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In this work we analyze, calculate and extend modification of Maxwell’s equations in a complex 
Minkowski metric, M4 in a 2  complexified space using the SU2 gauge, SL(2,c) and other gauge 

groups, such as SUn for n > 2 expanding the U1 gauge theories of Weyl. Weyl identified the U1 gauge 
group for the standard Maxwell’s equations in its nonrelativistic form in M4 space. We expand the form 
of the elegant electromagnetic equations and express them in 4 space for the nonrelativistic formalism 

and for the relativistic formalism of the equations. The advanced and retarded formalisms are also 
examined. In the case where Maxwell’s equations are solved in 4 space, or the complex 8-space, we 

can extend the theory to considerations of other gauge groups such as SL(2,c), SUn for n > 2 and SU2 
expanding the approach beyond U1 gauge conditions.     
 

 
1. Introduction – Extended Maxwell’s Equations 
 
In addition to our work others have examined complex multidimensional geometries [1-6]. In particular 
we have examined the complexification of M4 Minkowski space as an 8D complex 4 space [5,6]. The 

complex space is comprised of four real dimensions and 4 imaginary dimensions and this geometry is 
consistent with Lorentz invariance and analytic continuation.    
 We have developed an 8D complex Minkowski space, M4 composed of four real dimensions and 
four imaginary dimensions which is consistent with Lorentz invariance and analytic continuation in the 
complex plane [1-6]. The unique feature of this geometry is that it admits of nonlocality consistent with 
Bell’s theorem, (EPR paradox), possibly Young’s double slit experiment, the Aharonov-Bohm effect 
and multi-mirrored interferometric experiment [7].  
 

This work of amending Maxwell’s equations yields additional predictions beyond the electroweak 
unification scheme. Some of these are:  

 
 Modified gauge invariant conditions,  
 Short range non-Abelian force terms and Abelian long-range force terms in Maxwell’s 

equations,  
 Finite but small rest mass, m  of the photon, 

 A magnetic monopole like term  
 Longitudinal as well as transverse magnetic and electromagnetic field components in a complex 

Minkowski metric, M4 in a 4  space. 
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 Additionally, expressing Maxwell’s electromagnetic equations in complex 8-space, leads to some 
new and interesting predictions in physics, including possible detailed explanation of some of the 
previously mentioned nonlocality experiments [8-13]. Complexification of Maxwell’s equations 
requires a non-Abelian gauge group which amend the usual theory and which utilizes the usual 
unimodular Weyl U1 group. We have examined the modification of gauge conditions using higher 
symmetry groups such as, SUn and other groups such as the SL(2,c) double cover group of the rotational 
group SO(3,1) related to the Ricci curvature tensor [14]. Thus, we are led to new and interesting physics 
involving extended metrical space constraints.  In addition to the usual transverse we also have 
longitudinal, non-Hertzian electric and magnetic field solutions to Maxwell’s equations leading to new 
communication systems and antennae theory, non-zero solutions to B , and a possible finite but 

small rest mass of the photon, m . 

 Comparison of our theoretical approach is made to the work of Vigier et al [15,16] Barrett et al [17] 
and Harmuth et al [18] on amended Maxwell’s theory. We compare our predictions such as our 
longitudinal field to the )3(B term of Vigier, and our Non-Abelian gauge groups to that of Barrett and 
Harmuth. We interpret this work as leading to new and interesting physics, including a possible 
interpretation of nonlocal information transmission properties within the Dirac polarized vacuum. 
 
 
2. Complexified Electromagnetic Fields in Minkowski Space and Nonlocality 
 

We expand the usual 4D line element metric 2ds g dx dx 
  in the following manner. We consider 

a complex 8D space, 4 4
ˆ asM   so that Re ImZ X iX     and likewise for Z   where the indices   

and   run 1 to 4 yielding (1, 1, 1, -1). Hence, we now have a new complex 8-space metric as 
2 *vds dZ dZ 

 . We have developed this space and other extended complex spaces and examined 

their relationship with the twister algebras and asymptotic twister space and the spinor calculus and 
other implications of the theory [6]. The Penrose twistor SU(2,2) or U4 is constructed from 4D-

spacetime, U2
~

U 2  where U2 is the real part of the space and 
~

U 2  is the imaginary part of the space, 

this metric appears to be a fruitful area to explore. 
 The twistor,   can be a pair of spinors, UA and  A  which Penrose created to represent a twistor. 
The condition for these representations is:  
 

 The null infinity condition for a zero spin field is 0
     

 Conformal invariance  
 Independence of the origin.  

 
The twistor is derived from the imaginary part of the spinor field. The underlying concept of twister 
theory is that of conformally invariance fields occupy a fundamental role in physics and may yield some 
new approaches to physics. Since the twister algebra falls naturally out complex space. 
 Other researchers have examined complex dimensional Minkowski spaces. In [2], Newman 
demonstrates that M4 space does not generate any major “weird physics” or anomalous physics 
predictions and is consistent with an expanded or amended special and general relativity. In fact the 
Kerr metric falls naturally out of this formalism as demonstrated by Newman [4] and Rauscher 
[5,6,19,20]. 
 As we know twistors and spinors are related by the general Lorentz conditions in such a manner that 
all signals are luminal in the usual 4n Minkowski space but this does not preclude super or transluminal 
signals in spaces where n > 4. Stapp, for example, has interpreted Bell’s theorem experimental results 
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in terms of transluminal signals to address the nonlocality issue of the Clauser, and Aspect experiments 
[8]. Newman et al demonstrate the role of nonlocal fields in complex 8-space [2,3]. 
 We believe that there are some very interesting properties of the complex M4 space which include 
the nonlocality properties of the metric applicable in the non-Abelian algebras which are related to the 
quantum theory and the conformal invariance in relativity as well as new properties of Maxwell’s 
equations. In addition, complexification of Maxwell’s equations in 4  space yields interesting 

predictions, yet we find the usual conditions on the manifold hold [19,20]. Some of these new 
predictions come out of the complexification of 4-space and appear to relate to the work of Vigier, 
Barrett, Harmuth and others [15,17.18]. Also, we find that the twistor algebra of the complex 8D M4 + 

4  space is mapable 1 to 1 with the twistor algebra of the Kaluza-Klein 5D electromagnetic - 

gravitational metric [21-23]. 
 Some of the predictions of the complexified form of Maxwell’s equations are: 
 

 A finite but small rest mass of the photon, m  

 A possible magnetic monopole, 0B   

 Transverse as well as longitudinal B(3) like components of E and B,  
 New extended gauge invariance conditions to include non-Abelian algebras 
 An inherent fundamental nonlocality property on the manifold. Evans and Vigier also explore 

longitudinal E and B components in detail and finite rest mass of the photon, m  [16]. 

 
 We consider both the electric and magnetic fields to be complexified as Re ImE E iE   and 

Re ImB B iB   for Re Im Re, ,E E B and ImB are real quantities. Then substitution of these two equations 

into the complex form of Maxwell’s equations above yields, upon separation of real and imaginary 
parts, two sets of Maxwell-like equations. The first set is 
 

Re 4 eE              Re
Re

1 B
E

c t




    

                                   (1) 

Re 0B             Re
Re

1
e

E
B J

c t




   ; 

 
the second set is 
 

 Im 4 miB i         Im
Im

1 iE
iB

c t




    

                                       (2) 

 Im 0iE             Im1 iB
iE iJm

c t




   . 

 
 The real part of the electric and magnetic fields yield the usual Maxwell’s equations and complex 
parts generate “mirror” equations. For example, the divergence of the real component of the magnetic 
field is zero, but the divergence of the imaginary part of the electric field is also zero, and so forth. The 
structure of the real and imaginary parts of the fields is parallel with the electric real components being 
substituted by the imaginary part of the magnetic fields and the real part of the magnetic field being 
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substituted by the imaginary part of the electric field. In the second set of equations, (2), the i’s, “go 
out” so that the quantities in the equations are real, hence Im 4 mB    , and not zero, yielding a term 

that may be associated with some classes of monopole theories [20]. 
 We express the charge density and current density as complex quantities based on the separation of 
Maxwell’s equations above. Then, in generalized form    e mi  and J = Je + iJm where it may be 
possible to associate the imaginary complex charge with the magnetic monopole and conversely the 
electric current has an associated imaginary magnetic current. Using the invariance of the line element 

s2 = x2 – c2t2 for r = ct = x 2 and for x2 = x2 +y2 + z2 for the distance from an electron charge, we can 
write the relation, 
 

     
 1 imiB

iJm
c t





   or    

1 im
m

B
J

c t





 

 
                     (3) 

        Im 0iE   for  E Im  0    or     
 Im1 iB

iJm
c t




      

 
 

3. The General Concept of Gauge Symmetry in Current Physics 
 
Gauge symmetry is the basic concept required in field theory to describe a field for which the equations 
describing the field do not change when an operation applied to all particles and fields everywhere in 
space is globally invariant. It is also possible to have local gauge symmetry where the operation is 
applied to some particular region of space. Fields with gauge symmetry are, for example, gravity, 
electromagnetism and QED. The gauge symmetry approach was a key development in the theory of 
weak, and electroweak interactions and QCD. The quantum field is restored to symmetry by its Yang-
Mills gauge field. Thus, the origin of the concept of broken symmetry in gauge theory which led to the 
development of the electroweak theory in 1967 by Weinberg and Salam. This was a key benchmark in 
developing a grand unified theory (GUT).    
 

 
Table 1 The Color Octet of Gluon Gauge 

 

      

   

   

   

 
 
 In field theory a gauge group corresponds mathematically to a fiber symmetry group, whereas gauge 
theory corresponds mathematically to the principle fiber bundle. The gauge group for the 
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electromagnetic photon is a U1 gauge group. The gauge group for the strong force, SU3 is mediated by 
eight independent gluons binding the three quarks. See Table 1. The electroweak force, SU2 x U1 

corresponds to the quantum gauge groups of quantum chromodynamics (QCD); the electroweak gauge 

force is mediated by 0,W Z  which are termed intermediate vector Bosons. Gauge Bosons couple to 
conserved currents. 
 
 
4. New Gauge Conditions, Complex Minkowski Space and New Implications for Physics 
 
In a series of papers, Barrett, Harmuth and Rauscher have examined the modification of gauge 
conditions in modified or amended Maxwell theory. The Rauscher approach, as briefly explained in the 
preceding section is to write complexified Maxwell’s equation in consistent form to complex 
Minkowski space [20]. 
 The Barrett amended Maxwell theory utilizes non-Abelian algebras and leads to some very 
interesting predictions. He utilizes the non commutitative SU2 gauge symmetry rather than the U1 
symmetry. Although the Glashow electroweak theory utilizes U1 and SU2, but in a different manner, 
but his theory does not lead to the interesting and unique predictions of the Barrett theory. Barrett, in 
his amended Maxwell theory, predicts that the velocity of the propagation of signals is not the velocity 
of light. See Chap. 12. He presents the magnetic monopole concept resulting from the amended 
Maxwell picture. His motive goes beyond the standard Maxwell formalism and generates new physics 
utilizing a non-Abelian gauge theory [17].  
 The SU2 group gives us symmetry breaking to the U1 group which can act to create a mass splitting 
symmetry that yield a photon of finite (but necessarily small) rest mass which may be created as self 
energy produced by the existence of the vacuum. This finite rest mass photon can constitute a 
propagation signal carrier less than the velocity of light. We can construct the generators of the SU2 
algebra in terms of the fields E, B, and A. The usual potentials, A  are expressed as the important 4-

vector quality,  A A  ,  where the index runs 1 to 4. One of the major purposes of introducing the 

vector and scalar potentials is to subscribe to their non-physicality because of the desire by physicists 
to avoid the issue of action at a distance. In fact in gauge theories, A  is all there is! Yet it appears that 

in fact these potentials yield a basis for a fundamental nonlocality and have real physical consequences! 
 Let us address the specific case of the SU2 group and consider the elements of a non-Abelian algebra 
such as the fields with SU2 (or even SUn) symmetry then we have the commutation relations where XY-
YX 0 or [X,Y]  0. This is reminiscent of the Heisenberg uncertainty principle non-Abelian gauge.  
Barrett explains that SU2 fields can be transformed into U1 fields by symmetry breaking. For the SU2 
gauge amended Maxwell theory additional terms appear in term of operations such ,A E A B   and 

A B and their non-Abelian cases. For example B  no longer equals zero but is given as 

  0B jg A B B A        where [A,B] 0  for the dot product of A and B and hence we have a 

magnetic monopole term and j is the current and g is a constant. Also, Barrett gives references to the 
Dirac, Schwinger and t’Hooft monopole work. Further commentary on the SU2 gauge conjecture of 
Harmuth [18] that under symmetry breaking, electric charge is considered but magnetic charges are not. 
Barrett further states that the symmetry breaking conditions chosen are to be determined by the physics 
of the problem. These non-Abelian algebras have consistence to quantum theory. 
 In our analysis, using the SU2 group there is the automatic introduction of short range forces in 
addition to the long-range force of the U1 group. U1 is 1D and Abelian and SU2 is 2D and is non-Abelian. 
U1 is also a subgroup of SU2. The U1 group is associated with the long range 2/1 r  force and SU2, such 
as for its application to the weak force yields short range associated fields. Also SU2 is a subgroup of 
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the useful SL(2,c) group of non compact operations on the manifold. The SL(2,c) group is a semi-simple 
4D Lie group and is a spinor group relevant to the relativistic formalism and is isomorphic to the 
connected Lorentz group associated with the Lorentz transformations. It is a conjugate group to the SU2 
group and contains an inverse. The double cover group of SU2 is SL(2,c) where SL(2,c) is a 
complexification of SU2. Also LS(2,c) is the double cover group of SU3 related to the set of rotations 
in 3D space [24]. Topologically, SU2 is associated with isomorphic to the 3D spherical, O3

+ (or three-
dimensional rotations) and U1 is associated with the O2 group of rotations in two dimensions. The ratio 
of Abelian to non-Abelian components, moving from U1 to SU2, gauge is 1 to 2 so that the short-range 
components are twice as many as the long-range components. 
 Instead of using the SU2 gauge condition we use SL (2,c) we have a non-Abelian gauge and hence 
quantum theory and since this group is a spinor and is the double cover group of the Lorentz group (for 
spin ½) we have the conditions for a relativistic formalism. The Barrett formalism is non-relativistic. 
SL (2,c) is the double cover group of SU2 but utilizing a similar approach using twister algebras yields 
relativistic physics.  
 
 
5. Concluding Remarks 
 
It appears that complex geometry can yield a new complementary unification of quantum theory, 
relativity and allow a domain of action for nonlocality phenomena, such as displayed in the results of 
the Bell’s theorem tests of the EPR paradox [9,25], and in which the principles of the quantum theory 
hold to be universally. The properties of the nonlocal connections in complex 4-space may be mediated 
by non -or low dispersive loss solutions. We solved Schrödinger equation in complex Minkowski space 
[26-29]. See Chaps. 11 and 13. In progress is research involving other extended gauge theory models, 
with particular interest in the nonlocality properties on the spacetime manifold, quantum properties such 
as expressed in the EPR paradox and coherent states of matter. 
 

TABLE 2 
Comparison of Quantum Theory, Relativistic Maxwell’s 

 Equations and Gauge Groups 
 

QUANTUM THEORY GAUGE THEORY 

Physics Mathematics 

Gauge Theory Principle Fiber Bundle 

Gauge Group Fiber Symmetry Group 

Spacetime Bose Space 

Gauge Potential Field, A  Connection 1-Form, U1 

Gauge Field Strength, F  Curvature of Connected 2-Form (spin 2) 

Gauge Particle (Boson) 
Basic Elements of Lie Algebra  

Symmetry Groups 

Matter Field 
Spin or Valued Function on the  

Principle Bundle Basic Elements,  
Vector Space Acted on by a Symmetry Group 
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 Utilizing Coxeter graphs or Dynkin diagrams, Sirag [24] lays out a comprehensive program in terms 
of the An, Dn and E6, E7 and E8 Lie algebras constructing a hyper dimensional geometry for as a 
classification scheme for elementary particles. Inherently, this theory utilizes complexified spaces 
involving twisters and Kaluza-Klein geometries. This space and the complex 8-space incorporate string 
theory and Grand Unification Theories (GUT) models [30,31]. We display the comparison of relativistic 

electromagnetic theory, quantum theory and gauge groups in Table 1. Gauge potentials, A  and gauge 

field strengths, A  are compared to U1 and the Weyl gauge theories and to the Lie algebras of the 
supersymmetry groups, Sun. 

It appears that utilizing the complexification of Maxwell’s equations with the extension of the gauge 
condition to non-Abelian algebras, yields a possible metrical unification of relativity, electromagnetism 
and quantum theory. This unique new approach yields a universal nonlocality [32,33]. No radical 
spurious predictions result from the theory, but some new predictions are made which can be 
experimentally examined. Also, this unique approach in terms of the twister algebras may lead to a 
broader understanding of macro and micro nonlocality and possible transverse electromagnetic fields 
observed as nonlocality in collective plasma state and other media [34]. See Chap. 11. 
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