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Abstract

In this paper we show that Heisenberg’s uncertainty principle, combined with key principles from Max Planck
and Einstein, indicates that uncertainty collapses at the Planck scale. In essence, the uncertainty principle
becomes the certainty principle at the Planck scale. This can be used to find the rest-mass formula for elementary
particles consistent with what is already known. If this interpretation is correct, it means that Einstein’s intuition
that “God Does Not Throw Dice with the Universe” could also be correct. We interpret this to mean that Einstein
did not believe the world was ruled by strange uncertainty phenomena at the deeper level, and we will claim
that this level is the Planck scale where all uncertainty seems to collapse. The bad news is that this new-found
certainty can only can last for one Planck second!
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1 The Three Giants

In 1899, Max Planck introduced what he called natural units, namely the Planck length, the Planck mass, the
Planck second, and the Planck energy [1, 2]. He derived these fundamental units from Newton’s gravitational
constant [3], the speed of light, and the Planck constant. In 1905, Albert Einstein introduced special relativity
theory [4]. In 1927, Heisenberg introduced his uncertainty principle. The Heisenberg uncertainty principle is
one of the cornerstones in quantum mechanics. The Planck constant is also a key here. However, the Planck
length, the Planck mass, the Planck energy, and the Planck time have never been really understood or directly
linked to a consistent quantum theory.

Albert Einstein is, of course, also one of the founders of quantum theory, in particular with his insight on the
photoelectric e↵ect. However, he was very skeptical on much of what followed in quantum physics, especially in
relation to strange uncertainty phenomena. It was not necessarily the case that he did not believe in such models,
but he felt that the theories did not capture the full picture of reality. Einstein is famous for his statement, see
[5]

God Does Not Throw Dice with the Universe

From the derivations and logical reasoning that we are working with here, it looks like Einstein was right,
even though many have maintained that he was wrong on this point. We will use concepts from special relativity
theory, Max Planck, and Heisenberg, and we find that the unification of these three Giants of Physics seems to
lead to a breakdown of uncertainty at the Planck scale. Further, this can be used to derive well-known formulas
for the rest-mass of particles.

2 Does Uncertainty Collapse at the Planck Scale?

Heisenberg’s uncertainty principle is given by

�p�x � ~
The momentum at low velocities is given by p ⇡ mv and the relativistic momentum is p = mvr

1� v2

c2

. The

Planck momentum, according to modern physics, is known (assumed) to be
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pp = mpc (1)

It is very important to pay attention to the fact that there is no v in this formula. The velocity v can take
a series of values below the speed of light, while the speed of light itself is constant and the same from any
reference frame1.

Lloyd Motz, while working at the Rutherford Laboratory in 1962, [6, 7, 8] suggested that there was probably
a very fundamental particle with a mass equal to the Planck mass; today it is known as the Planck mass particle.
We will claim that only the Planck mass particle can have a momentum o↵ p = mc. No particle with rest-mass
can move at the speed of light, as it would require an infinite amount of energy to reach this velocity. Thus, we
will not claim that the Planck particle can move at the speed of light, rather the contrary, as we will see. We
claim the Planck mass particle is not exempt from relativistic rules; it must also follow the relativistic momentum
formula of Einstein, which gives

pp =
mpcq
1� v2

c2

= mpc (2)

However, this can only happen if v = 0. In a series of articles, Haug has shown that the Planck mass
particle is unique in this respect: the Planck mass particle must be at absolutely rest, even as observed across
any reference frame. Based on a long series of di↵erent arguments, Haug [9, 10, 11, 12, 13] has shown that the
maximum velocity any particle with rest-mass can attain is

vmax = c

r
1�

l2p
�̄2

(3)

where �̄ is the reduced Compton wavelength of the particle and lp is the Planck length. Only for the Planck
mass particle does �̄ = lp, and only for the Planck mass particle do we have maximum velocity of zero. All other
known particles have maximum velocities extremely close to that of the speed of light, but these far exceed what
can be achieved at the Large Hadron Collider today, making empirical work di�cult. This maximum velocity
and view that the Planck mass particle must stand absolutely still mean that the Lorentz symmetry must be
broken at the Planck scale, something that is predicted by several quantum gravity theories. All other particles
can show a wide range of momentum, because they can have significant variations in their velocity and therefore,
they also have uncertainty in their momentum.

As long as we assume that the Planck particle has a known momentum of mpc, then we find that

�pp�x � ~
mpc�x � ~

mpc � ~
�x

mp � ~
�x

1
c

(4)

We know that the mass of any elementary particle can be written in the form

m =
~
�̄

1
c

(5)

and since the reduced Compton wavelength of the Planck mass particle is �̄ = lp then we must have

mp =
~
lp

1
c

(6)

Inputting formula 6 into formula 4 and solving with respect to �x we get

~
lp

1
c

� ~
�x

1
c

�x � lp (7)

This gives two important insights. Many (perhaps even most) physicists are of the opinion that the Planck
length is the minimum distance we can measure, and from the analysis above, this would mean that we cannot
have an uncertainty smaller than the Planck length. This has several important implications; for example, it
means the speed limit of just v < c cannot hold for anything with rest-mass, as the highest relativistic mass
must now be the Planck mass; see [16] for detailed discussion on this point. Instead, we get the exact speed limit

1As measured with Einstein- Poincaré synchronized clocks.
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given by Haug’s maximum speed limit for anything with rest-mass. This speed limit is, for any known observed
particle, very close to the speed of light, except for the special case of the Planck particle where it “surprisingly”
is zero. Because there is no uncertainty in the Planck momentum, due to there being no uncertainty in the
velocity of the Planck particle, we will claim there is no longer an uncertainty in its position. This corresponds
well with the points above, where we have shown that the Planck particle must stand absolutely still, but only for
one Planck second. So, it’s position is simply the shortest possible distance we can measure, even hypothetically,
which is the Planck length. That is to say, only for the Planck mass particle can we know the momentum and
the position at the same time and, in fact, we only need one of them and then we can deduce the other one.

So, we think the correct interpretation is that at the Planck scale we must go from an inequality to an
equality, that is we must likely have

�x = lp (8)

This means that at the Planck scale Heisenberg’s uncertainty principle breaks down and becomes the certainty
principle

�p�x � ~
mpclp = ~ (9)

That is to say, at the Planck scale, we claim all uncertainty will likely disappear, but this world is certain
only for one Planck second. The Planck momentum is linked to the speed of light and no mass can move at the
speed of light. However, a Planck particle can and must dissolve into pure energy within one Planck second.

Another hint here is the Planck acceleration that is given by ap = c2

lp
⇡ 5.56092 ⇥ 1051 m/s2. The Planck

acceleration is assumed to be the maximum possible acceleration by some physicists; see [14, 15], for example.
Even after one Planck second, the Planck acceleration will bring an object at rest up to the speed of light. No
particle that also has mass after undergoing acceleration can therefore undergo Planck acceleration. The solution
is simply that only the Planck mass particle can undergo (and is even is the cause of) Planck acceleration. It
is an internal acceleration, which simply means the Planck mass particle dissolves back into energy after one
Planck second.

Still, for all non-Planck particles we have

�p�x � ~
�

mvq
1� v2

c2

�x � ~ (10)

If we now assume we know the rest-mass of the particle in question, an electron, for example, then the
uncertainty in momentum must come from the uncertainty in the velocity. This means we have

m�vq
1� (�v)2

c2

� ~
�x

(11)

Now if we set �x to what we know is the minimum possible uncertainty in it, namely the Planck length,
and we know the rest-mass of the particle, then it is even more clear that what is causing the uncertainty in the
momentum is the uncertainty in the velocity:

m�vq
1� (�v)2

c2

lp � ~

~
�̄

1
c�v

q
1� (�v)2

c2

lp � ~

1
c�v

q
1� (�v)2

c2

� �̄
lp

�vq
1� (�v)2

c2

� �̄
lp
c (12)

Solved with respect to �v this gives
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v2

1� (�v)2

c2

� �̄2

l2p
c2

(�v)2  �̄2

l2p
c2

✓
1� (�v)2

c2

◆

(�v)2
✓
1 +

�̄2

l2p

◆
 �̄2

l2p
c2

(�v)2 
�̄2

l2p
c2

⇣
1 + �̄2

l2p

⌘

�v  cq
1 +

l2p
�̄2

(13)

This is basically the same derivation as given by Haug in a working paper previously [16]. What is new in this
paper is that we are showing how Heisenberg’s uncertainty principle likely leads to a breakdown of uncertainty
at the Planck scale.

3 Future Research: Bell’s Theorem

Several researchers have pointed out that by implicitly assuming all possible Bell measurements occur simulta-
neously, then all proofs of Bell’s Theorem violate Heisenberg’s uncertainty principle [18]. We wonder what it
could mean for the interpretation of Bell’s Theorem that the Heisenberg uncertainly principle breaks down at
the Planck scale. In our view, the observation of photons is directly linked to Planck-scale physics. The building
blocks of a photon are the indivisible particles that at collision (observation) create a Planck mass that lasts for
one Planck second. The Planck mass particle is the collision of two light particles and this is the mass-gap that
has a rest-mass of only 1.17337 ⇥ 10�51 kg for a one second observational window, see [19]. That is to say a
Planck mass 2.17651⇥10�08 kg that only lasts for one Planck second, but is observed for more than one second.
The mass-gap is the only mass that is observational time-dependent.

Clover, as cited above, claims that

Only time-independent classical local hidden variable theories are forbidden by violations of the
original Bell inequalities; time-dependent quantum local hidden variable theories can satisfy this new
bound and agree with experiment.

The mass-gap that is related to light and the Planck scale is, in our view, time-dependent. We are currently
studying more about Bell’s theorem and hidden variable ideas. Although it is too early to draw any conclusions
at this point, we encourage others to see if the extended version of Heisenberg’s uncertainty principle presented
in this paper can provide further insights.

4 Conclusion

In this paper, we have shown that Heisenberg’s uncertainty principle likely collapses to a certainty principle at
the Planck scale. This indicates that Einstein was right when he claimed “God Does Not Throw Dice.” The
Planck mass particle is unique and is the only particle that has a known momentum equal to p = mc. There is
no room for uncertainty in the velocity of a Planck mass particle, simply because it is at absolute rest, even as
observed across di↵erent reference frames.
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