The generalized Bernstein-Vazirani algorithm for determining an integer string

Koji Nagata,! Tadao Nakamura,? Han Geurdes,® Josep Batle,* Ahmed Farouk,® and Do Ngoc Diep®

! Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
2Department of Information and Computer Science, Keio University,
8-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
3 Geurdes Datascience, KvK 64522202, C vd Lijnstraat 164, 2593 NN, Den Haag Netherlands
4 Departament de Fisica, Universitat de les Illes Balears,
07122 Palma de Mallorca, Balearic Islands, Europe
5 Computer Sciences Department, Faculty of Computers and Information, Mansoura University, Eqypt
STIMAS, Thang Long University, Nghiem Xuan Yem, Dai Kim, Hoang Mai, Hanoi, Vietnam
( Dated: March 8, 2018)

We present the generalized Bernstein-Vazirani algorithm for determining a restricted integer

string. Given the set of real values {a1, a2, as, ...
mine the following values {g(a1), g(a2), g(as),...

,an} and a function g : R — Z, we shall deter-
,g9(an)} simultaneously. The speed of determining

the values is shown to outperform the classical case by a factor of N. The method determines the

maximum of and the minimum of the function g that the finite domain is {a1, az, as, . ..
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I. INTRODUCTION

In 1993, the Bernstein-Vazirani algorithm was pub-
lished [1, 2]. This work can be considered an extension
of the Deutsch-Jozsa algorithm [3-5]. In 1994, Simon’s
algorithm [6] and Shor’s algorithm [7] were discussed. In
1996, Grover [8] provided the highest motivation for ex-
ploring the computational possibilities offered by quan-
tum mechanics.

The original Bernstein-Vazirani algorithm [1, 2] deter-
mines a bit string. It is extended to determining the
values of a function [9, 10]. The values of the functions
are restricted in {0,1}. By using the extension, we can
consider quantum algorithm of calculating a multiplica-
tion [10].

By extending the Bernstein-Vazirani algorithm more,
we give an algorithm of determining the values of a func-
tion that are extended to the natural numbers N [11].
That is, the extended algorithm determines a natural
number string instead of a bit string. So we have the
generalized Bernstein-Vazirani algorithm for determining
a restricted natural number string. By using the exten-
sion, quantum algorithm for determining a homogeneous
linear function is studied.

Here, by extending the quantum algorithm more and
more, we present an algorithm of determining the values
of a function that are extended to the integers Z. That
is, the extended algorithm determines an integer string
instead of a natural number string.

In this article, we present the generalized Bernstein-
Vazirani algorithm for determining an integer string.
Given the set of real values {aj,as,as,... ,an} and a
function g : R — Z, we shall determine the following val-
ues {g(a1),g(az2),g(as),...,g(an)} simultaneously. The
speed of determining the values is shown to outperform
the classical case by a factor of N. The method deter-
mines the maximum of and the minimum of the function

g that the finite domain is {a1,as,as,... ,any}. Our ar-
gumentations provide a new insight into the importance
of the original Bernstein-Vazirani algorithm.

II. THE QUANTUM ALGORITHM FOR
DETERMINING THE MAXIMUM OF AND THE
MINIMUM OF A FUNCTION

Let us suppose that the following sequence of real val-
ues is given

a1,02,03,. . ,a4N- (1)
Let us now introduce a function
g:R—Z (2)
Our goal is of determining the following values

g(a1),9(az),g(as),. .. ,glan). (3)

We can determine the maximum of and the min-
imum of the function g that the finite domain is
{a1,a9,as,... ,an}. Recall that in the classical case, we
need N queries, that is, N separate evaluations of the
function (2). In our quantum algorithm, we shall require
a single query.

We introduce a positive integer d. Throughout the dis-
cussion, we consider the problem in the modulo d. As-
sume the following

N
—(d—1) < g(a1),g9(az),g(as),. ..

where g(a;) € {—(d —1),...,
define

-1,0,1,...,d — 1}, and we

g(a) = (g(a1), 9(a2), 9(as), .., g(an)) ()



where each entry of g(a) is an integer in the modulo d.
Here g(a) € {—(d—1),...,—1,0,1,...,d — 1}¥. We define
f(x) as follows

f(z) =g(a) -z mod d

= g(a1)z1 + g(az)r2 + -+ g(an)ry mod d  (6)
where z = (z1,...,2x) € {—(d—1),...,—1,0,1,...,d—1}".

Let us follow the quantum states through the algorithm.
The input state is

[%0) = 10)*¥]d — 1) (7)
N

N —
where [0)®Y means 0,0, ...,0).
Fourier transform of |0)

d—1
0= >

y=—(d—1)

We discuss the general

V2d—1 4= Vad—1
where we have used w® = 1.
Subsequently let us define the wave function |¢) as
follows
1

‘(ﬁ):ﬁ(

where w = €27%/4_ In the following, we discuss the Fourier
transform of |d — 1)

wl0) + W)+ wld—1))  (9)

y=0 y=0
S @)
= = |9) (10)
y=0 vd

where we have used w¥? = w? = 1.
The general Fourier transform of |z;...zy) is as follows

|$]_J,‘N>

— § dz_:l wzg)  WANEN|2y)
B K V2d—1 '~ V2d—1
zZ1=— (d 1) ZN=— (d—l)

Zl“

2(,/2d—1 ()

where K = {—(d — 1),...,—1,0,1,....,d — 1} and 2

is (21, 22,...,2n). Hence, for completeness, > . is a

shorthand to the compound sum

ze{—(d—1),...,—1,0,1,....d—1}  zye{—(d—1),...,—1,0,1,...,d—1}
(12)

After the componentwise general Fourier transforms of
the first V qudits state and after the Fourier transform
of [d—1) in (7)

N
Gl0)® G|0) ® ... ® G|0) @F|d — 1) (13)

we have

(14)

|%1)
! x;(\/m

Here, the notation G|0) means the general Fourier trans-
form of |0) and the notation F'|d — 1) means the Fourier
transform of |d — 1).

We introduce SU My, gate

[2)15) — [2)|(/(2) + 4) mod d) (15)
where
f(2) = g(a) -2 mod d (16)
‘We have
SUM;n|2)|6) = o' |2)]6). (17)

In what follows, we will discuss the rationale behind
of the above relation (17). Now consider applying the
SU My ) gate to the state |z)|¢). Each term in |@) is of

the form w?=7|j). We see
SUM (zyw™|z)|5)
— w?7|2)|(j + f(2)) mod d). (18)

We introduce k such as f(z)+j =k = d—j = d+f(x)—
Hence (18) becomes

SUMj(zyw? 7|z 5)
— w @ ud=k|2) |k mod d). (19)

Now, when k < d we have |k mod d) = |k) and thus, the
terms in |¢) such that k < d are transformed as follows
SUMf(w)wd_j|x> l7) — wf(x)wd_k|x>|k>. (20)

Also, as f(z) and j are bounded above by d — 1, k is
strictly less than 2d. Hence, when d < k < 2d we have

|k mod d) = |k — d). Now, we introduce m such that
k — d = m then we have

wf @ A=k} |k mod d) = wf @ w™™|z)|m)

= W@ d=m 1) |m). (21)

Hence the terms in |¢) such that k > d are transformed
as follows

SUM;(yw?™|z)|) = w!@w?™™z)|m).  (22)

Hence from (20) and (22) we have

SUM ;) 2)|¢) = 0! @z) ). (23)

Therefore, the relation (17) holds.
We have [¢)2) by operating SUMf(x) to |11)

SUMj(z)|t1) = |32) = Z

zeK V )



After the general Fourier transform of |z), using the pre-
vious equations (11) and (24) we can now evaluate |)3)
as follows

) 24 f(z)
[SEDIPIE e 217
zeK zeK
x z+g(a)-x
-y Y —‘>|¢>. (25)
zeK ze K
Because we have
Y (wr=0 (26)
zeK

we may notice

Z( )ac (2+g(a)) _ (Qd — 1)N5Z+g

zeK
=(2d—1)N6, _y0)- (27)

Therefore, the above summation is zero if z # —g(a) and
the above summation is (2d — 1)V if 2 = —g(a). Thus we

have
a:z+ a
o =3 3 G
zeK zeK
. (Qd_ 1) 52,— (a)‘z>

zeK
_‘(g(al)vg(GQ)’g(ab’)a cee 7g(a

N)Ie) (28)

from which

,9(an))) (29)

can be obtained. That is to say, if we measure
the first N qudits state of the state [¢3), that is,

(9(a1), 9(az),9(as), ... ,g(an))), then we can retrieve
the following values

l(g(a1), g(az),g(as), ...

,9(an) (30)

using a single query. The method determines the maxi-
mum of and the minimum of the function g that the finite
domain is {a1,as,as,... ,an}.

g(a1),g9(a2),g(as),...

III. CONCLUSIONS

In conclusion, we have presented the generalized
Bernstein-Vazirani algorithm for determining an integer
string. Given the set of real values {aj,a2,0as,... ,an}
and a function g : R — Z, we shall have determined the
following values {g(a1), g(az),g(as),... ,g(an)} simulta-
neously. The speed of determining the values has been
shown to outperform the classical case by a factor of
N. The method has determined the maximum of and
the minimum of the function g that the finite domain is
{a17a27a37" . 7a’N}'
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