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This article presents a reformulation of special relativity which is
invariant under transformations between inertial and non-inertial *
frames and which can be applied in any frame without introducing
fictitious forces. A simple solution to the twin paradox is presented
and a new universal force is proposed toniform Circular Motion (UCM)

Introduction

The intrinsic masg m ) and the frequency factdrf ) of a massive particle
are given by:

m = m,

;= <1_v-v>—1/2

c2

where (m, ) is the rest mass of the massive partidle;) is the relational
velocity of the massive particle arid ) is the speed of light in vacuum.

The intrinsic mas$m ) and the frequency factdrf ) of a non-massive particle
are given by:
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where ( k) is the Planck constant, v ) is the relational frequency of the
non-massive particle,« ) is a positive universal constant with dimension of
frequency and ¢) is the speed of light in vacuum.

In this article, a massive particle is a particle with non-zero rest mass and a
non-massive particle is a particle with zero rest mass.



The Invariant Kinematics

The special positiofit ), the special velocity v ) and the special acceleration
(a) of a ( massive or non-massive ) particle are given by:
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where( f ) is the frequency factor of the particley ) is the relational velocity
of the particle and ¢ ) is the relational time of the particle.

The Invariant Dynamics

If we consider a ( massive or non-massive ) particle with intrinsic njias$
then the linear momentuiP ) of the particle, the angular momentuih ) of
the particle, the net forceF ) acting on the particle, the workW ) done by
the net force acting on the particle, and the kinetic en¢igy of the particle
are given by:
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where( f, r, v, t, v, a ) are the frequency factor, the relational position,
the relational velocity, the relational time, the special velocity and the special
acceleration of the particle arid ) is the speed of light in vacuum. The kinetic
energy( K, ) of a massive particle at relational restis:, c? )



Relational Quantities

From an auxiliary massive particle ( called auxiliary-point ) some kinematic
guantities ( called relational quantities ) can be obtained. These are invariant
under transformations between inertial and non-inertiaM) frames.

An auxiliary-point is an arbitrary massive particle free of external forces ( or
that the net force acting on it is zero)

The relational time(¢), the relational positior(r ), the relational velocity
(v) and the relational acceleratida ) of a (massive or non-massive) particle
relative to an inertial or non-inertialEm) frame S are given by:
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where( t, ) are the time and the position of the particle relative to the frame S,
(B, i) are the velocity and the position of the auxiliary-point relative to the
frame S and ¢) is the speed of light in vacuun{.7) is a constant in inertial
frames.( ) is a constant in non-inertiabtm) frames.y = (1 — @ - 3/c?)~1/?

The relational frequenclyr ) of a non-massive particle relative to an inertial or
non-inertial cm) frame S is given by:

where( v ) is the frequency of the non-massive particle relative to the frame S,
() is the velocity of the non-massive particle relative to the frameZ®) is

the velocity of the auxiliary-point relative to the frame S dnd is the speed
of light in vacuum.



§ In arbitrary frameg ¢, # 7. or ro, # 0) (o = auxiliary-point )a constant must

be add in the definition of relational time such that the relational time and the
proper time of the auxiliary-point are the sarme, = 7. ) and another con-
stant must be add in the definition of relational position such that the relational
position of the auxiliary-point is zeror, = 0)

§ In the particular case of an isolated system of ( massive or non-massive )
particles, all observers should preferably use an auxiliary-point such that the
linear momentum of the isolated system of particles is ¢§rQ m.v. =0)

§ Ininertial frames the geometry is Euclidean and in non-inertiaM) frames
the geometry is non-Euclidean ( the local geometry should be obtained from
the auxiliary-point )

General Observations

§ Forces and fields must be expressed with relational quantities ( the Lorentz
force must be expressed with the relational velogityhe electric field must
be expressed with the relational positigretc. )

§ The operator x ) must be replaced by the operator ) or the operatot A )
asfollows:(axb=bxa)or(axb=bAa)

§ The intrinsic mass quantitym ) is invariant under transformations between
inertial and non-inertial (all) frames.

& The relational quantities v, ¢,r,v,a ) are invariant under transformations
between inertial and non-inertia¢m) frames.

§ Therefore, the kinematic and dynamic quantitigs, v,a, P, L, F, W,K) are
invariant under transformations between inertial and non-ined@h) frames.

§ However, it is natural to consider the following generalization:

o It would also be possible to obtain relational quantitiest,r,v,a ) that
would be invariant under transformations between inertial and non-inertial
(all) frames.

e The kinematic and dynamic quantitieg,r,v,a, P,L,F, W, K ) would also
be given by the equations of this article.

e Therefore, the kinematic and dynamic quantitiesr,v,a, P,L,F,W,K )
would be invariant under transformations between inertial and non-inertial
(all) frames.



The Twin Paradox

Clock A is at rest at the origin O of an inertial or non-inertiat{1) frame S
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Clock B is at rest at the origin O’ of another non-inertiat¢) frame S’

— —/
"B ¥
i = Y@ (tlB I )

— =/
T2B
o = V(@) (tzB 2 Cch )

The origin O relative to the frame S always equals Zet0 = 74 = 0) then
toa —tia = Y(g) (t2aa — t1a)
Ata = vg)Ata

The origin O’ relative to the frame S’ always equals zefgs = 75 = 0) then
tap —tip = V(g1 (t2B — tiB)
At = vy Atp

The origins O and O’ spatially coincide at relational tithe = t14 = ti5)
and relational timéto = to4 = top ) Since(A t4 = A tg ) then

Ng)Dta =gy Ats

Therefore, i g > g')then(A ta < Atg),if (F=F')then(Ats=Atg)
andif(g< @’)then(Ata > Atg)



The Kinetic Force

The kinetic forceKy; exerted on a particlewith intrinsic massn; by another
particlej with intrinsic massn; is given by:

mg m;

Ki = - [M(ai_aj)]

wherea; is the special acceleration of partiaglea; is the special acceleration
of particlej andM (= >, m. ) is the sum of the intrinsic masses of all the
particles of the Universe.

The kinetic forceKY exerted on a particlé with intrinsic massm, by the
Universe is given by:

KY = — m, szzaz
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wherem, anda, are the intrinsic mass and the special acceleration af-the
particle of the Universe.

From the above equations it follows that the net kinetic fdsge( = >, K7,
+ K} ) acting on a particle with intrinsic massn; is given by:

Ki = —miéi

wherea; is the special acceleration of particle

Now, substituting F; = m; a; ) and rearranging, we obtain:
Therefore, the total forc®'; acting on a particlé is always zero.
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