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In this paper we develop complex solutions to the Dirac equation and discuss various implications and 
applications. 
 
 
1. Introduction 
 
The Dirac electron theory is unique in that it is relativistic invariant and that it predicts two states of 
matter having opposite charges [1-4].  In addition is the concept of a full vacuum; one in which positive 
energy states, such as those of a gamma ray, can activate electron-positron pair production in which an 
electron is kicked out of the Fermi-Dirac sea to a positive energy state, leaving an electron hole position 
in the negative energy sea.  The two-sign solution lead to the postulate of antimatter which has been 
well identified.  In the 1920’s when Dirac developed his mathematical description of the relativistic 
electron, the obtainment of an antielectron or positron solution, in addition to the electron solution, did 
not lead immediately to hypothesis of antimatter and appeared to be an anomalous solution.  In 1932 
Carl Anderson discovered the positron in cloud chamber photographs leading to a good example of 
prediction and confirmation.  With the advent of the prediction of the antiproton and its identification 
at the Berkeley Bevatron bubble chamber by Emilo Segre and Owen Chamberlain in 1958, the pairing 
of matter and antimatter lead the conundrum of why we observe more matter then antimatter in the 
Universe.  Matter and antimatter when they collide produce massive amounts of energy, E = mc2 
producing high energy gamma rays through the annihilation process. 
 Further development of the theory led to the concept of a full vacuum termed the Fermi-Dirac sea.  
A gamma ray can impact a heavy nucleus producing an electron-positron pair.  In the Fermi-Dirac sea 
model of the vacuum there are the normal positive energy states E > 0 and zero energy states E = 0 as 
the surface of the Sea and negative vertical energy electron states, E < 0.  The energetic photon kicks 
out an electron into the positive energy states, leaving a hole in the Fermi-Dirac sea.  This hole is the 
positron. 
 The Fermi-Dirac sea model has numerous applications from Feynman diagram techniques to 
modeling semiconductor substrates [5-7]. The presence of the full vacuum picture has been useful in 
describing many states of matter including particularly more exotic state of matter such as plasmas. In 
plasmas, the energy of the ionized plasma gas, activates the electron-positron pair production by 
polarizing or biasing the vacuum. Using Feynman graphical techniques, one can definitely demonstrate 
the actual effects of the Fermi-Dirac energy sea on such plasma dielectric constant, conductivity and 
other properties in medium to high temperature plasmas.  The fit of these plasma parameters is to the 
formalism including the full vacuum picture, than just the classical or semi-classical approach [7, 8]. In 
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this chapter, we solve the Dirac equation in the Complex Minkowski 8-Space and examine conditions 
in which the imaginary components of the complex 8-space contribute to small nonlinear terms in the 
Dirac equation.  We also examine the spinor calculus and the Dirac string trick in their interpretations 
in M4 and C4 space.  Historical interpretation of some of the major theories in the foundation of physics 
are examined. 
 
 
2. The Basic Structure of Physics Theories and Their Interrelation 
 
In the attempt to develop a unified theory, the thorny issue of quantum mechanics and relativity arises 
as to the manner in which to find a quantum gravity formalism.  The reconciliation of two distinctly 
structured theories, having different domains of applicability has been a conundrum to physicists for 
over seventy years.  The basic structure of gravity, described by general relativity is a nonlinear tensor 
force and the basic formalism of the quantum theory is that of linear superposition.  We examine this 
latter issue in Chap. 10 on the consideration of additional terms that introduce small nonlinear terms in 
the Schrödinger equation, which are formulated in terms of the complex 8-space. 
 Essentially the reconciliation of the formalism of gravity and quantum mechanics is essential to 
develop a unification of the forces and processes of nature as a “theory of everything” (TOE), see Chap. 
13.  Historically the development of these two uniquely different theories has their roots in the classical 
Hamilton-Jacobi theory. A major link between quantum and relativistic theories is the Dirac equation 
[9]. In figure 1 is represented the development of physics from the past and the top of the figure to 
current time at the bottom of the figure.  The concept of canonically conjugate or paired variables 
obeying an Abelian algebra was developed in the Hamilton-Jacobi classical mechanics as the (p,q) 
phase space variables, where p is momentum and q is a spatial dimension, x [9].  This structure is 
fundamental to the non-Abelian algebras of the quantum theory, exemplified by the Heisenberg 
uncertainty principle, p   . Bohr’s complementary principle is funda-mental to the dual paired 
variables (p, x) of the quantum theory.  The paired variables (E, t) for energy and the temporal dimension 
can also be considered for E t    . The relationship between the classical Hamilton-Jacobi theory 
and the quantum picture is Bohr’s correspondence principle. The structure of general relativity and 
quantum mechanics is fundamentally very distinct. The standard quantum picture involves linear 
superposition where as general relativity formulates non-inertial frames or gravity which is intrinsically 
nonlinear. Galileo’s law of fallowing bodies exemplifies the nonlinearity of gravity in a very cogent 
manner, that is the distance of fall, s to the time, t2 is given as s = ½(gt2) where g is the acceleration of 
Earth’s gravity. 
 The Hamiltonian equations are based on energy conservation H = T + V where T is the kinetic 

energy and V is the potential energy.  For the Lagrangian, L = T – V.  Then 
2

2

2

p
H q

m
   so that the 

equation of motion is written as 0q q   where p is the momentum and q is the spatial variable for 

the canonically conjugate variables of phase space (p,q).  then the Hamiltonian expressions apply,  
 

p H
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t q
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See [9-11]. 
The concept of energy conservation lies at the center of most major physics formulations. The 

conservation of total energy, E  is expressed as the sum of the kinetic and potential energies 

respectively as E = E + V in classical mechanics. The conservations principle, as the first law of 

thermo-dynamics, has applicability in many diverse fields of knowledge such as information theory. 
The Schrödinger equation is a basic expression of the quantum theory and is expressed in terms of the 
total energy Hamiltonian as the sum of the kinetic energy, E and potential energy, V written as 
H V     where   is the eigenfunction and E is the eigenenergy. 

 Energy or energy-momentum conservation is essential to both the quantum theory and general 
relativity.  We examine, in detail the derivation of the Schrödinger equation from its classical origins 
[9]. We represent the origin on developments of the non-relativistic quantum theory on the right side of 
figure 1.  

 
 
Figure 1 A schematic representation of the history and structure of the fundamental equations of physics. Earlier 
time to present is represented from top to bottom of the figure. Gravity may not be quantized if the quantum 
regime ends in a way similar to the boundary between classical mechanics and quantum mechanics. 
 
 Essentially the development of a quantum gravity theory, which forms a synergy of these two pillars 
of physics is fundamental to developing a unified theory; see chap.13. Supersymmetry theories, GUT 
and TOE theories incorporating superstring theories are approaches and attempts to unify the four force 
fields of the strong force, electromagnetic force, weak force (electroweak force) and gravity. We have 
considered the efforts of adding small nonlinear terms arising from the complexified 8D Minkowski 
space into the quantum picture.  In Chap. 10, we examined the consequences of this approach for the 
structure and solutions to the Schrödinger equation.  In this chapter, we examine a similar approach to 
complexification the Dirac equation. 
 In the left vertical history in Fig. 1 we represent the evolution of the structure of the general 
relativistic field equations from the Poisson equation. In the structure of these basic theories, conditions 
are required such as covariance which is basic to relativity or a relativistic quantum theory. The 
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condition of covariance means that the equations that describe the system are constant so far as the 
quantities on both sides of the equation transform in the same manner covariantly. For example, the 
expressions of both sides of the equations must be scalars, vectors or tensors. We consider the origin of 
Einstein’s field equations from the classical mechanics, represented on the left side of Fig. 1. 
 As suggested in Fig. 1, if there is a limit to the quantum regime in the same way quantum theory 
makes correspondence to classical mechanics; there may be no quantum gravity in the manner currently 
sought. Indeed, Feynman said: 
 

... maybe we should not try to quantize gravity. Is it possible that gravity is not quantized and all the 
rest of the world is?... Now the postulate defining quantum mechanical behavior is that there is an 
amplitude for different processes. It cannot be that a particle which is described by an amplitude, 
such as an electron, has an interaction which is not described by an amplitude but by a 
probability...it seems that it should be impossible to destroy the quantum nature of fields. In spite of 
these arguments, we should like to keep an open mind. It is still possible that quantum theory does 
not absolutely guarantee that gravity has to be quantized. Feynman, 1962, Lectures on Gravitation. 

 
Gauge Theory is an approximation, which could mean there is no spin 2 graviton detectible in 
Minkowski space, no Higg’s mechanism, no super-partners or sparticles and why no magnetic 
monopole has been detected. What is looked for instead are complex HD topological parameters where 
brane boundary conditions handle these properties in a new way as Feynman suggests.  

Basic to the classical formalism of electromagnetism and relativistic physics is the Poisson equation 

of the form 2 4    where the divergence 2  of the potential field   is proportional to the energy 

(or energy mass) density,   in the space considered. The Laplace equation, 2 0   is written for a 
density free space. 
 From classical mechanics, we can describe the gravitational field by Poisson’s equation 
 

  
2 4 G           (2) 

 
Where   is the gravitational potential and   is the matter density for   and   are scalars.  We can 
generalize this equation in the linearized theory to  
 

16
( )

G
T

c
            (3) 

 

Where   describes the gravitational field,   corresponds to non-gravitational sources and the T   

term expresses the fact that the gravitational field can act as its own source.  The 416 /G c  term 
assures that the classical limit obeys the Poisson’ equation. Also, F = c4/G is the universal force [11].  
In deriving Einstein’s field equations, we first examine the non-relativistic limit of the linearized field 
equations. Assuming static conditions then T00 = mc2 the only component of the energy-momentum 

tensor.  Neglecting t  for now, we have  
 

   2 00 00 00 2
4

16 2 16 /
G

Gm cFc
             (4) 
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where T00 is a scalar and m is the mass having mass density  .  To convert back into Poisson’s equation, 

we must have 00 24 / c    where   is the Newton’s potential and 00 is a scalar.  The 8  and 16

  term correspond to the relativistic and non-relativistic terms, for 2 21
2 orE mv E mc  . 

 We can describe the gravitational field by Poisson’s equation of classical mechanics 2 4 G    

where   is the gravitational potential and   is the matter density.  A more general form of this equation 

is expressed including the continuity equation (for energy, mass and charge conservation) as 
2 24 ( 3 / )G p c      where p is momentum. 

 The generalized form for the above equation is given in Eq. (4) where  describes the 

gravitational field and -2 /F insures the proper dimensionality.  We now consider the solutions to Eq. 
(3) to demonstrate that the Poisson equation leads to Einstein’s field equation solutions, we proceed as 
follows again utilizing Poisson’s equation and the continuity equation. For 
 

          2 24 ( 3 / )G p c            (5)  

  
dv

dt
             (6a) 

 then we have  
 

2)( /v p c
t

 
  


        (6b) 

 

for  0v S   where S is arbitrary term within a constant multiplication factor which depends on the 

time chosen so that S(t0)=1. If we define 
1

2
( )

( )
R t

S t C
c

  then 

1
2

0( )
C

S t
c

  where R(t) is the 

curvature of space and C is a constant.  Using the equations for 2 ,
dv

dt
  and 

t




 or Eqs. (5, 6a and 

6b) or acceleration, then we have 2 28

3

G
S S C

    and the relationship for S(t) then 

2 2 28

3

G
R R kc

    where 0, 1k    which is one of the solutions to Einstein’s field equations. 

 It is clear that it is essential to examine the structure of the basic equations of physics that describe 
the micro and macro domains.  Their origins from the classical Hamilton-Jacobi theory and classical 
concepts in general give us clues as to the manner in which to reconcile these theories and develop an 
approach to a unified theory. The Dirac equation stands unique in that it is relativistically Lorentz 
invariant. See Table 1 for force field type range and possible velocity of propagation. 

Table 1 lists some types of physical phenomena, relevant forces involved and their velocity domain, 
v = 0. v = c and possibly orv v c    in complex 8-space as well as their theoretical speculative 

range. Six branches of physics are given with their forces and range. In The three domains of signal 
propagation as related to five branches of physics. These modes of signal propagation are manifest in 
other branches of physics also. We compare this to the signal propagation velocity associated with local 
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and nonlocal phenomena. 
 

                                                                   Table 1 
 

            DOMAINS FOR  0,v v c   AND v    AND  BRANCHES OF PHYSICS 

    Branch of Physics Domain Type of Force Theoretical Range  

    Hamilton-Jacobi                    0v                 Mechanical                              
 Mechanics 
 

    Electromagnetism             v c         Electromagnetic          
 

    General Relativity             v c             Gravitational         
Cosmology 
 

    Superconductivity             v                   ?           ? 
Macro-Quantum 
 

   Young’s Double Slit             v              Electromagnetic      Finite 
Quantum Mechanics    
 

    Bell’s Nonlocality                  v             Electromagnetic     Infinite ? 
                 and Atomic 
 
 
3. The Basis and Structure of the Dirac Equation 
 
The Dirac equation obeys the proper relativistic invariant conditions so it comprises a quantum theory 
that obeys relativistic constraints on the lightcone. A geometry defines a space which is an idealization 
of the physical 4D space of objects and momentum and locations. The lightcone with its hyperbolic 
topology is a covariant representation of spacetime regions.  A Lie group is a topological group. For the 

relativistic form of the Dirac equation we use 2 2 2 4( )xE p c m c   where E is the relativistic energy and 

xp  is the momentum in the x direction.  We start from E = mc2 and px = mvx  so that m = E/c2.  We have 

px/m = v x = px/(E/c2)= 
2

xp c

E
.  For the relativistic form of the energy  

 

                                     

2 2

2 2 21 1 /x

mc mc
E

v c
 

 
      (7) 

 

Then eliminating vx between vx=
2

cp c

E
 and Eq. (7) in the form of  

 

         
2

2 21 /x

mc
v c

E
          (8) 
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and then taking the inverse relation,  
 

2 2

2 2
1 xvE

mc c
    
 

 ,       (9) 

 
So that vx is given by  
 

2 2
2

2 4 2 2
( 1) 1x

E E
v c c

m c m c
    

   
    (10) 

 
 
 Then eliminating vx from Eq. (10) and vx = px

2c2/E so we have  
 
 

2 4 2

2 4x

m c E
p c E

m c


           (11) 

 

Then 2 2 2 4 2p c m c E   so that 2 2 2 4
xE p c m c    so we have the usual relativistic energy 

equation  
 

  
2 2 2 4E p c m c            (12) 

 
For the three components of the momentum, 
 

         2 2 2 2 2
x y zE c p p p m c             (13) 

 

To derive the Dirac equation based on the two operators xopp
i x







 and opE
i t


 




 so that   

 

2

2

2 2
2 2 4

2 2x
c n c

i t y z
 



  
      

  
       (14)  

 
 where   is the wavefunction solution. The Hamiltonian is written as  

 

 
1

2 4 2 2 2H m c p c              (15) 

 
having two solutions which are given in terms of the energy equation  
 

   
2 4 2 2E m c p c            (16)  
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which is the basic energy equation for the relativistic Dirac equation.  Also, other Hamiltonian forms 
can be written for a charged particle in an electromagnetic field as, 
 

          
1

2 2 2 2[H m c cp eA e           (17)  

 
 where A is the vector potential and   is the scalar potential. Because we are dealing with a first order 

equation in space and time dependence, we have a square root giving two solutions, one is for the usual 
electron and the second is for a positive electron or positron. Dirac stuck to his two-charge solution 
prediction which was later verified and led to the whole concept and discovery of antimatter [13]. 
 
 
4. The Relativistic Dirac Equation 
 
Proceeding from the Schrödinger equation, we express the Hamiltonian in spherical coordinates as  
 

2
2

2

1
( )

2 r

L
H p V r

m r

 
   

 
,           (18) 

 
where pr is the radial momentum ( )mr and L the angular momentum vector.  As well known, the three 
components of angular momentum, derived from each other by cyclic permutation, are 

,z y xL xp yp 
 

,x z yL yp zp   y x zL zp xp   and L r    where the total angular momentum, 
2 2 2 2

x y zL L L L    has commutation rules L L i L    [14-16].  The SO(3) rotation generators 1 2,l l  

and 3l  satisfy 1 2 2 1 3 ,l l l l l   2 3 3 2 1,l l l l l   3 1 1 3 2l l l l l  ; related quantum mechanically to angular 

momentum components 1 2 3, ,L L L  with 1 2,x yL i l L i l    3and zL i l   about Cartesian axes giving 

commutation rules ,x y y x zL L L L i L    y z z y xL L L L i L    and z x x z yL L L L i L   . Angular 

momentum refers to intrinsic spin about a massive particles center of mass and its magnetic moment 
obeys SO(3) Lie algebra which is non-Abelian acting on two component spinor wave functions 

0 1{ ( ), ( )} Ax x    ; but by the uncertainty relation, x      only one set of these operators may 

commute at a time.  Non-relativistic Fermi spin 1/ 2 , or simply spin ½, particles with spin angular 
momentum operator 1/ 2s    can be expressed as the three anticommuting Pauli 2 x 2 spin matrices 

Eq. (19) satisfying x y y x zi        as derived empirically from the Stern-Gerlach experiments 

[13-18]  
 

         

0 1 0 1 0
, ,

1 0 0 0 12 2 2x x y y z z

i
L L L

i
  

     
               

  

       
(19)  

 

where the total spin operator is given as “total spin” operator, 2 2 2 2
x y zJ L L L     commutes with all 

three components of L in 3D. 
 Spinor space and spin spaces, such as hypercharge are developed in independent topological spaces. 
Spinors and spin space can be complexified and occupy a hyperspace continuum. For example, the 
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special unitary Lie groups, which are topological groups having infinitesimal elements of the Lie 
algebras, are utilized to represent the symmetry operations in particle physics and in infinitesimal 
Lorentz transformations.  For example, the generators of the special unitary SU2 group is composed of 
the three isospin operators, I as I+, I- and Iz having commutation relations [ , ] zI I iI   .  The generators 

of SU3 are the three components of I, isospin, and hypercharge Y, and for other quantities which involve 
Y and electric charge Q.  Thus, there are eight independent generators for the traceless 3 x 3 matrices of 

SU3.  The 3O group of rotations is homomorphic to the SU3 group.  Just as in the conformal group on 

Minkowski space, spin space forms a two-valued representation of the Lorentz group.  Note that SU2 is 
the four value covering group of C(1,2), the conformal group of Minkowski space.  The element of a 
four-dimensional space can be carried over to the complex 8-space. 
 For spin, n the Dirac spinor space is a covering group of SOn where this cohomology theory will 
allow us to admit spin structure and can be related to the SU2 Lie group. Now let us consider the spin 
conditions associated with the Dirac equation and further formulate the manner in which the Dirac 
“string trick” relates to the electron path having chirality [13,16,18].  

Relativistic spin 1/2   particles are described by Dirac’s formalism for the wave equation which has 
been expressed by a number of notations such as  

 
2( ) 0E c p mc         

or                         (20) 

 

2 0i i c mc
t

   
   


    

 
for 1c   and for the time dependent equation, which is first order in space and time with fermion 
particle mass, m 
 

        

2 0
i

i c mc
x t


  
  
       



.      (21) 

 
We express the 4 x 4 Dirac   and   matrices as, 0 ,   which are Hermitian and are expressed in 

terms of the 2 x 2 Pauli matrices,   for example 
 

      
0

1 0 0 0 0 0 0 1

00 1 0 0 0 0 1 0

00 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0

x
x

x


  



   
                
      

      (22a) 

 

            
















































0010

0001

1000

0100

000

000

000

000

zy

i

i

i

i

           (22b) 
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In the case where m = 0  or at very high energies, E where a particle of mass, m behaves like zero 
mass, only three anticommuting matrices instead of four are required. In this case the Pauli matrices are 
sufficient and the spinors require only 2 components which relate to the chiral representation [24]. The 
 ’s satisfy the equation x y y x zi       .  In general, we can write, of 2 x 2 matrices,  

x y y x zi              (23a) 

 

y z z y xi              (23b) 

 

z x x z yi              (23c) 

 
2 2 2 1x y z             (23d) 

 
Where s s is   and 2i    . 

 The Pauli spin matrices are unitary 1
x x   . See Eq. (12, 19) for the 2 x 2 Dirac matrices. The 

Klein-Gordon equation is a 4D form where the wave function depends on (x,y,z,t) and is written as 

2 2
0

m
   


 where 2  is the D’Alembertian operator, 

22 2 2
2

2 2 2 2 2

1z

x y t c t

   
   
   

  and m is 

the mass of the particle under consideration.  Note that this equation is second order in space and time 
as is the classical wave equation whereas the Schrödinger equation is second order in space and first 

order in time in part the reason for the 1i    term in the equation. The first order in time term 
requires the I term in it. 
 We now write the Dirac equation in terms of the   matrices. For a spin, s= ½ particle, the spin 

vector u(p) is written as 
1

0

 
 
 

 and 
0

1

 
 
 

 for spin up and spin down respectively where p is momentum. 

For a particle with mass we have 1c  . For the independent form of Eq. (21), 
 

                

2 0i c mc
x


  
 
     
         (24) 

 
for the time independent equation, and we can divide Eq. (24) by i c  and have,  
 

0
mc

x


 
 

    
          (25) 

 
where 0 0/ or /k p k mc    and i c    where indices   run 0 to 3.  The dependent Dirac 

equation is given in Eq. (21). 
 Consider spinors as basic geometrical entities that apply at a deeper level of spacetime.  Spinors are 
complex and have real fields and real manifolds have on underlying complex nature. An essential 
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description of nature involves complex numbers and holomorphic functions. Spinors can be mapped to 
twisters and visa versa.  Spinors are two component entities involving the isomorphism of the conformal 
group and SU(2,2) which can be related to the Yang-Mills theory. The solution to the Dirac equation is 
in terms of spin u(p) as  

( ) ( )
i

u p e p x Et   
           

    (26)  

 
the Dirac spin matrices i c    . The spinor calculus is related to the twistor algebra, which relates 

a 2-space to an associated complex 8-space (see reference [25]). 
 An example of the usefulness of spinors is in the Dirac equation.  For example, we have the Dirac 

spin matrices, 
0

0 ki





 


 

   
 

 where terms such as 5(1 )  come into the electroweak 

vector-axial vector formalism.  The three Dirac spinors are given as,  
 
 

          
0 1 0 1 0

, ,
1 0 0 0 12 2 2x x y y z z

i
L L L

i
  

     
               

  
.       (27) 

 

Then 0 1 2 3
5 0 1 2 3i i           for 0   is given as 

 

           
 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 

 
 
  
 
  

        (28) 

 
 
for trace 0tr  , that is Eqs. (21) and (28) can be written as,  

 

2
0

2

0

0

I

I
 

 
    

              (29) 

 

where we have the 2 x 2 spin matrix as 2

1 0

0 1
I  for trace  I2 = 2.  The Dirac spinors are the 

standard generators of the Lie algebra of SU2. The commutation relations of the Dirac spin matrices is 
given as  
 

          { , } ig I                     (30) 

 

where I is the identity element and det det g    where g  is the metric tensor. The Dirac spin 
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matrices come into use in the electroweak vector-axial vector model as 5(1 )   for 5  as,  

 

       0 1 2 3
5 0 1 2 3i i                    (31) 

 
where indices run 0 to 3.  We can also write,  
 

   
  55 ( )( , ) n inx

n

x x x e 
  





          (32) 

 
which expresses some of the properties of the 5D Kaluza-Klein space, having 0 1 2 3, , ,     and 5 .  

 As before stated 4 x 4 the  matrices are Hermitian, *
    and          where    and 

2 1  . The form of the Dirac equation in Eq. (25) is the covariant form of the wave equation. The 4-

vector form for spin ½ fermions for s = ½ and me = m, the mass of the electron.  The   matrices are 4 

x 4 matrices with 16 elements which obey the following relations  , 2
x                

where  is the Kronecker delta function. The Dirac spin matrices obey Fermi-Dirac statistics, where 

particles such as photons obey Bose-Einstein statistics. 
 The 5 matrix is associated with a 5D metric tensor.  See Chap. 11. This 5D space passes exactly 

one geodesic curve which returns to the same point with a continuous direction.  Note that this is a 
similar formalism to that of the Dirac string trick 720o path. A connection can also be made to the 
electromagnetic potential and the metric of the Kaluza-Klein geometry. We can express 5  in terms 

of a potential   so that  

 

5 2k              (33) 

 

Where 8 /k F  and where 4 /F c G  or the quantized cosmological force [8-10] (also see Eq. 
(14)).  Then we have a 5-space 3-vector as, 
  

 5

0

0

0 .

0

1



 
 
 
 
 
 
 
 

 (34) 

 

Through this approach, we can relate covariance and gauge invariance.  See section 2. 

 For the covariant equation of motion in terms of     
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* *

*
0 0

mc

x t


    
  

  
          (35) 

 

Then 0*    and *
0   and using Eqs. (21), (22), and (32) we can write the matrix for   as 

the complex conjugate of *  for two spin states of electrons. The corresponding wave function can be 

written as the bispinor or  4-spinor.  The 4-component function transform under rotations in exactly the 
same manner as the Pauli spinors.  The wavefunction,   is four rows and one column, 4 x 1 vector 
matrix. 
 

1

2

3

4

,u


 


 


 
 

          
 



           (36) 

 

31

2 4

,u 
 

 
  

    
   

        (37) 

 
Where the indices u and   correspond to upper and lower respectively and  
are each 2-component spinors. 
 The 5  matrices are utilized in the formulation of the electroweak theory.  The weak interaction 

Hamiltonian is formed in analogy to QED in which the Hamiltonian H is given as,  
 

( )e m i jH ie A             (38) 

 
Where i is the Hermitian conjugate of j  which are the eigenfunctions of the Hamiltonian and A  

is the electromagnetic potential.  In analogy to Eq. (38), the weak interaction Hamiltonian 
 

 weak 5 5(1 )H u u            (39)  

 
where 5 u   is the axial vector part and the wave function is u. 

 
 
5. The Dirac Equation in Complex 8 Space 
 
We examine the formalism for the Dirac equation in the complex 8D space where the additional 
nonlinear terms arise from the imaginary components of the 8D space. The approach here is similar to 
that which we performed for the Schrödinger equation solved in 8D space; see Chap. 10. We proceed 
from the complexification of the Minkowski spacetime in which we formulated Maxwell’s equations, 
Chaps. 5 and 6 as well as the Schrödinger equation. We identify the spinors as acting in a spin space in 
which spin is a conserved quantum number.  Such a picture gives us understanding of the properties of 
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spin but not its origin or source.  This point is similar to that we made about charge.  Physicists currently 
discuss the properties of charge as a conserved quantum number but the manner in which it arises is not 
addressed as we previously discussed. However, the origin of mass is formulated in terms of the elusive 
Higgs particle which may be an artifact of Gauge Theory being an approximation and might not exist. 
 The complex conjugate of spin space can be made since the Dirac 2 x 2 and Pauli 4 x 4 matrices are 
real and imaginary; hence the matrices in Eqs. (21) and (22) and their commutation relations will be 
effected by Eqs. (23a), (23b), (23c) and (23d).  The angular momentum space will also be effected by 
a transformation in complex L space; see Eq. (19).  Essentially formulating the Dirac equation in 
complex space and time utilizes the complex Minkowski formalism presented in Chap. 2.  We proceed 
along the approach we have taken in Chap. 10 for the Schrödinger equation. 
 

 
 

Figure 2. Through a 90o transformation Re  Im and 180o Re -Re, for a 270o rotation Re - Im and for a 
360o rotation + Re comes back to +Re.  These comprise conditions in which the 360o case is relevant to the 0o 
case.  
 
5.1  COMPLEXIFYING SPIN SPACE 
 
Complexifying spin spaces effects the Dirac spinor and Pauli matrices.  These are formulated in angular 
momentum space, see Eq. (19).  For example, the SU3 octet with the mass splitting of the p+ and N0 and 
octet is plotted in Y spin and I2 space.  For example from Eq. (19), the Pauli matrices 

x ix y iyi i      and z izi  which satisfy the commutation relations 

ix iy iy ix izi i i i i        for 1i    so that ix iy    iy ix iz      therefore 

ix iy iy ix iz       ,  This commutation relation for the imaginary components of the  ’s give a 

new commutation relation, that is, instead of zi  we have iz .  The real components of the 2 x 2 

matrices given in Eq. (19) become  
 

     
0 0 1 0

, and
0 1 0 0ix iy iz

i i
i i i

i i
  

     
             

       (40) 

 
so that now ix  and iz  become imaginary and iy  becomes real as opposed to the expression in Eq. 
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(19) where x  and z  are real and y  is imaginary. We can expand this approach to Eqs. (23a), (23), 

(23c) and (23d). 
 We can term the 4 x 4 Dirac matrices   and   for Eqs. (21) and (22), as real and so is x  and 

z  but y  is imaginary. These matrices comprise the real components of the complex 8D space.  For 

Di i   then 

 
0 0 0

0 0 0

0 0 0

0 0 0

i

i
i

i

i



 
 
   
 

  

             (41) 

 
Where the trace, 0tri   is the real form of  . 

For the imaginary part of the 4 x 4   matrices, from Eq. (22) we have, 

 

0 0 0

0 0 0

0 0 0

0 0 0

ix

i

i
i

i

i



 
 
   
 
  

, 

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

iyi

 
    
 
  

, 

0 0 0

0 0 0

0 0 0

0 0 0

iz

i

i
i

i

i



 
    
 

  

 (42) 

 
Note that none of the matrix in Eq. (28) or Eq. (30) are the same as Eq. (19) or Eqs. (21) and (22).  The 
notation for the imaginary part of ixi  is the same as ximi , etc. [20]. Consider Eq. (30), for 5 , we 

chose the imaginary components of the   matrices so that,  

 

5Imi  0 2 3i     0 1 2 3i           (43) 

 
In which 5Re 5Im   .  From Eq. (34) we have the imaginary component as   

  

             5

0

0

0 .

0

i

i



 
 
 
 
 
 
 
 

          (44) 

 
The imaginary components of the   matrices remain covariant under the transformation to the 

imaginary light cone. 
 Writing out the components of the   matrices in the Dirac equation, we have 
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1 2 3 0 0

i mc

x y z t
     
    

          
         (45) 

 
for the time dependent form.  Eq. (45) is first order in space and time.  If we consider the 
complexification of the bispinor space and spacetime, the imaginary forms of the  functions and the 

spatial and temporal derivatives remain the same under a transformation, however the mass term in Eq. 

(45) goes from 
mc


 to 

imc


.  That is the signal becomes tachyonic.  Complexification produces more 

changes in the Schrödinger equation because it is second order in space and first order in time but since 
the Klein-Gordon equation and Dirac equation are the same order in space and time so that only the 
mass terms are effected.  This holds true for the linear approximation of these equations.  Nonlinearized 
forms can lead to distinctly different results.  See next subsection and Chap. 10. 
 We can write the imaginary form of Eq. (45) as,  
 

1 2 3 0 0
i imc

x y z t
     
     

          
       (46) 

for the tachyonic mass, im summing real and imaginary components yields a factor of 2 times the 
components of Eq. (46) except we have the sum of tardyon and tachyon mass terms as  

 
 m im c


           (47) 

 
and the interpretation of such a term requires further examination such as the imaginary component 
relating to the particle decay time of mass, m.  Electrons are stable but other fermions, such as electron, 
muon and tau neutrinos, muon and tau can decay. This approach will effect our solutions to the Dirac 
equation; see Eqs. (36) and (37). 
 
 
5.2  NONLINEAR FORMALSIM OF THE DIRAC EQUATION 
 
In this subsection, we examine some of the properties of the Dirac equation by considering the 
introduction of a small nonlinear term arising from a projective geometry from the full complex 8-
space, 4  into the 4D Minkowski space, M4 such that the imaginary components of 4  are expressed 

in terms of a nonlinear term  2g    for the wave function   [21]. The essential properties of the 

complex 8-space is nonlocality and by introducing the additional imaginary components of the 4  

space, remote spacetime connections are allowed for microscopic connections (see Chaps. 4 and 10) 
and macroscopic phenomena such as in Chaps. 2,5,6 and 7. It is interesting to examine the Dirac 
equation in this light because it is a quantum expression which is relativistically invariant. 

We can write the equation of motion for a nonlinear system 
 

              2 0i m g
x

       
          (48) 
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Where   and *  are the Hermitian and complex conjugate of   respectively;   is also used for 

Hermitian conjugate the nonlinear term is expressed as the coupling term g2. For the associated action 

variable, S, expressed in terms of a field  ,x t  and its conjugate  ',x t  , we write  

 

              S dt dx i H               (49) 

 

and where  , 'x x        and   and    are orthogonal to each other.  The Hamiltonian, H for 

this system is given in terms of our nonlinear term g2  
 

                   2H dx H dx g
x x
        

   
      (50) 

 
The solutions for this equation of motion, Eq. (48) are  
 

   , A , i tx t x t e             (51) 

 

   , A , i tx t x t e               (52) 

 
where A(x,t) is the wave amplitude.  

We form an expression for the Dirac equation for  2g    as a small additional term as,  

 

  
   2 0xi m g             (53) 

 
where we use the notation, /x x    . We can now write the charge density Hamiltonian as  

 

 
2

2

2

g
H i m

x
         

      (54) 

 
The Lagrangian for plane wave solution is given as 
 

    
2

2

2x

g
L i m             (55) 

 

where the   Pauli spin matrices and  , density matrices .    Then the lowest energy plane 
wave solutions are expressed in terms of spinors  
 

         exp
u

i t
v

      
 

;          (56) 
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where the spinors are 
u

v
 
 
 

.     

 
For the case where the coupling constant g2 small 0g  , the attractive force for nonlinear term and 

  is the quantized Fermi field. The small nonlinear term  2g    can be identified with the 

imaginary part of the mass, where in the linear approximation, mT = m = mRe + imIm where mT = m is 
the total mass.  In Eq. (48) we associate m with the real part of the mass, mRe and the additional 
imaginary component of the mass with mIm.  The imaginary component of mass may be associated with 
particle decay times for fermions in general. 
 We consider the solutions to two mass free coupled equations, where the coupling constant is 
expressed in terms of the nonlinear term g2 where g2 has two eigenvalues, g and  . For our coupled 
equation formalism, we have wave amplitude eigenfunctions u1 and u2. We have considered the coupled 
channel formalism in nuclear physics applications with good success [22-24]. 
 

1
1 2

u
igu ig u

x


 


       (57a) 

 

2
2 1

u
igu ig u

x
 

 


       (57b) 

 

The boundary conditions in the asymptotic limit on   and    is given as   and 0, lim.
x

 


  

The solutions take the form of  
 

 , exp exp ( ) ( ) ( , )x g igx ig ds ig x s s s g           (58) 

 

for 2 0g  , then we have,  

( ) igxa g e          (59a) 

 

( ) igxb g e               (59b) 

 
For the case where g small perturbation expansion can be made for g2 related to Jm = mJm = m*. There 
is much more to explore in the richness of the Dirac theory. The Fermi-Dirac model is significant in the 
considerations of nonlocal coherences in plasmas and other material media and the possible relation of 
the vacuum concept to advanced potentials and hidden variable theories related to nonlocality such as 
presented in Chap. 4. 
 
 
5.3  GENERALIZED WAVE EQUATIONS, CLASSICAL, QUANTUM, NONRELATIVISTIC 
AND RELATIVISTIC IN LINEAR AND NONLINEAR FORMS 
 
We present a detailed comparison of the form of a number of wave equations in linear and nonlinear 
forms and we demonstrate their interrelationship.  We summarize and discuss the structure of the 
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Schrödinger, Klein-Gordon and Dirac equation. The uniqueness of the properties of spin and chirality 
of the Dirac string trick is presented, which is unique to the Dirac formalism [25-29]. The standard wave 
equation is second order in space and time 
 

  

2 2

2 2 2

1
,

d U d U

dx v dt
           (60) 

 
where the amplitude, U  is a function of space and time, U(x,t), v  is the wave velocity and the amplitude, 
U is expressed in terms of oscillatory solutions. 
  The Klein-Gordon equation is also expressed as second order in space and time as 
 

2 2
0

m  


        (61) 

 
where the D’Alembertian operator is given as  
 

2 2 2 2
2

2 2 2 2 2

1

x y z c t

   
   
   


   

      (62) 

 
We can write the wave mechanical treatment by revising the relativistic Klein-Gordon equation for the 

putative zero rest mass of the photon, m = 0 so that 
2

2 2
2

0k
t


 
    

. For 0m  , we have 

Re Imandm m m im   terms, which may add further to the understanding of the strong force [14]. 

Under the action of a potential goes as 1/r for a particle of mass, m such as the pion,   particle mass 
2

2 2 2
2

0k m
t


 
     

 then 
e cr

r
    

 
 which yields the Yukawa potential for nuclear forces.  

The key is the richness of the quantum theory approach and perhaps its universality as exemplified by 
the Heisenberg uncertainty or indeterminacy relations and the conditions of the EPR paradox. See Chap. 

4. The Sommerfeld quantization condition pdq n   
is to the Heisenberg relations and to phase 

space analysis in terms of (p,q).  The duality of p and x and E and t both form phase spaces.  Note that 
we denote q generalized spatial parameter such as x and p as momentum.  This phase space (p,q) 
approach leads to the Heisenberg indeterminacy or uncertainty principle.  We may be able to relate the 
“phase spaces” such as (x,t), (p,E), and (x,p), (E,t), to multidimensional Fourier transforms and some 
physical processes [30]. 
 The Schrödinger hypergeometric equation is formulated in terms of the second order in space and 
first order in time as for the potential free case,   
     

        
2 1

2m i t

  





           (63) 

 
In the case where a potential of a force is present, we have 
 



Richard L Amoroso & Elizabeth A Rauscher - Relativistic Dirac Quantum Theory 

20 

 

         
2 1

2 2
V

m t

  
 




         (64) 

 

where we have the potential, V and 
t




 is the time dependent term, where   is a function of the 

independent variable x,t as  (x,t). For the term 
1

0
i t





, then we have the time independent 

Schrödinger equation.  In general, the time dependent solution is of the form 
 

     
( )i kx t

e
 




         (65a) 

and 

   
( )

*
i kx t

e
  




.       (65b) 

 
The quantum theory is formulated in terms of probabilities, *   but the equations of quantum 
mechanics are analytic. 
 The Dirac equation is formulated in terms of a first order in space and time.  We write the time 
independent Dirac equation as     
 

         0
mc

x


 
 

    
            (66) 

 
The   matrices are expressed in terms of the Dirac matrices,   which are 2 x 2 matrices and the 

indices run 0 to 3 and the   matrices are 4 x 4 matrices.  The solution to the Dirac equation takes the 

form ( ) exp (
i

u p px Et
n

     
. The quantity u(p) is a spinor with components 

1

0

 
 
 

and  
0

1

 
 
 

 for 

spin up and spin down respectively.  See Chap. 11.  Since we can express the P ’s in terms of the 

Pauli spin matrices,   which we can express in terms of the Dirac matrices,  , we then express the 

Dirac equation as  

   

2 0i c mc
x


  
 
     
 .            (67) 

 
The Pauli spin matrices,   are expressed in terms of the Dirac 2 x 2 matrices,   as   

 

                         
0 1 0 1 0

, and
1 0 0 0 1x y z

i

i
  


  


        (68) 
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 If we express the Klein-Gordon equation in complex 8-space, the complexification of the spatial and 
temporal components remain unchanged.  Thus, the Klein-Gordon equation does not form extra 
imaginary components for the spatial and temporal second order derivatives [24]. The Dirac equation 
is first order in space and time. Essentially one can express the Klein-Gordon equation as a dual Dirac 
equation, except of course, the Dirac equation is expressed in terms of spinors, which the Klein-Gordon 
equation is not.  Because of the electron spin symmetry conditions or the Dirac string trick in which the 
rotation of the system must pass through a 270o rotation [25-27,30]. 
 The so termed Dirac string trick involves tracing the spin of an electron in space.  The requirement 
for the electron spin and chirality to be aligned or anti-aligned along the particles direction of motion 
requires a 720o twist or rotation.  If we rotate a 90o spin change we move from the real to imaginary 
axis so that a variable,   has a real and imaginary part, then  Re Im . Through a rotation of 180o 

then, Re  comes back to real again and without chirality considerations, only a phase sign charge has 

occurred. In the case of the Dirac spinors, symmetry requirements lead to the 270o rotation so that Re  

is now mapped into Im  as Re Im   and hence the Dirac equation does not remain uncharged under 

the transformation from real spacetime, xRe, tRe to imaginary spacetime, xIm, tIm. See Fig. 2. 
 In the following tables we present a summary of structure of the major wave equations of physics. 
We enumerate a set of wave equations having classical properties. These are better linear and nonlinear 
equations and are classical in nature. These equations have various properties of dispersive and diffusive 
energy and information losses. Nonlinear terms can overcome these loss mechanisms and form 
coherent, non-dispersive and non-diffusive states.  See Table 2. 
 
 

Table 2 Linear and Nonlinear Wave Equations 

 Non-dispersive – Non-diffusive wave equations 0
t x

  
 

 
. 

 Dispersive wave equations, where the third order term has dispersive losses 
3

3t x x

    
  

  
.   

 Diffusive wave equation where the second order term has diffusional losses 
2

2t x x

    
 

  
 where ,   are constants.   

 Korteweg-deVries equation is nonlinear and is dispersive but not diffusive where the 

nonlinear term / x   overcomes dispersive losses 
3

3t x x

     
  

  
 and has soliton 

solutions.   
 Burger’s equation is nonlinear and diffusive but is not dispersive, where the nonlinear term 

t

 


 overcomes dispersive losses 
2

2t x x

     
 

  
.   

 Nondispersive and nondiffusive, nonlinear wave equation 0
t x

  
 

 
. 

 
 In Table 3, we enumerate types of time dependent, time independent classical, quantum and quantum 
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relativistic equations.  All these equations are linear. If we consider a small deviation from linearity, we 
formulate nonlinear equations that take forms that overcome dispersive and diffusive losses.  Essentially 
in the Everett-Graham-Wheeler Multiverse picture or in the infinite possible string theory vacuum 
solutions, the number of possibilities may be reduced, see [6, 23]. Selection of higher probability terms 
is made by inclusion of nonlinear terms in the wave equations, in some cases yielding solitary wave or 
soliton solutions. 
 

Table 3 TYPES OF WAVE EQUATIONS:  
CLASSICAL, QUANTUM AND RELATIVISTIC 

 

 Time dependent classical wave equation in 1D 
2 2

2 2 2

1u u

x v t

 


 
 for wave amplitude solution 

u(x,t) and v is the classical velocity, v << c. 

 Time dependent Klein-Gordon equation [32-35] in 3D with 0m    2 2
0

m  


 for 

2 2 2 2
2

2 2 2 2 2

1

x y t c t

   
   
   

 . 

 Time independent Dirac equation with 0m  . 0u
u

mc

x
 
 

   
.   The time dependent 

Dirac equation with 0m  :  
mc i

x t



  
       

 

  Time dependent Schrödinger equation  
2

2

2
V

m i t

  
    


 

 

or 
2 2 2

2
2 2 2x y z

  
   

  
 time independent Schrödinger equation for H E   

where H = T + V  and  V is the potential energy. 
 
 
 In Table 4 we present the nonlinear forms of the Schrödinger and Dirac equation for both time 
dependent and time independent forms. 
 
 

Table 4 Nonlinear Quantum Wave Equations 
 

 Nonrelativistic nonlinear time dependent Schrödinger equation 

 
2

2 1

2
g

m i t

    
 




 where  2g    is the nonlinear term and    is the 

Hermitian conjugate of  . 

 Relativistic time independent Dirac equation  2 0i m g
x

        
 for the 
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nonlinear term  2g   . 

 Relativistic time dependent Dirac equation  2
u

i
i m g

x t             
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