INPUT RELATION AND COMPUTATIONAL COMPLEXITY
KOJI KOBAYASHI

ABSTRACT. This paper describes about complexity of PH problems by using
“Almost all monotone circuit family” and “Accept input pair that sandwich
reject inputs”.

Explained in Michael Sipser “Introduction to the Theory of COMPUTA-
TION”, circuit family that emulate Deterministic Turing machine (DTM) are
almost all monotone circuit family except some NOT-gate that connect input
variables (like negation normal form (NNF)). Therefore, we can find out DTM
limitation by using this “NNF Circuit family”.

To clarify NNF circuit family limitation, we pay attention to AND-gate and
OR-gate relation. If two accept “Neighbor input” pair that sandwich reject
“Boundary input” in Hamming distance, NNF circuit have to meet these dif-
ferent values of neighbor inputs in AND-gate to differentiate boundary inputs.
NNF circuit have to use unique AND-gate to identify such neighbor input.

The other hand, we can make neighbor input problem “Neighbor Tautol-
ogy DNF problem (NTD)” in PH. NTD is subset of tautology DNF that do
not become toutology if proper subset of one variable permutate positive /
negative. NTD include neighbor input pair which number is over polyno-
mial size of input length. Therefore NNF circuit family that compute NTD

are over polynomial size of length, and NTD that include PH is not in P.

1. NNF CIRCUIT FAMILY

Explained in [Sipser] Circuit Complexity section, Circuit family can emulate
DTM only using NOT-gate in changing input values {0,1} to {01,10}. In this

paper, we use this “almost all monotone circuit family” to clarify DTM limitation.

Definition 1.1.
We use term as following;

Date: 2018-03-14.

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 2

NNF : Negation Normal Form.
DTM : Deterministic Turing Machine

DNF : Disjunctive Normal Form.

In this paper, we will use words and theorems of References [Sipser].

Definition 1.2.

We will use the term;

“NNF Circuit Family” as circuit family that have no NOT-gate except connecting
input gates directly (like negation normal form). DTM emulator which mentioned
Book [Sipser] Circuit Complexity section are included in NNF Circuit family. To
simplify, circuit can compute shorter input from circuit input (such shorter input
have filler with concrete input).

“Input variable pair” as output pair of input gate and NOT-gate {01, 10} that
correspond to an input variable {0,1}.

“Accept input” as input that circuit family output 1.

“Reject input” as input that circuit family output 0.

“Neighbor input” as accept inputs that no accept inputs exists between these
accept input with Hamming distance.

“Boundary input of neighbor input” as reject inputs that exist between neighbor
inputs with Hamming distance.

“Different Variables” as subset of input variables that difference each other in
neighbor input.

“Same Variables” as subset of input variables that same each other in neighbor
input.

“Effective circuit of input ¢” as one of minimal sub circuit of NNF circuit that
decide circuit output as 1 with input ¢. Effective circuit do not include gate even
if gate change output 0 and effective circuit keep output 1. To simplify, effective

circuit do not include NOT-gate (monotone circuit).

Theorem 1.3.

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 3

cell

1 \Y n t(n)
Step
Input| i, i
1 G Cin C1tn)
Cu-l,v-l cu-l,v Cu-l,v+1
u Cuv
t(n) Cout
|

FI1GURE 1.1. NNF circuit block diagram

Lett : N — N be a function where t (n) > n.
If A e TIME (t(n)) then NNF circuit family can emulate DTM that compute
A with O (t* (n)) gate.

Proof. This Proof is based on [Sipser] proof.

NNF circuit family can emulate DTM by computing every step’s cell values (and
head state if head on the cell). Firgure shows part of a NNF circuit block
diagram.

Input of this circuit is modified in first step cells, and finally output result at
Cout = Cy(n),1 cell. This circuit emulate DTM behavior, so ¢, cell compute self
output from previous step cell ¢,_1, and it side cells ¢,—1,4-1,Cu—1,0+1 (because
head affect atmost side cells in each step). Firgure shows part of ¢, , circuit

that output 1 if and only if cell value is 0, head exist v and head status is gy.

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 4

Cu-l,v-l Cu—l,v Cu—l,v+1

Transition
Wire

Merge
Wire

FIGURE 1.2. ¢,, circuit

Each OR-gate Vy 44,0 correspond to every step’s cell condition (cell value v, and
head status ¢ if head exist on the ¢, ,, cell), and output 1 if and only if corresponding
step’s cell satisfy condition. Previous step’s V output in ¢,—1,y-1, Cu—1,0, Cu—1,0+1
are connected to next step’s AND-gate Aj,, with transition wire. Each As .
correspond to transition function §, and each Aj, ., output correspond to each
transition function’s result. So As,, output 1 if and only if previous step’s Vv
output in ¢y_1,4-1, Cy—1,v, Cu—1,0+1 satisfy transition function’s condition. Each
transition functions affect (or do not affect) next step’s condition, so each Ag .y v
output is connected to each V, 4., and decide ¢, , condition.

Because DTM have constant number of transition functions, NNF can com-

pute each step’s cell by using constant number of AND-gates and OR-gates (no

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 5

NOT-gate) which are connected to OR-gate that correspond to previous step’s cell
condition.

First step’s cells are handled in a special way. Input is {0,1}" and above mono-
tone circuit cannot manage 0 value. So NNF circuit compute {0,1}" — {01,10}"

by using NOT-gate. O

Corollary 1.4.
NNF circuit family can compute P problem with polynomial number of gates of

input length.

Confirm NNF circuit family behavior. NNF circuit family can emulate DTM
with polynomial number of gate of DTM computation time. All effective circuit
become DAG that root is one output gate. All gates that include effective circuit
become 1 if output is 1. Especially, all different variables of input cannot overlay in
same input, so all different effective circuit are join at OR-gate to connect output
gate as root. This NNF circuit behavior clarify input symmetry and independence

of each inputs.

Theorem 1.5.

All input variable pair of different variables join OR-gate in effective circuit.

Proof. Because input variable pair does not become 1 in same input, so it is neces-

sary to join OR-gate and output 1 to connect output gate in effective circuit. [

Theorem 1.6.
NNF circuit have to use at least one unique AND-gate to differentiate neighbor

input and boundary input.

Proof. Mentioned above all accept input variable pair of different variables join
at OR-gate. Because NNF circuit is almost all monotone circuit, there is two case
of joining at OR-gate;

a) all different variables meet at AND-gate, and join at OR-gate after meeting
AND-gate.

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 6

b) some partial different variables meet at AND-gate, and join at OR-gate these
AND-gate output, and meet at AND-gate all OR-gate output.

Case a), some AND-gate become 1 if and only if input include one side of different
variables. Therefore, root of these AND-gate does not become 1 if AND-gate does
not include these different variables as input.

Case b), because no boundary input become accept input, some OR-gate which
join neighbor input become 0 if input include boundary input. That is, effective
circuit become 0 if some of these OR-gate become 0, and become 1 if all of these
OR-gate become 1. Therefore, it is necessary that effective circuit include AND-
gate that meet all these OR-gate which join different variables (and other same
variables). Such AND-gate correspond to each different variables pair. So AND-

gate is differ from each different variables pair. O

That is to say, neighbor input cannot permutate proper partial input of different

variables to differentiate between neighbor input and boundary input.

2. NEIGHBOR TAuTOLOGY DNF

Let clarify number of neighbor input pair. To consider DNF tautology problem,
some input become neighbor input by changing one variable positive / negative.

So we define new partial problem of DNF tautology.

Definition 2.1.

We will use the term “Neighbor Tautology DNF problem” or “NTD” as partial
Minimal Tautology DNF problem which input also tautology if one variables x
change positive / negative {z,Z} — {T,x}, and not tautology if proper subset of

one variables x change positive / negative.
NID=SfIf=T,f =T,g=Ff

8
8]

r T
: changing all literals x, 7 to =, x.

=T

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 7

x T

{z,7} (7,2}

: (any) changing proper subset of literals x, T to

T, T.
Theorem 2.2.
ce €T T e
If f € NTD, then f s meighbor input of f.
e T x e

Proof. 1t is trivial because of x, T symmetry with tautology and NTD definition;

f =f=T
T T x T
f
T x {z,z} {z,T}
... :L’ :L’ ...
=f =T O
{z,2} {7z}
Theorem 2.3.

Minimal Tautology DNF (MTD) correspond to NTD.

Proof. Proof this theorem by constructing NTD from MTD.
If fe MTD and f ¢ NTD, then there are some variable x that keep tautology

to change proper subset of x.

x z
feEMTDANf¢ NTD -3z | f =T
{z,z} {z,T}

Let attach free variable y to T. y have some relation g with x.
f € MTDAf ¢ NTD — 3z f =T | A@gx,y)=T)
y: free variable.
However, from f € MTD then
(z,9) = (1,1),(0,0)

- x T e
and from f = T then

{z.7} {27}
(z,y) = (1,0),(0,1)

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 8

So
(z,y) — (1,1),(0,0),(1,0),(0,1)

and g is no bind. So

fEMTDAf¢NTD -3 | f v v =7
{z.,7} {z,7}

This means

feEMTDANf¢ NTD — 3z | f ! ! € MTD
{z.,7} {z.7}

y: free variable.
On the other hand, each MTD have limitation of length and number of variables
type. So we can repeat this operation to any proper subset of variables cannot

change another free variable. Such MTD satisfy NTD condition. a

z,y of NTD that made by is independent each other, but we can modify

easily to depend x,y each other.

Theorem 2.4.

There is some DNF' f which;

a) become 1 at one of any set of truth value assignment T

VIVt e T(f(t)=1)

b) each clauses have pre-defined 3 variables conbination. We can only decide
these literal become positive or negative.

¢) number of clauses is atmost polynomial size of variables type.

Proof. Let f = dy; Vdy V.-V d, that variables is 1, x2, -z and n = O (k) ,
and d;y include variables x1, 9, x3. Because we can decide positive / negative of
1, T3, x3 in dy, so dy is possible 8 petterns;

r1 Nx2 N3, T3 NTo2 N X3, 1 NTo N3, T3 NTa N\ T3,

1 Axo AT3, TL A To A T3, T1 AT2 A T3, TT A Ta A T3

These possible d; become partition of trueth value assignment, one of above d;
become true at least % of truth value assignment 7. So we can reduce number of

|T| atmost % by deciding suitable positive / negative pettern as dj.

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 9

Above condition is applicatable another clauses ds, - - - d,,, so we can decide posi-
tive / negative of variables 1, xs, -z in dsa, - - - d,, one by one to reduce T atmost
2. Number of |T| is at most 2¥, so some constant cq that 2% x (7/8)"" = 0. There-

fore, we can make f that cover VIVt € T (f (t) = 1). O

Theorem 2.5.
Any NTD can convert some NTD that have all pair of variables in some clauses,

and number of these clauses is atmost polynomial of variables types.

Proof. If NTD f does not have clauses which include both x and y, we can make
another NTD f’ that include x,y in same clause with following step;

1) add literal y or g to some clauses ¢ that include z,Z.

2) add new clauses d which include z,y and complement all truth value assign-
ment {t} that ¢(t) =1 and (¢ A {y,7}) (t) = 0.

Mentioned above 2.:4] number of such clauses is atmost polynomial number of
variables type. So |f’| is polynomial size of | f| because number of variables type in

f is atmost | f]. O

Theorem 2.6.
If NTD f keeps same clauses to permutate literal x,T, there are some NTD f'

that does not keep same clauses to permutate literal x,T.

Proof. To modify methods mentioned above proof we can easily make f’ from
f- In 2) step, we choose some variables set that do not same variables set in
any clauses of f (and also another clauses of f’), these clauses does not become

symmetry with permutation of (z,T). O

Theorem 2.7.
NTD e PH

Proof. We can solve NTD by computing;

a) input as TAUT problem, and

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 10

b) all input that change any proper subset of one type literal as non TAUT
problem.

We can compute b) that choice changing literal as universal and compute them
as non TAUT problem. coNP Oracle machine with TAUT oracle can compute this
problem. Therefore NTD is in PH. O

Theorem 2.8.
If input of NTD have some clauses which include variables x,y, the input that

change variables y to x (and reduce all x Nx — x, £ AT — 0 to become indistin-

guishable what variables changed) also in NTD.

T T Yy
Vpe NTD | 3zx,yep(z,yedep) —>qe NTD |q=p
r T T T
x,y € d € p: DNF p have some clauses d that include variable x,y.
Proof. (Proof by contradiction.) Assume to the contrary that
r T Yy y

IpeNTD | z,ycep(r,yedep)ANq¢ NTD |g=p

8]
Sl
8
]

xr T

Because of p = T, it is trivial that ¢ = T and q =T. So
T x
some ¢ = T from assumption ¢ ¢ NTD.
{z,z} {z,7}
However,
e x T oo cen y y ce
pe NTD —p Z=T,p e

{J)’f} {l‘,f} {ya?} {y,?}

So following are only tautology of changing positive / negative variables

. x T y y P e x f y y

P =T,p =T
f x y y P e x j g y

then ¢ satisfy following conditions.

q =T,q =T

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 11

r T Yy y
This means that we have to treat each z,y in ¢ =p
r T x T
separately. That is, g = p is irreducible about x Ax —

r T T T
zand x AT — 0, s0 Vz,y € p(x,y ¢ d € p). This is contradict assumption 3z, y €

p(z,y €deEp). O

Theorem 2.9.

Size of neighbor input in NTD is over polynomial size of input length.

Proof. Mentioned above if p € NTD and exists z,y € ¢ € p then ¢ € NTD |

q=0p . Because of symmetry of y,¥ in tautology, ¢’ €
cae €T T y m
NTD | ¢ =p also true.
e €T T T €T
Let pyy =p and p,z = p

and these formula is adjusted input length equal |p| with filler to simplify following
proof.

Mentioned above some NTD have all pair of variables in clauses, and each
literal pair is asymmetry, so we can repeat below to all variables.

pxy.. | X ={z, 2}, Y ={y, 7}, -

Number of such variables type is over logarithm size. So total number of {pxy...}
is over polynomial size. Mentioned above each of {pxy..} is also neighbor

input. Therefore size of neighbor input in NTD also over polynomial size. (]

Theorem 2.10.

NNF circuit family have to use over polynomial number of gates of input length

to compute NTD.

Proof. Mentioned above [I.6] NNF have to unique gate which Different variables of

neighbor input. Mentioned above [2.9] size of NTD is over polynomial size of input

INPUT RELATION AND COMPUTATIONAL COMPLEXITY 12

length. Therefore size of NNF circuit family that compute NTD is over polynomial

size. |

Theorem 2.11.
NTD ¢ P

Proof. Mentioned above[I.4] NNF circuit family can compute P problem with poly-
nomial number of gates of input length. However mentioned above NNF
circuit family have to use over polynomial number of gates of input length to com-

pute NTD. Therefore NTD is not in P. O

Theorem 2.12.

PC PH

Proof. Mentioned above NTD € PH, but mentioned above NTD ¢ P.
Therefore PH is not in P. O

REFERENCES

[Sipser] Michael Sipser, (translation) OHTA Kazuo, TANAKA Keisuke, ABE Masayuki, UEDA
Hiroki, FUJIOKA Atsushi, WATANABE Osamu, Introduction to the Theory of COM-

PUTATION Second Edition, 2008

	1. NNF circuit family
	2. Neighbor Tautology DNF
	References

