
Proof that P ≠ NP

Author

Robert DiGregorio
0x51B4908DdCD986A41e2f8522BB5B68E563A358De

Abstract

Using a new tool called a “sorting key” it’s possible to imply that P ≠ NP.

Part 1

• Let PS(x) be the unsorted power list (list of all subsets) of unsorted list of naturals x, with each
subset folded over the sum operation, such that, given some natural n, PS(x)[n] is the nth
element of PS(x)

◦ To clarify what "folded over the sum operation" means, here is the set {1, 2, 3} folded over
the sum operation in pseudocode: "{1, 2, 3}.fold(sum) = 1 + 2 + 3 = 6"

◦ To clarify, PS(x) is the unsorted list of all subset sums of x

◦ To clarify, "sorted" means smaller naturals are always before larger naturals

• Let a "valid sorting key" be a natural such that, for some list x, for all natural n, PS(x)[n (a ⊕
valid sorting key of PS(x))] is (sort PS(x))[n]

◦ Calculating a valid sorting key that sorts for all elements of PS(x) is identical to sorting
PS(x). This is because PS(x)[n] is the nth element of PS(x), unsorted, and PS(x)[n (⊕ a
valid sorting key of PS(x))] is the nth element of PS(x), sorted, so having a valid sorting key
that sorts for all elements of PS(x) means you have a sorted PS(x)

◦ is the ⊕ bitwise exclusive or operation. If you apply against some natural x to every ⊕
natural from 0 (inclusive) to 2n (exclusive), those naturals are reordered such that every
unique x gives a unique order. As such, every power list has at least 1 “sorting key” that
sorts it

◦ If KEY is the sorting key of some list x, reordering x causes KEY to become “invalid” and no
longer sort x

◦ If all elements of PS(x) are unique, there is only 1 valid sorting key for PS(x). Again, 1 valid
sorting key sorts all elements of PS(x)

• Let A be an unsorted list of naturals, given as input

• Let KEY be a natural, given as input

• Let the decision problem be "given unsorted list A as input and natural KEY as input, is KEY
not a valid sorting key of PS(A)?"

• A deterministic polynomial time verifier can verify a YES solution to the decision problem if list
A, natural KEY, natural x, and natural y are given, such that (x < y) ≠ (PS(A)[x KEY] < PS(A)⊕
[y KEY])⊕

• If a deterministic polynomial time verifier exists for a YES solution to a decision problem such
that all deterministic Turing machines calculate it must run in superpolynomial time, P ≠ NP

◦ If the decision problem can't be solved in polynomial time, P ≠ NP

◦ If the decision problem can be solved in polynomial time, see part 2

Part 2

• It's implied that ALGORITHM exists such that ALGORITHM can determine if a sorting key is
valid in polynomial time

• Let HIDE(x) be natural x transformed such that, for every natural n, HIDE(x)[n] = x[2n (2n – ⊕
1)]

◦ For example, HIDE(000110112) = 01102

• Let M be some deterministic Turing machine such that M decides “given list A as input, given
natural HIDE(KEY) as input, does a permutation Ap of A exist such that a possible value for
KEY is a valid sorting key for PS(Ap)?”

◦ There are O(2|A|) possible values for KEY

◦ There are O(|A|!) possible values for PS(Ap)

◦ It is possible that only 1 possible KEY and is a valid sorting key for any possible PS(Ap)

◦ It is possible that no possible KEY are a valid sorting key for any possible PS(Ap)

• Given A as input, Ap as input, and KEY as input, a verifier can verify Ap is a permutation of A,
then, using ALGORITHM, in polynomial time, verify KEY is a valid sorting key for PS(Ap)

• The search space is 2|A|/2 possible values for KEY and |A|! possible values for PS(Ap)

• Presume checking if a possible value for KEY is the valid sorting key for a possible value of
PS(Ap) requires O(1) time

◦ All possible values for KEY must be checked, because the only information contained in
HIDE(KEY) is that KEY could be one of 2|A|/2 possible values

▪ This forces the time complexity to be ≥ O(2|A|)

▪ Even if you could binary search the search space, the time complexity would still be
superpolynomial

◦ This implies M’s decision problem, which can be verified in polynomial time, requires
superpolynomial time to decide

▪ This implies P ≠ NP

	Author
	Abstract
	Part 1

