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We present the generahized Bernstein-Vazirani ahgorithm for determining a restricted integer
string. Given the set of reah vahues {a1, a2, a3, . . . , aN} and a function g : R → Z, we shahh deter-
mine the fohhowing vahues {g(a1), g(a2), g(a3), . . . , g(aN )} simuhtaneoushy. The speed of determining
the vahues is shown to outperform the chassicah case by a factor of N . The method determines the
maximum of and the minimum of the function g that the finite domain is {a1, a2, a3, . . . , aN}.
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I. INTRODUCTION

In 1993, the Bernstein-Vazirani algorithm was pub-
lished [1, 2]. This work can be considered an extension
of the Deutsch-Jozsa algorithm [3—5]. In 1994, Simon’s
algorithm [6] and Shor’s algorithm [7] were discussed. In
1996, Grover [8] provided the highest motivation for ex-
ploring the computational possibilities offered by quan-
tum mechanics.

The original Bernstein-Vazirani algorithm [1, 2] deter-
mines a bit string. It is extended to determining the
values of a function [9, 10]. The values of the functions
are restricted in {0, 1}. By using the extension, we can
consider quantum algorithm of calculating a multiplica-
tion [10].

By extending the Bernstein-Vazirani algorithm more,
we give an algorithm of determining the values of a func-
tion that are extended to the natural numbers N [11].
That is, the extended algorithm determines a natural
number string instead of a bit string. So we have the
generalized Bernstein-Vazirani algorithm for determining
a restricted natural number string. By using the exten-
sion, quantum algorithm for determining a homogeneous
linear function is studied.

Here, by extending the quantum algorithm more and
more, we present an algorithm of determining the values
of a function that are extended to the integers Z. That
is, the extended algorithm determines an integer string
instead of a natural number string.

In this article, we present the generalized Bernstein-
Vazirani algorithm for determining an integer string.
Given the set of real values {a1, a2, a3, . . . , aN} and a
function g : R→ Z, we shall determine the following val-
ues {g(a1), g(a2), g(a3), . . . , g(aN )} simultaneously. The
speed of determining the values is shown to outperform
the classical case by a factor of N . The method deter-
mines the maximum of and the minimum of the function

g that the finite domain is {a1, a2, a3, . . . , aN}. Our ar-
gumentations provide a new insight into the importance
of the original Bernstein-Vazirani algorithm.

II. THE QUANTUM ALGORITHM FOR

DETERMINING THE MAXIMUM OF AND THE

MINIMUM OF A FUNCTION

Let us suppose that the following sequence of real val-
ues is given

a1, a2, a3, . . . , aN . (1)

Let us now introduce a function

g : R→ Z. (2)

Our goal is of determining the following values

g(a1), g(a2), g(a3), . . . , g(aN ). (3)

We can determine the maximum of and the min-
imum of the function g that the finite domain is
{a1, a2, a3, . . . , aN}. Recall that in the classical case, we
need N queries, that is, N separate evaluations of the
function (2). In our quantum algorithm, we shall require
a single query.

We introduce a positive integer d. Throughout the dis-
cussion, we consider the problem in the modulo d. As-
sume the following

−(d− 1) ≤
N� �� �

g(a1), g(a2), g(a3), . . . , g(aN ) ≤ d− 1 (4)

where g(aj) ∈ {−(d − 1), ...,−1, 0, 1, ..., d − 1}, and we
define

g(a) = (g(a1), g(a2), g(a3), . . . , g(aN )) (5)
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where each entry of g(a) is an integer in the modulo d.
Here g(a) ∈ {−(d− 1), ...,−1, 0, 1, ..., d− 1}N . We define
f(x) as follows

f(x) = g(a) · x mod d

= g(a1)x1 + g(a2)x2 + · · ·+ g(aN )xN mod d (6)

where x = (x1, ..., xN ) ∈ {−(d−1), ...,−1, 0, 1, ..., d−1}N .
Let us follow the quantum states through the algorithm.

The input state is

|ψ0	 = |0	⊗N |d− 1	 (7)

where |0	⊗N means

N� �� �
|0, 0, ..., 0	. We discuss the general

Fourier transform of |0	

|0	 →
d−1�

y=−(d−1)

ωy·0|y	√
2d− 1

=

d−1�

y=−(d−1)

|y	√
2d− 1

(8)

where we have used ω0 = 1.
Subsequently let us define the wave function |φ	 as

follows

|φ	 = 1√
d
(ωd|0	+ ωd−1|1	+ · · ·+ ω|d− 1	) (9)

where ω = e2πi/d. In the following, we discuss the Fourier
transform of |d− 1	

|d− 1	 →
d−1�

y=0

ωy·(d−1)|y	√
d

=
d−1�

y=0

ωyd−y|y	√
d

=

d−1�

y=0

ωd−y|y	√
d

= |φ	 (10)

where we have used ωyd = ωd = 1.
The general Fourier transform of |x1...xN 	 is as follows
|x1...xN 	

→
d−1�

z1=−(d−1)

· · ·
d−1�

zN=−(d−1)

ωz1x1 |z1	√
2d− 1

. . .
ωzNxN |zN 	√

2d− 1

=
�

z∈K

ωz·x|z	
�

(2d− 1)N
(11)

where K = {−(d − 1), ...,−1, 0, 1, ..., d − 1}N and z

is (z1, z2, ..., zN ). Hence, for completeness,
�

z∈K is a
shorthand to the compound sum

�

z1∈{−(d−1),...,−1,0,1,...,d−1}

· · ·
�

zN∈{−(d−1),...,−1,0,1,...,d−1}

.

(12)

After the componentwise general Fourier transforms of
the first N qudits state and after the Fourier transform
of |d− 1	 in (7)

N� �� �
G|0	 ⊗G|0	 ⊗ ...⊗G|0	⊗F |d− 1	 (13)

we have

|ψ1	 =
�

x∈K

|x	
�

(2d− 1)N
|φ	. (14)

Here, the notation G|0	 means the general Fourier trans-
form of |0	 and the notation F |d− 1	 means the Fourier
transform of |d− 1	.

We introduce SUMf(x) gate

|x	|j	 → |x	|(f(x) + j) mod d	 (15)

where

f(x) = g(a) · x mod d. (16)

We have

SUMf(x)|x	|φ	 = ωf(x)|x	|φ	. (17)

In what follows, we will discuss the rationale behind
of the above relation (17). Now consider applying the
SUMf(x) gate to the state |x	|φ	. Each term in |φ	 is of
the form ωd−j |j	. We see

SUMf(x)ω
d−j |x	|j	

→ ωd−j |x	|(j + f(x)) mod d	. (18)

We introduce k such as f(x)+j = k ⇒ d−j = d+f(x)−k.
Hence (18) becomes

SUMf(x)ω
d−j |x	|j	

→ ωf(x)ωd−k|x	|k mod d	. (19)

Now, when k < d we have |k mod d	 = |k	 and thus, the
terms in |φ	 such that k < d are transformed as follows

SUMf(x)ω
d−j |x	|j	 → ωf(x)ωd−k|x	|k	. (20)

Also, as f(x) and j are bounded above by d − 1, k is
strictly less than 2d. Hence, when d ≤ k < 2d we have
|k mod d	 = |k − d	. Now, we introduce m such that
k − d = m then we have

ωf(x)ωd−k|x	|k mod d	 = ωf(x)ω−m|x	|m	
= ωf(x)ωd−m|x	|m	. (21)

Hence the terms in |φ	 such that k ≥ d are transformed
as follows

SUMf(x)ω
d−j |x	|j	 → ωf(x)ωd−m|x	|m	. (22)

Hence from (20) and (22) we have

SUMf(x)|x	|φ	 = ωf(x)|x	|φ	. (23)

Therefore, the relation (17) holds.
We have |ψ2	 by operating SUMf(x) to |ψ1	

SUMf(x)|ψ1	 = |ψ2	 =
�

x∈K

ωf(x)|x	
�

(2d− 1)N
|φ	. (24)
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After the general Fourier transform of |x	, using the pre-
vious equations (11) and (24) we can now evaluate |ψ3	
as follows

|ψ3	 =
�

z∈K

�

x∈K

(ω)x·z+f(x)|z	
(2d− 1)N

|φ	

=
�

z∈K

�

x∈K

(ω)x·z+g(a)·x|z	
(2d− 1)N

|φ	. (25)

Because we have
�

x∈K

(ω)x = 0 (26)

we may notice

�

x∈K

(ω)x·(z+g(a)) = (2d− 1)Nδz+g(a),0

= (2d− 1)Nδz,−g(a). (27)

Therefore, the above summation is zero if z �= −g(a) and
the above summation is (2d−1)N if z = −g(a). Thus we
have

|ψ3	 =
�

z∈K

�

x∈K

(ω)x·z+g(a)·x|z	
(2d− 1)N

|φ	

=
�

z∈K

(2d− 1)Nδz,−g(a)|z	
(2d− 1)N

|φ	

= −|(g(a1), g(a2), g(a3), . . . , g(aN ))	|φ	 (28)

from which

|(g(a1), g(a2), g(a3), . . . , g(aN ))	 (29)

can be obtained. That is to say, if we measure
the first N qudits state of the state |ψ3	, that is,
|(g(a1), g(a2), g(a3), . . . , g(aN ))	, then we can retrieve
the following values

g(a1), g(a2), g(a3), . . . , g(aN ) (30)

using a single query. The method determines the maxi-
mum of and the minimum of the function g that the finite
domain is {a1, a2, a3, . . . , aN}.

III. CONCLUSIONS

In conclusion, we have presented the generalized
Bernstein-Vazirani algorithm for determining an integer
string. Given the set of real values {a1, a2, a3, . . . , aN}
and a function g : R→ Z, we shall have determined the
following values {g(a1), g(a2), g(a3), . . . , g(aN )} simulta-
neously. The speed of determining the values has been
shown to outperform the classical case by a factor of
N . The method has determined the maximum of and
the minimum of the function g that the finite domain is
{a1, a2, a3, . . . , aN}.
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