
INPUT RELATION AND COMPUTATIONAL COMPLEXITY

KOJI KOBAYASHI

Abstract. This paper describes about complexity of PH problems by using

“Almost all monotone circuit family” and “Accept input pair that sandwich

reject inputs”.

Explained in Michael Sipser “Introduction to the Theory of COMPUTA-

TION”, circuit family that emulate Deterministic Turing machine (DTM) are

almost all monotone circuit family except some NOT-gate that connect input

variables (like negation normal form (NNF)). Therefore, we can find out DTM

limitation by using this “NNF Circuit family”.

To clarify NNF circuit family limitation, we pay attention to AND-gate and

OR-gate relation. If two accept “Neighbor input” pair that sandwich reject

“Boundary input” in Hamming distance, NNF circuit have to meet these dif-

ferent values of neighbor inputs in AND-gate to differentiate boundary inputs.

NNF circuit have to use unique AND-gate to identify such neighbor input.

The other hand, we can make neighbor input problem “Neighbor Tautol-

ogy DNF problem (NTD)” in PH. NTD is subset of tautology DNF that do

not become tautology if proper subset of one variable permutate positive /

negative. NTD include neighbor input pair which number is over polyno-

mial size of input length. Therefore NNF circuit family that compute NTD

are over polynomial size of length, and NTD that include PH is not in P.

1. NNF circuit family

Explained in [Sipser] Circuit Complexity section, Circuit family can emulate

DTM only using NOT-gate in changing input values {0, 1} to {01, 10}. This “almost

all monotone circuit family” have simple structure like monotone circuit family.

Definition 1.1. �

We use term as following;

Date: 2018-03-14.
1

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 2

NNF : Negation Normal Form.

DTM : Deterministic Turing Machine

DNF : Disjunctive Normal Form.

In this paper, we will use words and theorems of References [Sipser].

To simplify, we treat DNF as set of clauses, and also treat clause as set of literals

as far as it’s all right with you.

Definition 1.2. �

We will use the term;

“NNF Circuit Family” as circuit family that have no NOT-gate except connecting

input gates directly (like negation normal form). DTM emulator which mentioned

Book [Sipser] Circuit Complexity section are included in NNF Circuit family. To

simplify, circuit can compute shorter input from circuit input (such shorter input

have filler with concrete input).

“Input variable pair” as output pair of input gate and NOT-gate {01, 10} that

correspond to an input variable {0, 1}.

“Accept input” as input that circuit family output 1.

“Reject input” as input that circuit family output 0.

“Neighbor input” as accept inputs that no accept inputs exists between these

accept input with Hamming distance.

“Boundary input of neighbor input” as reject inputs that exist between neighbor

inputs with Hamming distance.

“Different Variables” as subset of input variables that difference each other in

neighbor input.

“Same Variables” as subset of input variables that same each other in neighbor

input.

“Effective circuit of input t” as one of minimal sub circuit of NNF circuit that

decide circuit output as 1 with input t. Effective circuit do not include gate even

if gate change output 0 and effective circuit keep output 1. To simplify, effective

circuit do not include NOT-gate (monotone circuit).

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 3

Figure 1.1. NNF circuit block diagram

Theorem 1.3. �

Let t : N −→ N be a function where t (n) ≥ n.

If A ∈ TIME (t (n)) then NNF circuit family can emulate DTM that compute

A with O
(
t2 (n)

)
gate.

Proof. This Proof is based on [Sipser] proof.

NNF circuit family can emulate DTM by computing every step’s cell values (and

head state if head on the cell). Figure 1.1 shows part of a NNF circuit block diagram.

Input of this circuit is modified w1 · · ·wn to c1,1 · · · c1,n, and finally output result

at cout = ct(n),1 cell. This circuit emulate DTM behavior, so cu,v compute cell’s

state of step u from previous step cell cu−1,v and each side cells cu−1,v−1, cu−1,v+1

(because head affect atmost side cells in each step).

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 4

Figure 1.2. cu,v circuit

Figure 1.2 shows part of cu,v circuit that implement transition function δk0 “if

state is qk and tape value is 0, then move +1 and change state to qm”. This circuit

shows one of transition configuration which (cu−1,v, cu−1,v+1) = (0, 0). q− means

“no head on the cell”.

Each OR-gate ∨w,q in cu,v correspond to every step’s cell condition (cell value

w, and head status q if head exist on the cu,v cell), and output 1 if and only if

cu,v cell satisfy corresponding condition. Previous step’s ∨ output in cu−1,v−1,

cu−1,v, cu−1,v+1 are connected to next step’s AND-gate ∧δ in cu,v with transition

wire. Each ∧δ correspond to transition function δ, and each ∧δ output correspond

to each transition function’s result of cu,v. So ∧δ in cu,v output 1 if and only if

previous step’s ∨ output in cu−1,v−1, cu−1,v, cu−1,v+1 satisfy transition function δ

condition. Each transition functions affect (or do not affect) next step’s condition,

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 5

Figure 1.3. First step

so ∧δ output is connected to ∨w,qm in cu,v and decide cu,v condition. Because DTM

have constant number of transition functions, NNF can compute each step’s cell by

using constant number of AND-gates and OR-gates (without NOT-gate).

First step’s cells are handled in a special way. Input is {0, 1}∗ and above mono-

tone circuit cannot manage 0 value. So NNF circuit compute {0, 1}∗ −→ {01, 10}∗

by using NOT-gate.

�

Corollary 1.4. �

NNF circuit family can compute P problem with polynomial number of gates of

input length.

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 6

Confirm NNF circuit family behavior. NNF circuit family can emulate DTM

with polynomial number of gate of DTM computation time. All effective circuit

become DAG that root is specified OUTPUT-gate. All gates that include effective

circuit become 1 if OUTPUT-gate become 1. Especially, all different variables of

input cannot overlay in same input, so all effective circuits (with different inputs)

are join at OR-gate to connect OUTPUT-gate. This NNF circuit behavior clarify

input exclusivity and symmetry.

Theorem 1.5. �

All input variable pair of different variables join OR-gate in effective circuit.

Proof. Because input variable pair does not become 1 in same input, so it is neces-

sary to join OR-gate and output 1 to connect OUTPUT-gate in effective circuit. �

Theorem 1.6. �

NNF circuit have at least one unique AND-gate to differentiate neighbor input

and boundary input.

Proof. Mentioned above 1.5, all accept input variable pair of different variables join

at OR-gate. Because NNF circuit is almost all monotone circuit, there is two case

of joining at OR-gate;

a) all different variables meet at AND-gate, and join at OR-gate after meeting

AND-gate.

b) some partial different variables meet at AND-gate, and join at OR-gate these

AND-gate output, and meet at AND-gate all OR-gate output.

Case a), some AND-gate become 1 if and only if input include one side of different

variables. Therefore, trunk of these AND-gate does not become 1 if AND-gate does

not include these different variables as input of sub circuit that connect trunk.

Case b), because no boundary input become accept input, some OR-gate which

join neighbor input become 0 if input include boundary input. That is, effective

circuit become 0 if some of these OR-gate become 0, and become 1 if all of these

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 7

OR-gate become 1. Therefore, it is necessary that effective circuit include AND-

gate that meet all these OR-gate which join different variables (and other same

variables). Such AND-gate correspond to each different variables pair. So AND-

gate is differ from each different variables pair. �

That is to say, neighbor input with sandwitch structure cannot permutate proper

partial input of different variables . NNF circuit have to use unique AND-gate to

differentiate neighbor input and boundary inputs.

2. Neighbor Tautology DNF

Let clarify number of neighbor input pair. To consider DNF tautology problem,

some input become neighbor input by changing one variable positive / negative.

So we define new partial problem of DNF tautology.

Definition 2.1. �

We will use the term “Neighbor Tautology DNF problem” or “NTD” as partial

Minimal Tautology DNF problem which input also tautology if one variables x

change positive / negative {x, x} → {x, x}, and not tautology if proper subset of

one variables x change positive / negative.

NTD =

f | f ≡ >, f

 · · · x x · · ·

· · · x x · · ·

 ≡ >, g = f

 · · · {x, x} {x, x} · · ·

· · · {x, x} {x, x} · · ·

 6≡ >

 · · · x x · · ·

· · · x x · · ·

: permutate all x, x to x, x.

 · · · {x, x} {x, x} · · ·

· · · {x, x} {x, x} · · ·

: permutate (any) proper subset of x, x to x, x.

Theorem 2.2. �

If f ∈ NTD, then f

 · · · x x · · ·

· · · x x · · ·

 is neighbor input of f .

Proof. It is trivial because of x, x symmetry with tautology and NTD definition;

f

 · · · x x · · ·

· · · x x · · ·


 · · · x x · · ·

· · · x x · · ·

 = f ≡ >

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 8

f

 · · · x x · · ·

· · · x x · · ·


 · · · {x, x} {x, x} · · ·

· · · {x, x} {x, x} · · ·


= f

 · · · {x, x} {x, x} · · ·

· · · {x, x} {x, x} · · ·

 6≡ > �

Theorem 2.3. �

Minimal Tautology DNF (MTD) correspond to NTD.

Proof. Proof this theorem by constructing NTD from MTD.

If f ∈ MTD and f /∈ NTD, then there are some variable x that keep tautology

to change proper subset of x.

f ∈ MTD ∧ f /∈ NTD → ∃x

f

 · · · x x · · ·

· · · {x, x} {x, x} · · ·

 ≡ >


Let attach free variable y to x. y have some relation g with x.

f ∈ MTD∧f /∈ NTD → ∃x


f

 · · · x x · · ·

· · · {x, y} {x, y} · · ·

 ≡ >

 ∧ (g (x, y) ≡ >)


y: free variable.

However, from f ∈ MTD then

(x, y) → (1, 1) , (0, 0)

and from f

 · · · x x · · ·

· · · {x, y} {x, y} · · ·

 ≡ > then

(x, y) → (1, 0) , (0, 1)

So

(x, y) → (1, 1) , (0, 0) , (1, 0) , (0, 1)

and g is no bind of (x, y). So

f ∈ MTD ∧ f /∈ NTD → ∃x

f

 · · · x x · · ·

· · · {x, y} {x, y} · · ·

 ≡ >


This means

f ∈ MTD ∧ f /∈ NTD → ∃x

f

 · · · x x · · ·

· · · {x, y} {x, y} · · ·

 ∈ MTD


y: free variable.

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 9

On the other hand, each MTD have limitation of length and number of variables

type. So we can repeat this operation to any proper subset of variables cannot

change another free variable. Such MTD satisfy NTD condition. �

x, y of NTD that made by 2.3 is independent each other, but we can modify

easily to depend x, y each other. Before proofing this, we proof following lemma.

Lemma 2.4. �

There is some DNF f which;

a) become 1 at one of any set of truth value assignment T

∀T∀t ∈ T (f (t) = 1)

b) each clauses have pre-defined 3 variables combination. (We can only decide

these literal become positive or negative.)

c) number of clauses is atmost polynomial size of variables type.

Proof. Let f = d1 ∨ d2 ∨ · · · ∨ dn that variables is x1, x2, · · ·xk and n = O (kc) ,

and d1 include variables x1, x2, x3. Because we can decide positive / negative of

x1, x2, x3 in d1, so d1 is possible 8 patterns;

x1 ∧ x2 ∧ x3, x1 ∧ x2 ∧ x3, x1 ∧ x2 ∧ x3, x1 ∧ x2 ∧ x3,

x1 ∧ x2 ∧ x3, x1 ∧ x2 ∧ x3, x1 ∧ x2 ∧ x3, x1 ∧ x2 ∧ x3

These possible d1 become partition of truth value assignment, one of above d1

become true at least 1
8 of truth value assignment T . So we can reduce number of

|T | atmost 7
8 by deciding suitable positive / negative pattern as d1.

Above condition is applicable another clauses d2, · · · dn, so we can decide positive

/ negative of variables x1, x2, · · ·xk in d2, · · · dn one by one to reduce T atmost 7
8 .

Number of |T | is at most 2k, so some constant c0 that 2k× (7/8)
nc0 → 0. Therefore,

we can make f that cover ∀T∀t ∈ T (f (t) = 1). �

Theorem 2.5. �

Any NTD can convert some NTD that have all pair of variables in some clauses,

and number of these clauses is atmost polynomial of variables types.

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 10

Proof. If NTD f does not have clauses which include both x and y, we can make

another NTD f ′ that include x, y in same clause with following step;

1) add literal y or y to some clauses c that include x, x

c → c′ = c ∧ Y | Y ∈ {y, y}

c = X ∧ · · · | X ∈ {x, x}

2) add new clauses d which include x, y and complement all truth value assign-

ment {t} that c′ (t) = 0 → d (t) = 1.

Mentioned above 2.4, number of such clauses is atmost polynomial number of

variables type. So |f ′| is polynomial size of |f | because number of variables type in

f is atmost |f |. �

Theorem 2.6. �

There is some NTD f that does not keep same clauses to permutate literal x, x.

∃f ∈ NTD

f ∩ f

 · · · x x · · ·

· · · x x · · ·

 6= f ∪ f

 · · · x x · · ·

· · · x x · · ·




f

 · · · x x · · ·

· · · x x · · ·

 : clauses that permutate all x, x to x, x in f .

Proof. To modify methods mentioned above proof 2.5, we can easily make f from

which keep same clauses to permutate literal x, x. In 2) step, we choose some

variables set that do not same variables set in any clauses (and also another clauses

in f), these clauses does not become symmetry with permutation of (x, x). �

Theorem 2.7. �

NTD ∈ PH

Proof. We can solve NTD by computing;

a) input as TAUT problem, and

b) all input that change any proper subset of one type literal as non TAUT

problem.

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 11

We can compute b) that choice changing literal as universal and compute them

as non TAUT problem. coNP Oracle machine with TAUT oracle can compute this

problem. Therefore NTD is in PH. �

Theorem 2.8. �

If input of NTD have some clauses which include variables x, y, the input that

change variables y to x (and reduce all x ∧ x → x, x ∧ x → 0 to become indistin-

guishable what variables changed) also in NTD.

∀p ∈ NTD

∃x, y ∈ p (x, y ∈ d ∈ p) → q ∈ NTD | q = p

 · · · x x y y · · ·

· · · x x x x · · ·




x, y ∈ d ∈ p: DNF p have some clauses d that include variable x, y.

Proof. (Proof by contradiction.) Assume to the contrary that

∃p ∈ NTD

∃x, y ∈ p (x, y ∈ d ∈ p) ∧ q /∈ NTD | q = p

 · · · x x y y · · ·

· · · x x x x · · ·




Because of p ≡ >, it is trivial that q ≡ > and q

 · · · x x · · ·

· · · x x · · ·

 ≡ >. So

some q

 · · · x x · · ·

· · · {x, x} {x, x} · · ·

 ≡ > from assumption q /∈ NTD.

However,

p ∈ NTD → p

 · · · x x · · ·

· · · {x, x} {x, x} · · ·

 6≡ >, p

 · · · y y · · ·

· · · {y, y} {y, y} · · ·

 6≡

>

So following are only tautology of changing positive / negative variables

p

 · · · x x y y · · ·

· · · x x y y · · ·

 ≡ >, p

 · · · x x y y · · ·

· · · x x y y · · ·

 ≡ >

then q satisfy following conditions.

q

 · · · x x x x · · ·

· · · x x x x · · ·

 ≡ >, q

 · · · x x x x · · ·

· · · x x x x · · ·

 ≡ >

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 12

This means that we have to treat each x, y in q = p

 · · · x x y y · · ·

· · · x x x x · · ·


separately. That is, q = p

 · · · x x y y · · ·

· · · x x x x · · ·

 is irreducible about x∧x →

x and x ∧ x → 0, so ∀x, y ∈ p (x, y /∈ d ∈ p). This is contradict assumption ∃x, y ∈

p (x, y ∈ d ∈ p). �

Theorem 2.9. �

Number of neighbor input in NTD is over polynomial number of input length.

Proof. Mentioned above 2.8, if p ∈ NTD and exists x, y ∈ c ∈ p then q ∈ NTD |

q = p

 · · · x x y y · · ·

· · · x x x x · · ·

. Because of symmetry of y, y in tautology, q′ ∈

NTD | q′ = p

 · · · x x y y · · ·

· · · x x x x · · ·

 also true. If p does not have some

clauses that include x, y in same clauses, we can change p to p′ that have some

clauses that include x, y in same clauses like 2.5. If generated formula q, q′ consist

of same clauses, we can change p to p′′ that p′′

 · · · x x y y · · ·

· · · x x x x · · ·

 and

p′′

 · · · x x y y · · ·

· · · x x x x · · ·

 do not consist of same clauses like 2.6. When we

add some clauses previous changing, adding clauses include some clauses that have

unique variables set that does not have another generated formuras not to come

to the same clauses. In this way, we can generate at least two times of NTD from

some NTD by reducing y, y → x, x or y, y → x, x.

On the other hand, we can repeat above variables reducing each variables in p.

To confirm number of variables type in p, we cannot limit the number no more than

logarithm number of input length |p|. Therefore generated NTD amount to over

polynomial number of input length |p|. �

Theorem 2.10. �

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 13

NNF circuit family have to use over polynomial number of gates of input length

to compute NTD.

Proof. Mentioned above 1.6, NNF have to unique gate which Different variables of

neighbor input. Mentioned above 2.9, size of NTD is over polynomial size of input

length. Therefore size of NNF circuit family that compute NTD is over polynomial

size. �

Theorem 2.11. �

NTD /∈ P

Proof. Mentioned above 1.4, NNF circuit family can compute P problem with poly-

nomial number of gates of input length. However mentioned above 2.10, NNF

circuit family have to use over polynomial number of gates of input length to com-

pute NTD. Therefore NTD is not in P. �

Theorem 2.12. �

P (PH

Proof. Mentioned above 2.7, NTD ∈ PH, but mentioned above 2.11, NTD /∈ P .

Therefore PH is not in P. �

References

[Sipser] Michael Sipser, (translation) OHTA Kazuo, TANAKA Keisuke, ABE Masayuki, UEDA

Hiroki, FUJIOKA Atsushi, WATANABE Osamu, Introduction to the Theory of COM-

PUTATION Second Edition, 2008

	1. NNF circuit family
	2. Neighbor Tautology DNF
	References

