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The dynamics of biological activities, such as cellular metabolic pathways, protein folding and brain activity, can be
described in terms of curved trajectories in hyperbolic spaces, constrained by energetic requirements.  Here we, starting
from the theorems recently-developed by a deceased Field Medal young mathematician, show how it is feasible to find
and quantify the shortest, energy-sparing functional trajectories taking place in biological systems’ concave phase
spaces.   This  allows  researchers  to  focus  their  studies  on  the  few,  most  prominent  paths  and  loops  able  to  explain,
elucidate and experimentally assess rather elusive biological functions.

KEYWORDS: topology; Mirzakhani; brain; hyperbolic; manifold; polynomials

The scientific knowledge of physical dynamics is currently more advanced than their biological counterparts, the latter
still  lacking  the  required  explanatory  power.   One  of  the  main  reasons  is  that,  while  physics  has  been  provided  with
powerful mathematical tools, biology has not.  Physics works much better in the description of natural features, because
we have recognized its subtending manifolds.  To make an example, both general relativity and quantum mechanics
describe Nature using mathematical structures, such as tensors and probability theory (Yilmaz, 1982; Comte, 1996; Fre,
2013).  Their subtending manifolds (i.e., the phase spaces in which the corresponding activities take place) are well-
known and have been experimentally confirmed: general relativity is described on a 3+1 dimensional pseudo-
Riemannian manifold with tensor fields obeying certain partial differential equations, while quantum field theory is
portrayed on an R4 projective Hilbert space, with operator-valued fields obeying certain Lorentz-invariant partial
differential equations and commutation relationships (Tegmark 2008).
Concerning biology, to make an example, it is still difficult to find a definition of life.  There is no unequivocal
definition of biological dynamics, despite many propositions have been suggested.  Apart from the intrinsic problems in
describing such elusive phenomenon, the very current limit is that the most of the proposed features are just descriptive,
from the concept of homeostasis to organization, from growth to adaptation, from response to stimuli and reproduction
(McKay, 2004; Trifonov, 2012).  In sum, we lack the corresponding manifolds, and therefore we lack objectivity.  This
is a huge restraint, because the sole language able to describe in quantitative terms scientific issues is the mathematical
one.  If we leave apart math, we do not have observables, and living dynamics are made by observables.
The aim of this paper is to make an effort to provide a mathematical, operational, quantifiable definition of the
dynamics of living beings.  In particular, in order to assess biological issues, we need at first to find the proper
manifolds where their operations might take place.   Therefore, our goal is to describe these phase spaces, by treating
biological activities, and their corresponding gradient-descent Langevin equation, in terms of algebraic topology

TOWARDS THE MANIFOLDS OF LIFE

In terms of differential geometry treatments of probability measures, it is known that the manifold traced out by
sufficient statistics display negative curvature, i.e., it is concave (Tanaka 2001; Sengupta et al., 2016).  Moving along
this hyperbolic manifold requires a measure distance that can be provided by Fisher information metric, that is able to
quantify the relative entropy required for going from one point to another of the phase space.  Obeying to entropic
dictates, biological activities (including, for example, neural function and protein folding) tend to choose the shortest
available path (Ramstead et al., 2017), i.e., to follow the steepest descent direction in order to attain their nearest free
energy minimum (Figure 1).  In operational terms, the steps of the biological system’s Langevin equation (Langevin
1908) experimentally detected in our surrounding, flat, three-dimensional (plus time) Euclidean space, can be



2

transported on a hyperbolic manifold, though, e.g., Levi-Civita or Ehresmann connections (Levi-Civita 1917;
Ehresmann 1950).  This means that biological dynamics can be studied on negative-curvature manifolds that mimic the
real environmental phase space where such processes occur.  Here the work of Maryam Mirzakhani, the recently
deceased 2014 Field Medal, comes into play, allowing us to calculate the number of trajectories in a hyperbolic phase
space.

The Mirzakhani theorem.  Mirzakhani assessed the “geodesics” of hyperbolic surfaces (2008).  On a negative curved
surface, geodetics simply stand for the shortest paths between two points.  On hyperbolic manifolds, some geodesics are
infinitely long (like the straight lines in the Euclidean plane), but others close up smoothly into a loop (like the
circumference on a positive-curvature sphere).  There are two types of closed geodetics (Figures 2A and 2B): the very
rare “simple” geodetics, that never intersect themselves, and the much more frequent ones that cut across themselves
several times, before closing up.  The number of the latter geodetics of a given length L grows exponentially, as their
length grows.  Mirzakhani demonstrated that also the number of the rare simple geodesics of length L grows, as L gets
larger (Figures 2C and 2D).  However, she showed that, as the length of these simple geodetics grows, their number
grows polynomially, instead of exponentially (Figure 2E).  The difference is subtle, but foremost.  During an
exponential growth, time (or space, or, in our case, the geodesics length) grows as a function Kn, where n is proportional
to the size of the input and K is a constant (Wolf 1968).  In turn, during a polynomial growth, time (or space, or, in our
case, the geodesics length) grows as a function nk.  In the sequel, we will provide the biological counterparts of the
Mirzakhani’s findings, in order to operationalize her rather abstract theorem in terms of living being’s dynamics.
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Figure 1. Biological phase spaces equipped with sufficient statistics make it possible to rigorously measure distances on
a hyperbolic manifold.  Therefore, dynamics transporting one distribution of system’s activity to another is given by the
shortest path from points to higher energetic levels to lower ones.  Modified from: Tozzi et al. (2017a).
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Figure 2.  In this oversimplified sketch, close geodetics on negative-curved manifolds are roughly illustrated.  Figure
2A displays a rare simple geodetics, while 2B depicts the more frequent type, the one that cuts across itself many times
before closing up.  The colored small circles stand for the point where the closure occurs.  Figures 2C and 2D illustrate
the increase in number and length of geodetics, that occurs when a growth in manifold size takes place.  The graph in
Figure E shows how the two types of closed trajectories display a different behavior: the rare simple geodetics (red line)
follow a polynomial growth, while the frequent ones (blue line) an exponential growth.
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THE MATH SUBTENDING LIVING BEINGS’ DYNAMICS

The theorem by Mirzakhani allows us to extrapolate the following statement: if the size of a negative curved manifold is
progressively increased, curved geodetics of increased length are achieved on its surface.  This leads also to a
quantifiable increase in their number.  In biological terms, the increase in size of the manifold may stand for rather
different systems’ dynamical features: e.g., either a growth in energy, or in biological complexity, or in the neural units
recruited in the brain during a mental task.  Note that the Mirzakhani’s very rare “simple” geodetics are of foremost
importance, when translated in a biological context: indeed, they stand for the shortest paths, i.e., the steepest descent
trajectory able to attain the system’s nearest free energy minimum.  To make an example, such kind of short and very
efficient energetic paths are the ones that make the folding proteins less frustrated, therefore more efficient in
performing their biochemical operations (Tozzi et al., 2016).  The Mirzakhani’s framework tells us that, when the
available free energy increases in the phase space, the most frustrated, and therefore least-performing, proteins display
an exponential growth in their number of folding paths, while the less frustrated a polynomial one.
Taking into account that the living beings’ dynamics occur on hyperbolic phase spaces, two different biological
activities can be assessed and carefully quantified: the first one is characterized by countless trajectories that slowly
close up into loops, while the second one by less frequent trajectories that more quickly close up into loops.  This faster
activity, that stands for the best available trajectories from higher to lower free-energy states (according to the
thermodynamic dictates), might be very important in order to explain the peculiar dynamics of, e.g., either human brain
electric activity or cellular metabolic pathways.  In turn, the slower activity might stand for the noisier, less efficient and
more random dynamics taking place in biological systems.  The Mirzakhani’s approach, when transferred to the
biological realm, provides the recognition and quantification of both the slower and faster activities, allowing
researchers to focus efforts and experimental apparatus just on their favored one.  Indeed, these mathematical devices
make it possible achieve graphs that illustrate the behavior of both the geodetics occurring in the biological system
under evaluation (Figure 2E).

Biological significance.  Here we provide a few examples of the effectiveness of these kinds of purely mathematical
approaches in the evaluation of biological issues.  During a given brain activity (say during perception), some neural
assemblies are recruited and start to fire.  Interactions occur among the members of the assembly (the neurons), giving
rise to electric paths that take place in a functional hyperbolic phase space.  For technical readers, such space can be
built and quantitatively assessed through the authoritative tools of differential geometry, parallel transport and dynamics
on manifolds described by Sengupta et al. (2016).  Some of these trajectories are closed, others are not.  In both real and
artificial neural networks, these functional loops may follow linear, sigmoid, exponential or logarithmic responses
(Zeiler et al.,  2013; Tozzi et al.,  2016).  While the most of the closed trajectories follow random walks, a few obey to
the dictates of energy optimization, taking the shortest available paths (Sporns, 2011).  Despite the random walks of
neural ensembles have been proven to be able to encode input stimulus without any specific training (George et al.,
2018), nevertheless, the faster, nonrandom, more efficient, polynomial paths of activation described by us are of
foremost importance in the brain, because they allow better responses and energy sparing.  It is not easy to detect such
rare and peculiar polynomial activities among the others.  When, an increase of the given brain activity takes place (e.g.,
an increase in perceptive task load) and more neural assemblies are recruited, the closed trajectories on the negative
curved manifold grow in number with exponential or polynomial behavior.  The feasible operational procedure is the
following, provided just as one of the countless examples and possibilities.  During a visual perceptual task, BOLD
brain activity is detected through fMRI techniques.  At first, we will notice the activation of the visual primary sensory
areas, then of the ventral/dorsal visual pathways and frontal areas.  The next step is to project such three-dimensional
BOLD dynamics on a hyperbolic manifold, looking for the closed loops of this brain activity.  Our experimental
prevision is that, when more neuronal areas will be progressively recruited, we will observe a generalized exponential
increase in BOLD loops.  Furthermore, we will detect the simultaneous presence of a few loops displaying polynomial
growth.  The latter stand for the most efficient and powerful activities related to the visual task under investigation.
Therefore, due to the Mirzakhani’s results, it becomes easier for neuroresearchers to detect and separate the two
different types of closed trajectories: the less useful grow exponentially, the more efficient ones grow polynomially.
This allows scientists, when assessing the “mare magnum” of brain oscillations, to “erase” from their analysis all the
useless closed trajectories, and to focus just on the more interesting ones.
The same approach holds for biological systems, such as living cells.  During evolution, an increase in cellular
complexity takes place from prokaryotes to eukaryotes (Tozzi et al., 2017b).  In Mirzakhani’s terms, this means that the
size of the subtending concave manifold expands from prokaryotes to eukaryotes.  Therefore, with increases in
evolutionary complexity, different, novel metabolic paths can be assessed: some of them display an exponential growth,
others a polynomial one, and both can be detected and quantified.
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CONCLUSIONS

We made an effort to provide a feasible manifold where the activities of living beings might take place, taking into
account that physics is very successful in coping with the complexity of our world, while biology still lacks the required
mathematical tools.  For this reason, instead of inductively analyze the currently available empirical data, we preferred
to start from a very abstract mathematical framework, in order to formulate top-down previsions that can be
experimentally tested.
Based on the recent literature, we introduced a negative curvature, concave, hyperbolic phase space where the
functional trajectories of biological dynamics might take place.  Such kind of manifold gave us the possibility to use the
theorems developed by Maryam Mirzakhani, the first female mathematician honored with the prestigious Fields Medal
Award (corresponding to the Nobel Prize for math), died in 2017 at just 40 years.  Her approach allowed us to isolate
and rigorously quantify the evolution of two different kinds of biological responses: the exponential and the polynomial
ones.  It is noteworthy that, during a dynamical process taking place on a negative curvature manifold, at first the
increase in polynomial growth is higher, when compared with the exponential one.  In turn, when the dynamical process
recruits more systems’ units, the exponential growth prevails.  Our approach also suggests that, when assessing the
dynamical activity of artificial or real biological networks, it would be preferable to focus the research on the more
efficient and significant polynomial responses, rather than the linear, sigmoid or exponential ones.  Indeed, polynomial
functions exhibit many desirable theoretical properties that make them best-suited for the study of biological issues.
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