
composite fermions (below λ) is equal to that of fundamental fermions (above
λ) [16] ∑

r

NrA(r) =
∑
r

nrA(r) (38)

(nr are number of chiral fermions in representation r and Nr are number of
massless composite fermions in representation r). Now (p,n) do form a massless
chiral isospin-doublet. Thus the ’t Hooft matching condition is indeed satisfied
on going from ( ud ) to ( pn ). But conventionally this is rejected as [17, p. 325],
”This could be merely a coincidence, though. Therefore let us not jump to
conclusions.” This is because the anomaly matching fails for the baryon octet
(p, n.λ,Σ+,Σ0,Σ−,Ξ0,Ξ−).
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However, for Q =
(
u
d
s

)
to S =

(
p
n
Λ

)
mapping works fine through the ’t

Hooft anomaly matching condition for the Sakatons. Hence our analysis in this
paper, as to the Sakaton, sails through the scrutiny of the ’t Hooft anomaly
matching condition, and which therefore provides an unambiguous support to
our conclusions.

Hence as one goes beyond the fractional charges of the three quarks in SU(3),
then contrary to the Eightfold Way model asssertion [4,13], the integral charges
of the octet is not the only option available, but on proper inclusion of the
topological degrees of freedom, Sakaton turns out to be the correct path. Hence
these Sakatons should manifest themsleves as real physical particles.

Physically as of now, one had assumed that hypernuclei reflect the presence
of hyperons, arising in the spin 1/2 octet, in the nucleus. However, this picture
is unable to explain as to why the hypernuclei observed experimentally upto
now [18], are predominantly made up of Λ’s only - fortyone have a single Λ
present, three have two-Λ and only one has a Σ meson? Our model here shows
that actually the hypernuclei are a manifestation of the presence of Sakatons
in a nucleus. Hence it predicts that strangeness in nuclei should arise from the
Sakatons. Thus the puzzling presence of only the Λ’s in hypernuclei is actually
a confirmation of our model.

Thus what we have shown is that Sakatons are physically as relevant as
the quarks are in particle physics. But Sakatons are different from quarks in as
much as they arise in the topological Skyrme model. Hence these are Skyrmions.
Therefore the Skyrme model is not just one of the large number of phenomeno-
logical models of the hadrons, arising from some kind of an approximation of
QCD. Our analysis here has shown that the Sakatons are as basic and as funda-
mental as the fractionally charged quarks are to QCD. Hence the prediction of
a very heavy scalar meson which arises in the Topological Skyrme model [19],
should be accorded a serious sonsideration as a genuine physical entity.
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