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Abstract 

This paper builds on ideas developed in an earlier paper [7] which looked at Standard Model 

particles built from infinite superpositions borrowing mass from a Higgs type scalar field, and 

energy from zero point fields. At cosmic wavelengths, zero point energy densities are 

infinitesimal. To make available and required zero point energies equal, space expands 

exponentially with time. This balance occurs at a minimum graviton wavenumber min
k  (or 

maximum wavelength).  The density min min minGk Gk
K dk  ,  of  min

k  gravitons has an invariant 

minGk
K  in all coordinates, for all spacetime. The value of 

1

min Horizon
k R


 decreases with cosmic 

time ,T  but increases around mass concentrations, inversely with the clock rate 
00

g in the 

local metric. It also increases with peculiar velocities relative to comoving coordinates. This 

paper proposes that this relates with what we define as an “Invariant Four Volume 

Spehrically Symmetric Action Density” at that maximum wavelength min
k  which itself varies 

in direct proportion to the measurement of the averaged local CMB temperature increase. The 

same proportionality is true for the increase of min
k , and the average CMB temperature in any 

metric. Borrowed cosmic wavelength quanta are Planck scale zero point action modes, 

redshifted from a holographic spherical horizon receding at virtually light velocity. This fits 

an infinitesimally modified General Relativity. We also extend these arguments to include 

angular momentum and the Kerr Metric. The earlier paper, for simplicity, included only the 

vast majority ( Universe* * Universe)
m m

     of min
k gravitons around a mass 

concentration ,m  We now include the relatively smaller number *
m m

   of min
k  gravitons 

emitted by mass m , adding a dimensionless 2 2
/m r  term to 2 /m r  in the metric, which 

becomes 2 3 1

00
1 / 1.4 /

rr
g m r m r g


      in the non rotating case, and is equivalent to 700

metres extra distance to the centre of the sun for all the planets, with no change in their 

orbital periods. The effect of 2 2
/m r is significant close to Black Holes.  The radius of a non-

rotating Black Hole increases  27.5% from 2r m  to 2.55r m , but maximum spin Black 

Holes remain at r m . Only the last cycle or so of black hole mergers would be significantly 

affected. The extra acceleration due to 2 2
/m r  could slightly speed up mergers for any total 

angular momentum and mass. This may allow spins to be aligned with their mutual orbits; as 

thought more probable in some recent mergers. It also increases their apparent mass slightly. 

The change in the Riemannian tensor due to 2 2
/m r  is of same form, but opposite sign, when 

compared with the 2 2
/

Q
r r  term in electrically charged, Reissner-Nordstrom and rotating 

Kerr-Newman, metrics. A negative energy massless particle in the Energy-Momentum tensor 

can generate this term in the metric, just as massless particles in the electromagnetic field do 

with diagonal stress tensor terms contracting to zero. 
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1 Introduction 
The universe we live in is currently described by two models: “The Standard Model of 

Particle Physics” and “The Standard Model of Cosmology”. While the Standard Model of 

Particle Physics is remarkably accurate in its predictions, is mathematically elegant and 

apparently complete in many respects; it is also at the same time incomplete.  

Supersymmetry, proposed to solve some of its issues, is at this date not panning out as 

expected, with some physicists questioning whether supersymmetry is the hoped for answer. 

Nuetrinoes have a small mass, which the Standard Model does not predict. Gravity is not 

included and there is no force unification without supersymmetry.  

 

The Standard Model of Cosmology or “The Lambda-CDM Model” requires Dark Energy to 

explain the accelerating expansion of space, with no good understanding of what causes it. 

Without initial inflation, there is no good explanation of why space is Euclidean, or flat on 

average, or why regions initially causally separated are so homogeneous; but there is still no 

widely accepted understanding of what causes this inflation.  

 

In the first paper [7] we attempted to show that the fundamental particles of the Standard 

Model can be built from infinite superpositions apart from infinitesimal, but important 

differences. They all had mass which naturally divided into two sets. Spin 2 gravitons, spin 1 

photons and gluons, all had infinitesimal mass approximately the inverse (always)  of the 

causally connected horizon radius of the observable universe 
9

46 10
OU

R    light years or 
33

10 .eV


  (This value is close to some recent proposals [8] giving gravitons a mass of 
33

10 eV


 to explain the accelerating expansion of the universe.) The rest had finite masses of 

micro electron volts upwards. Infinite superpositions are always built in some rest frame in 

which they had no nett momentum p , but only 
2

p  terms. In the “infinitesimal” mass set this 

rest frame can be, and usually is, travelling at virtually light velocity, as seen from our usual 

(nearly) comoving frame. We also divided the world of all interactions into two sets.  

(a) Primary Interactions are purely virtual. They build all the fundamental particles in the 

form of infinite superpositions. We can not see any direct signs of primary interactions. 

(b) Secondary Interactions are all the others that occur between fundamental particles, both 

virtual and real. They are the real world of experiments that the Standard Model is all about. 

The rules for borrowing energy from zero point fields can be different for both (a) & (b). 

Primary interactions are between spin zero particles borrowed from a Higgs type scalar field 

and the zero point fields.  

In the 1970’s models were proposed with preons as common building blocks of leptons and 

quarks [10] [11] [12] [13] In contrast with the spin zero particles in this paper, most of these 



5 

 

earlier models used real spin ½ building blocks. As in these earlier models, this paper also 

calls the common building blocks preons; but here the preons are both virtual, and spin zero 

bosons. There are only three preons; red, green and blue, all with positive electric charge. 

There are also only three anti preons; antired, antigreen and antiblue, all negatively charged.  

As preons are spin zero, there can be no weak charge involved in primary interactions. This is 

all explained more fully in the first paper. These preons build all spin ½ leptons and quarks, 

spin 1 gluons, photons, W & Z particles, plus spin 2 gravitons. This is in contrast to only 

leptons and quarks in earlier preon models. We found that the fundamental forces do not 

unite at the Planck energy cutoff of superpositions. They relate with each other in a manner 

that meshes nicely with the Standard Model, but do not relate with versions including 

supersymmetry.  In the final third of this first paper we tried to fit infinite superpositions with 

General Relativity and The Standard Model of Cosmology. Because these infinite 

superpositions borrow energy from zero point fields, which have virtually zero density at 

cosmic wavelengths; it only works if space expands exponentially with time, and if space is 

flat on average. The equations we derived looked the same for all comoving observers. 

Regardless of an observer’s position in the universe this expansion looked the same apart 

from the effect of initial quantum fluctuations at the start. This may remove one of the key 

reasons for inflation. The universe in this proposed scenario should look the same, and be flat 

on average, for all observers with or without inflation. Even to observers near the horizon or 

outside it.  The properties and equations controlling distant universes should be identical to 

ours and there would be no metaverses which are a natural endpoint of inflation. We found 

that all particles have a maximum wavelength that is approximately the same as the size of 

the causally connected universe at any cosmic time T . At this maximum wavelength there is 

a minimum wavenumber we called min
k . We found that the density of min

k gravitons at this 

maximum wavelength was always proportional to a universal invariant which we labelled

minGk
K . The same invariance applies to action densities@ min

k . We connected this with 

infinitesimally modified GR equations locally, but significant implications at cosmic scale. 

min min min  4

min min

1 8
Solutions to (Background)  are consistent with 

2

where is invariant in all coordinates through all Spacetime, and  is the density of 

maximum wave

Gk Gk

Gk Gk

G
R g R T T K dk

c

K

   






     

min min 00

min

length  gravitons,  but wavenumber  depends on local clocks or .

These solutions are equivalent to what we defined as a 

              "Spherically Symmetric Invariant Four Volume   Gravit

k k g

k on Action Density"

 

In comoving coordinates (Background)T  has just one component 00 U
T  the average 

density of the universe, or only a few hydrogen atoms per cubic metre. This modification 

limits the range of GR to scales smaller than the radius of the universe and guarantees 

flatness on average regardless of the value of  . The overall exponential expansion of space 
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is controlled by equations balancing the zero point action available at cosmic wavelenths to 

that borrowed by infinite superpositions. Dark Energy is not required for this accelerating 

expansion, but Dark Matter is still required inside galaxies because of centrifugal forces due 

to their fast rotation. We found a spin 2 (massive graviton type) infinite superposition as a 

possible dark matter candidate, that won’t show up in current weak interaction type searches. 

Spacetime has to warp in accord with GR around mass concentrations to make available the 

zero point energy required by their extra cosmic wavelength gravitons. The first paper only 

looked at long range gravitons emitted by a mass interacting with the rest of the mass in the 

universe ( Universe* * Universe)
m m

    , it ignored the relatively smaller number of 

cosmic wavelength gravitons emitted by the mass interacting with itself ( *
m m

  ). This 

paper looks at the ( * )
m m

   term, which is most significant near black holes. It unfortunately 

messes up a nice agreement with the Schwarzchild solution by adding a dimensionless 
2 2

/m r term to the usual 2 /m r in the metric. The effect is equivalent to increasing the 

distance to the centre of the sun by about 700 metres for all the planets, assuming no change 

in their orbital periods. This may well be measurable in the foreseeable future. But a non 

rotating black hole radius increases approximately 27.5% from 2r m  to 2.55r m . With 

angular momentum this becomes the modified ergosphere maximum diameter, but the radius 

of a maximum spin black hole is unchanged at r m .  

 

These changes, mainly close to Black holes, initially appear to introduce a tension with the 

field equations of General Relativity. However in Section 2.6 we look at the similarities 

between this 2 2
/m r  term and the dimensionless 2 2

/
Q

r r  terms of both the Reissner-

Nordstrom and Kerr-Newman charged black hole metrics. Their effects on the Riemannian 

curvature tensor are of the same form, but opposite sign to that from an 2 2
/m r  term. There 

are no covariance problems with electromagnetic field massless particles. If we include in the 

Stress-Energy tensor a massless negative energy particle, covariance is similarly maintained. 

It is a bit like, but not the same as, including negative gravitational field energy; which 

Einstein specifically excluded because of covariance problems. This 2 2
/m r term increases 

the merging energies for a fixed mass at any radius. The same applies to the gravitational 

wave radiated energies. It increases the apparent masses of merging black holes above those 

derived with only an /m r  term. It introduces extra radial acceleration, and may speed up 

final mergers of black holes for any total mass and spin. This may relate with the merger 

[26], where if General Relativity holds to the horizon, spins were found unlikely to be aligned 

with their mutual orbits, as current astrophysics theory had expected. The accuracy of these 

observations will almost certainly increase with time, either confirming this or not.  

 

In the rest frame in which the particles are built from infinite superpositions the spin zero 

preons are born with zero momentum. This means they are born with infinite wavelength 
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allowing the possibility that they can borrow zero point energy from an infinite distance. We 

proposed that they borrow redshifted Planck energy zero point quanta from a holographic 

horizon receding at light like velocities relative to comoving coordinates instantaneously on 

that horizon. This is necessary because at cosmic wavelengths of OU
R  the density of zero 

point modes is almost zero, and insufficient to build all the fundamental particles; gravitons 

in particular. The Riemannian spacetime curvature tensor is controlled by the need to keep 

both “The Graviton minGk
K , & Action Density min

@ k  or, min
( Action)K k  ” invariant. For the 

sake of clarity, this paper repeats a heavily revised portion of the final third of that first paper, 

but now includes cosmic wavelength gravitons emitted by the mass interacting with itself 

( * )
m m

  , the effects of angular momentum, and gravitational waves.  

 

Einstein published his General Theory of Relativity [1] 100 years ago. There have been many 

attempts over the intervening years to modify it with different goals in mind. A dissertation 

by Germanis [2] discusses some of these modifications [3] [4] [5] [6]. On its initial 

publication it was criticized for not including gravitational field energy, but over the last 

century, many physicists have tried unsuccessfully to covariantly do this. The modifications 

proposed in these papers, are the extra 2 2
/m r  term in the metric with its large effect close to 

black holes, and our equations being consistent with T  changing to (Background)T T  , 

which has an infinitesimal effect locally, but significant implications at cosmic scale. The  -

CDM Model of Cosmology is based on General Relativity as it is currently interpreted. It 

requires Dark energy to accelerate the expansion, it requires 1  , it requires “Inflation” so 

that regions initially out of causal contact can have (almost) uniform properties, and to 

produce the observed average flatness. The ideas proposed in these two papers, may well 

eliminate the need for these requirements. If both min min
&   ( Action)

Gk
K K k  are invariant at all 

points in spacetime, the equations controlling the expansion of space and the warping of 

spacetime around mass concentrations are the same for all observers in this universe and 

should also be for those far away. There should be no metaverses and no need for anthropic 

arguments. The original arguments behind the Cosmological Model, of uniformity on average 

everywhere, should be absolutely true. While the arguments proposed in these two papers are 

radical, and no doubt contain many errors, the principles behind them may well suggest a 

possible different path forward. But much tidying up, and putting these ideas on a more 

rigorous foundation, would be required. It is almost certainly to our evolutionary advantage 

that what we call established, or collective knowledge, or paradigms particularly in science, 

change slowly; and only after evidence for change builds to a tipping point. In the end 

however, science, as it always has in the past, slowly but surely progresses towards the 

simplest explanations.  Finally, so that these ideas are accessible to the widest possible 

audience, many more details than required by experts in the field are included, with the 

simplest possible explanations. 
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2 The Expanding Universe and General Relativity 

2.1 Zero point energy densities are limited 

If fundamental particles can be built from energy borrowed from the spatial component of 

zero point fields, and this energy source is limited, (particularly at cosmic wavelengths) there 

must be implications for the maximum possible densities of these particles. In section 2.2.3 in 

[7] we discussed how preons build massive fundamental particles, and are born from a Higg’s 

type scalar field with zero momentum in the laboratory rest frame. Infinitesimal mass 

particles such as gravitons borrow their mass from the time component of the same zero point 

fields. In this frame they have infinite wavelength and can borrow from anywhere in the 

universe. This suggests there should be little effect on localized densities, but possibly on 

overall average densities in any universe. So which fundamental particle is there likely to be 

most of? Working in Planck, or natural units with 1G   and a graviton coupling between 

Planck masses of one, there are approximately 61
10M   Planck masses within the causally 

connected observable universe. Their average distance apart is approximately the radius 
OH

R  

of this region. There should be approximately 2 122
10M  virtual gravitons with wavelengths 

of the order of radius 
OH

R  within this same volume. No other fundamental particle is likely to 

approach these values, for example the number of virtual photons of this extreme wavelength 

is much smaller. (Virtual particles emerging from the vacuum are covered in section 2.5.2) If 

this density of virtual gravitons needs to borrow more energy from the zero point fields than 

what is available at these extreme wavelengths does this somehow control the maximum 

possible density of a causally connected universe?   

2.1.1 Virtual Particles and Infinite Superpositions 

Looking carefully at section 3.3 in [7] we showed there that, for all interactions between 

fundamental particles represented as infinite superpositions, the actual interaction is between 

only single wavenumber k  superpositions of each particle. We are going to conjecture that a 

virtual particle of wavenumber k  for example is just such a single wavenumber k member. 

Only if we actually measure the properties of real particles do we observe the properties of 

the full infinite superposition. The full properties do not exist until measurement, just as in so 

many other examples in quantum mechanics. We will use this conjectured virtual property 

from here on when looking at the probability density of virtual gravitons of the maximum 

cutoff wavelength. These virtual gravitons would be a superposition of the three modes 

3,4,5n   of a single wavenumber k , as in Table 4.3.1 in [7].  Time polarized, or spherically 

symmetric, versions we conjecture (See section 2.3.1) are a further equal (1 / 3)  

superposition of 2,0, 2m     states of the above 3,4,5n   mode superpositions. A spin 2 

graviton in an 2m    state is simply a superposition of the three modes 3,4,5n  as above 

but all in an 2m    state. This is explained in the first paper section 3.2.2 page 30 [7].   
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2.1.2 Virtual graviton density at wavenumber k  in a causally connected Universe 

From here on we will use Planck units 1c G   .  When we looked at scalar potentials 

between electric charges in [7] we used time polarized virtual photons in a simple example 

that works for both photons and gravitons, using field energy densities rather than exchanged 

4 momentum. However in quantum field theory, scalar or coulomb forces are due to  

exchanged 3 momentum with time polarized photons (or gravitons), but gravitational forces 

appear to be due to changes in the metric, and not exchanged 3 momentum. However, in the 

meantime we will continue to use time polarized graviton densities as we did in [7] and 

discuss exchanged momentum in section 2.4.8. Also if observers, at the centre of their 

universe, are moving at a peculiar velocity P
  relative to commoving coordinates, the 

average velocity of all mass in the universe is moving with the opposite velocity P
 . Over 

all thin spherical shells of matter at the same radius, they can choose pairs of small areas in 

opposite directions. The spatially polarized vectors due to their velocity exactly cancel for all 

pairs. Central observers see only time polarized gravitons regardless of peculiar velocity. This 

is the same as magnetic vectors cancelling at the centre of long current conductors. Spin 2 

gravitons couple to the stress tensor in contrast to 4 currents for spin 1. Because of the above 

the only important term is the mass/energy density 00
T (or simply  ) or its transformed value 

in any other coordinates, as flow of momentum density terms cancel out. We can thus use the 

same wavefunctions as we did in [7] Eq’s. (3.4.1) for time polarized gravitons and photons.  

              Using 1 2( )  * 1(  2 ) 1 1 1 2 2 1 2 2( * ) ( * * ) ( * )            
 

             The interaction term is  1 2
( )

1 2 2 1 1 2

1 2

4
* * cos ( )

4

k r rk
e k r r

r r
   



 
    

  (2.1. 1) 

 

 

 

 

 

 

                 

Where 1 2
&r r  are the distances to some point P  from two charges or masses 1 & 2, and we 

are looking at the interaction at point P  as in Figure 2.1. 1. Equation   (2.1. 1) is strictly true 

only in flat space but it is still approximately true in small curvatures when 2 / 1m r  , 

which we will assume applies almost everywhere throughout the universe except in the 

infinitesimal fraction of space close to black holes. In both sections 3.4 & 3.5 in [7]  for 

simplicity and clarity, we delayed using coupling constants and emission probabilities in the 

wavefunctions until necessary. We do the same here. There is also some minimum 

wavenumber k which we call min
k where for all min

k k  there is insufficient zero point energy 

available. At this maximum wavelength min
1/ ( 1 / )

OU ObsevableUniverse
k R R  , for all min

,k k

Eq.  (2.1. 1) cuts off exponentially. Section 6 in [7] shows gravitons have infinitesimal rest 

2 1 

Point P   

1
r

  

2
r   

Figure 2.1. 1 
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mass 0
m , of the same order as this minimum wavenumber min

k . At these extreme k values 

this rest mass must be included in the wavefunction negative exponential term. It is normally 

irrelevant for infinitesimal masses. Section 6.2 in [7] looks at 2N  infinitesimal rest masses 

finding
2

min
1

k
K  . Using Equ’s. (3.1.11) & (3.2.10) in [7]  with 1c   

 2 22 2
2 2min min

min min 0 min2 2

0 0

1 &   2  1  
2

k k

s n k n k
K for spin gravitons K or m n k

m m
               

(2.1. 2) 

  

From Table 4.3.1 in [7]  we find    

                                     For 2N   spin 2 gravitons 3.33n   so that 0 min
3.33m k  (2.1. 3) 

 

This virtual mass 0
m  increases the E  term in / 2E T    for the virtual graviton from 

E k   to 
2 2

0
E k m   .  This reduces the region 1

r T E


     over which it can be 

found, which is controlled by the exponential decay term kr
e
 in its wavefunction. This term 

becomes
2 2

0r k m
e
 

  as we approach min
.k  Using Eq. (2.1. 3) we can define a k   such that 

 

       
2 2 2 2 2

min min min min

2 2

0 min
3.33   and   11.09 3.4  77k k kk k m k k k            (2.1. 4) 

 

A normalized virtual massles graviton wavefunction is 
2

4

kr ikr
k e

r




 

 see Eq. (3.4.1) in [7]   

and for infinitesimal mass gravitons this becomes using Eq. (2.1. 4)    

 

    A massless 
2

4

kr ikr
k e

r




 

     becomes with infinitesimal mass   
2

4

k r ikr
k e

r

 
  

 (2.1. 5) 

 

 

Thus the massless interaction term in Eq.   (2.1. 1) becomes with this infinitesimal mass 0
m   

 
                           1 2

( )
1 2 2 1 1 2

1 2

4
* * cos ( )

4

k r rk
e k r r

r r
   



 
       

   (2.1. 6) 

 

 

 

 

 

 

 

 

 

 

2
dr

  

1
dr   1

r   

2
r   

Central point P 
     Figure 2.1. 2 
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Let point P  be anywhere in the interior region of a universe as in Figure 2.1. 2. Let the 

average density (or its equivalent transformed value) be 
U

  (subscript U for universe ) Planck 

masses/energy density per unit volume. Consider two spherical shells initially in commoving 

coordinates around the central point P of radii
1 2

&r r  and thicknesses 
1 2

&dr dr  with masses 
2

1 1 1 1
4

U U
dm dv r dr     & 

2

2 2 2 2
4

U U
dm dv r dr     Now we expect graviton coupling 

 to be 1
G

  between Planck masses, but we will assume we don’t know this and solve it later 

to find it appears to be true.  

 

  Temporarily define Secondary graviton coupling between Planck masses as ?
G

        (2.1. 7) 

In section 3.4.1 in [7] Eq. (3.4.3) used a scalar emission probability (2 / )( / )dk k  which 

becomes (2 / )( / )
G

dk k   between Planck masses. But we must include an exponential cutoff 
2 2

min min
(1 [ 0.61 / ] ) near Exp k k k  (See section 6.2 in [7]). Now distant galaxies recede at light 

like and greater velocities, but quantum interactions are instantaneous over all space.  Thus, 

as we integrate over radii
1 2

& 0r r    , we will assume we can use the same equations as if 

space is not expanding. Using coupling probability 2 2

min
(1 [ 0.61 / ])(2 / )( / )

G
Exp dkk kk    

between Planck masses we can integrate over both radii 1 2
&r r ; but to avoid counting all pairs 

of masses 1 2
&dm dm  twice, we divide the integral by two. The total probability density of 

virtual gravitons at any point P in the universe at wavenumber k is using Eq.  (2.1. 6)  

 

                  

2 2
min

2 2
mi

1 2

1 2n

2

( )2 2

1 1 2 2 1

0.61 /

0.61 /

2

1 20

( )2

1 2 1 2 1 2

0

2 4
4 4(1 )

(1 )

cos ( )
2 4

     16 cos ( )

k r rU

Gk

k r r

k k

k k

U

G

G

dk k
r dr r dr e k r r

k r r

k
dk r r e k r r dr dr

e

k
e


  

 







 



 










   


   





  

Expanding 1 2 1 2 1 2
cos ( ) cos cos sin sink r r kr kr kr kr   , and then using: 

   
2 2

2 2 2

0

( ) cos( )
( )

r

r

k k
rExp k r kr dr

k k





 
 

        and      
2 2 2

0

2
( ) sin( )

( )

r

r

k k
rExp k r kr dr

k k






 

                              

                   
2 2

min0.61 /

2 2 2

2

2 2 4
(1 ) 

( )
16

( )
GG U

k k

k

k k
ke

k
d

k k k
  

   


 
    

                         
2 2

min0. 2

2

/

2 2

61
(1  )

1
16

( )
G

k

U

k k
dk

k k
e

k








 
 

       

       (2.1. 8) 

 

 

From Eq.(2.1. 4)    
2 2 2 2

0 min
11.09k k m k k     and we can write Eq. (2.1. 8) as 

            

 

2 2
min0.61 /

2 2

min2

2
2 2

min

11.09
16

2 1
)

.
 

09
(1

1
Gk

k k

G U

k
e

k dk

kk k
 








 

                                  

 

2
0.612

4

mi

2

2
n

2

(1  ) 11.09

2 11.09
16

G

x

U dk
e x

x xk





 


         where    

min

k
x

k
   
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 

2 2
min2

4

0.61 / 2

2
2

min

100.149
Wavelength  Probabil

8 (1  ) 11.0
ity Den

9

2 11.
si  

09
ty

k k

Gk

G U
e

k
x

k d
k x x




 
 

 


 



   

                 Where the blue square bracket is 1 when min
/ 1k k x    

 
2

min min4

m minin

0.149
Cutoff wavelength Probability Density  whe 1n U

Gk

G d
k

k
x

k
k

 
     

 

 

 (2.1. 9) 

 

 

 

As we think minG
K  will prove to be a spacetime invariant, we will write this as follows. 

 

     

2

min min min min 4

min

0.149
Cutoff wavelength Probability Density  where U

Gk

G

Gk Gk
K dk K

k

 
    

 (2.1. 10) 

 

2.2 Can we relate this to General Relativity? 

The above assumes a homogeneous universe that is essentially flat on average. At any cosmic 

time T it assumes there is always some value min
k where the borrowed energy density 

min minGk ZP
E E  the available zero point energy density min

@ k . We have initially assumed 

commoving coordinates, but at peculiar velocities our spherical shells become ellipses and 

Eq. (2.1. 10) or min min minGk G k
K dk  should remain true at any peculiar velocity, also in all 

coordinates as we hope to show later. So what happens if we put a small mass concentration 

1
m  at some point?  The gravitons it emits must surely increase the local density of min

k

gravitons upsetting the balance between borrowed energy and that available. However 

General Relativity tells us that near mass concentrations the metric changes, radial rulers 

shrink and local observers measure larger radial lengths. This expands locally measured 

volumes, lowering their measurement of the background minGk
 . But clocks also slow down, 

increasing the locally measured value of min
k .  Let us look at whether we can relate these 

changes in rulers and clocks with the min min minGk G k
K dk   of Eq. (2.1. 10). 

 

2.2.1 Restricting the range of General Relativity to well inside the horizon  

Let us refer back to Eq. (3.4.2) in [7] and the steps we took to derive it; but now including 

2 2

0 min
11.09k k m k k     as in Eq. (2.1. 4)  

                              1 2
( )

1 2 2 1 1 2

1 2

4
* * cos[ ( )]

4

k r rk
e k r r

r r
   



 
    

  (2.2. 1) 

 

And assume that space has to be approximately flat with errors 
1/2

1 (1 2 / ) / .m r m r     If 

we now focus on Figure 2.1. 1, equation (2.2. 1) is the probability that an infinitesimal mass 

virtual graviton of wavenumber k is at the point P if all other factors are one. Let us now put 



13 

 

Central observer 

at point P 
1

r   

a mass of 1
m  Planck masses as in Figure 2.2. 1. Also assume that the point P is reasonably 

close to mass 1
m  (in relation to the horizon radius) at distance 1

r  as in Figure 2.2. 1 and the 

vast majority of the rest of the mass inside the causally connected or observable horizon OH
R  

is at various radii r, equal to 2
 r  of Eq.(2.2. 1) where 2 1

r r r   and thus 1
cos[ ( )]k r r

cos( )kr   & 1 2( )
.

k r r k r
e e

   
  This is equivalent to localizing General Relativity to much 

smaller than horizon radii. Only under these conditions can we approximate Eq. (2.2. 1) as  

 
1 2 2 1

1

4
* * cos( )

4

k rk
e kr

r r
   




     

    (2.2. 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

The background gravitons are time polarized and we are effectively looking at the scalar 

potential of this central mass relative to the rest of the universe, so this is a time polarized or 

scalar interaction with no directional effects due to spatial polarization. We can consider 

simple spherical shells (again initially in commoving coordinates) of thickness dr  and radius 

r around a central observer at the point P which have mass 
2

4 .
U

dm r dr   At each radius r 

the coupling factor including an exponential cutoff is 
2 2

min0.61 /
(( / ( / )1 ) 2 )

G

k k
dke k


  between 

Planck masses. Again assuming instantaneous quantum coupling as if space is not expanding: 

  

 2 2 2 2
min min0.61 21/ 10.61 /2 2

Coup (1ling facto ) 1 )r 4(G Gk k k

U

km mdk dk
d rem dr

k k
e


 







 
 

  

(2.2. 3) 

       

2 2
min

2 2
min

0.61 /

0.61 /

21

1 2 2 1

21

1

2
Including this coupling factor ( 4 )( * * )

2 4
                                   4 cos( )

4

          

(1 )

(1

   

)

  

U

k r

U

k k

k

G

Gk

m dk
r dr

k

m dk k
r dr e kr

k
e

r r

e      


 




















  
   

   

2 2
min0.61 / 1

1

8
                           cos((1 ) )

G

k rUk km k dk
re kr dr

r k
e 











 

 

          

 

(2.2. 4) 

Spherical shells thickness dr   

& mass 
2

4
U

dm r dr   

 Mass 1
m   

 r   

Radius 1
r r   

Figure 2.2. 1 
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This is virtual graviton density at point P due to each spherical shell. (ignoring the relatively 

small number of particularly min
k  gravitons emitted by mass 1

m  itself 
1 1

( * )
m m

   see section 

2.6.1). Integrating over radius 0r    the virtual graviton density at wavenumber k using 

Eq’s. (2.1. 4 & (2.2. 4) 

                       

2 2
min

2 2
min

10.61 /

0.61 /

1 0

2 2

1

2 2 2

1

8
 cos( )

8 ( )
     

(1 )

(1 )   
( )

k

G

rU

G

Uk k

G

k k m k dk
re kr dr

r k

m k dk k k

k k

e

r
e

k
























 

  
  

 







 

 

   

  (2.2. 5) 

 

 

Now 2 2 2 2 2

0 min
11.09k k m k k     and if min

k k then 2 2

min min
12.09k k   & so when min

k k :    

 

   

2 2
min

2 2
mi

1 1

n

2 2 2

min min1 min min

min 2 2 2

1 min min min

1

min Universe Universe

0.61 /

0.61 /

min2

1 min

12.098 (12.09 )
  

(12.09 )

=

(1 )

( ( * 1 )+ * )  0.573

U

Gk

U

Gk m

k k

k

G

k

m G

e

e

k dkm k k

r k k k

m
dk

r k







    












 


  

 



 

 

   

(2.2. 6) 

 

 

Equation (2.1. 10) hypothesizes min min minGk G k
K dk  . In a metric far from masses where

,g   min
k  has its lowest value. As we approach any mass min

k  increases to min
k  where 

we use green double primes when g   to avoid confusion with the min
&k k   of Eq. (2.1. 

4).  At a radius r  from mass m  the Schwarzchild metric is 
1/2

(1 2 / )m r


  for the time and 

radial terms. Radial rulers shrink and clocks slow, measured local volume V & frequency min
k   

both increase as 1
m

r
  .   

                        Thus both 1
V V m

V r

 
   and also 

min

min 1
m

k

k

r


    if r m  

                        Then using min min minGk G k
K dk    &  m m minin niG kGk

K dk   

 

                                
min min min

minmin min1 1
k

k
k dm V V V

r V V

k

k dk 

  
      

 
  

   (2.2. 7) 

 

 

So in this metric the total number of min
k gravitons is the original ( )g 

minGk
  of Eq. 

(2.1. 10) plus the extra due to a local mass of Eq. (2.2. 6) but we have to divide this number 

by the increased volume to get the new density n minmi
(1 )

Gk Gk

m

r
   . Thus using Eq. (2.2. 7) 

                       The new    min min m

m

in mi

i minn

n  (1 /  )
1 / (1 / )

Gk Gk Gk Gk

GkGk
m r

V V m r


   


   
 


 

 
   

                          
2

min min min min
(1 /  ) (1 2 / )       (if  )

Gk Gk Gk Gk
m r m r r m           



15 

 

 

                                                   min min

min

2
1Gk Gk

Gk

m

r

 



 
   

                                                              

min

min

2Gk

Gk

m

r








      

(2.2. 8) 

 

 

We can now put Eq’s.(2.2. 6) into Eq. (2.2. 8), and dropping the now unnecessary subscripts, 

both graviton coupling constant G
  and the exponential cutoff

2 2
min0.61 /

1 ( )
k k

e


 cancel: 

    

2 2
min

2 2
min

0.6

min2

mi

2

min min

2

min
min4

m

1 /

0.6 /

n

1

in

(1 )

(1

 0.573

     2

         0.324

1 5

7

.7

)

6
G

U
G

U

Gk

k k

k UGk k

m
dk

r k m m

r r
dk

k

e

e

k


















 
  

 


   
   

  





 

 

(2.2. 9) 

 

(Strictly speaking we should be using mink
dk   in the top line of this equation but the error is 

second order as we are approximating with r m . We will do this more accurately below 

for large masses.) In any metric both min
&

U
k transform their values but 2

min
/

U
k   is invariant. 

For the above to be consistent with General Relativity this suggests that: 

 

“At all points inside the horizon, and at any cosmic time T, the red highlighted part of 

Eq.(2.2.9) is 2  in Planck units. This is simply equivalent to putting 2
/ 1G c G c   ”.  

Thus we conjecture  

  

2

2

min 2

min

(0.8823) 0.8823

                     Th

The local measured density of the universe

e parameter  in radians is close to 1. 

 
U

OU

OH

k
R

k R




 

 

     

   

  (2.2. 10) 

 

Putting Eq. (2.2. 10 the average density U
 into Eq.(2.1. 10) gives minGk

 & minGk
K . 

      

2

min min4

min

min min min min4

min

mi

2 2

min

n min

(

0.149
Cutoff Wavelength Graviton Probability Density 

0.149
            0.

0.8823 )

"The

115

           Where we label 0.115  as   

U

Gk

Gk

G

G

G G

k G

k

G

dk
k

dk dk K dk
k

K

k

k








 





  

 Graviton Invariant".

 

 

 

(2.2. 11) 

 

If our conjectures are true, this is the number density of min
k  cutoff wavelength gravitons 

excluding possible effects of virtual particles emerging from the vacuum. In section 2.5.2 we 

argue that these do not change the minGk
K  of Eq. (2.2. 11). However minGk

K   does depend on 

the graviton coupling constant G
  between Planck masses, but G

  cancels out in Eq.(2.2. 9)  

It does not affect the allowed universe average density U
  in Eq. (2.2. 10).  
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2.2.2      The Schwarzchild metric near large masses 

At a radius r  from a mass m  (dropping the now unnecessary subscripts) the Schwarzchild 

metric is 
1/2

(1 2 / )m r


  for the time and radial terms which can be written as  

                              
2

1 1 1

1 2 1/
r

t

M

M

r

t

g
m r g 




  


 
(2.2. 12) 

 

Velocity M
 ( 1c  ) is that reached by a small mass falling from infinity and

1

M
 

is the metric 

change in clocks and rulers due to mass m . We are using green symbols with the subscript M 

for metrics g  as we did for min
k  above. The symbols 

1

M
 

help clarity in what follows.                                                              

                                                         

2

2

00

2

1 1

1 2 /

M

M rr

m

r

g
m r g







  


 

 

 Using these symbols  
2

min min mmin min miin nGM kM M Gk
k dk kk d           

   

 

 

  (2.2. 13) 

In sections 2.1.2 & 2.2.2 we approximated in flat space. The wavelength of min
k  gravitons 

span approximately to the horizon. They fill all of space. We can think of the non flat space 

around even a large black hole as an infinitesimal bubble on the scale of the observable 

universe. The normalizing constant of a min
k wavefunction emitted from a localized mass is 

only altered very close to this mass. Over the vast majority of space it is unaltered. Only close 

to this mass will local observers measure min minM
k k   due to the change in clocks. There is 

also a local dilution of the normalizing constant due to changing radial rulers. We will 

consider both these changes in two steps to help illustrate our argument. Now repeat the 

derivation of minGk
  as in section 2.2.1 but with a large central mass as in Figure 2.2. 1. 

    At the point P consider Eq.(2.2. 2) minmin
min 1 2 1 mi2

1

n

4

4
@ :  * * cos( )

k rk

r
k rk e

r
   




 


.   

The red part is the normalizing factor discussed above where we will initially ignore the 

dilution due to the local increase in volume. In deriving Eq.(2.2. 2) we ignored the 

exponential decay term and phase angle term from the local mass as min 1

min 1& cos( ) 1
k r

ke r


 , 

even in the space around large black holes. The green &k r kr  terms are phase angles only 

applying to the vastly distant masses that are virtually fixed by the time they approach even 

large black holes; increasing only infinitesimally in any local metric. So treating them as 

fixed and ignoring the dilution factor this equation is unaltered. As the exponential cutoff is 

unchanged we are left with the coupling factor 

 

        min

min

2
G

dk

k




 which is the same as min

min

min

min

2 2
M

M

G G
d k

kk

dk

 

 







in the changed metric.  

Dropping the now uneccesary subscripts and temporarily ignoring dilution factors and clock 

changes we can rederive Eq’s (2.2. 4), (2.2. 5) & (2.2. 6) to get with large masses: 
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2 2

min

min min min min2 2

min

0.61

min

/
 (0.573)        0.26 @(1 ) 1

G G

U U

G

k k

k

m m
dk dk k

r k r k
e 

 



   

But 
2

min

0.8823U

k


  from Eq. (2.2. 10) so              

min min min

2
 0.115 @

Gk G

m
dk k

r
   .  

 Using Eq. (2.2. 11) min
0.115

GGk
K     and       

min min min min

2
 @

Gk Gk

m
K dk k

r
  .  

Using 
2 2
M

m

r
   and to help illustrate metric changes we temporarily include the factor 2

M
   

                                Before metric changes min min

2 2

min
 

M MGk Gk
K dk     (2.2. 14) 

 

So the total min
k graviton density before metric changes is the original min min minGk Gk

K dk 

plus the extra min min

2 2

min
 

M MGk Gk
K dk   .   Thus before metric changes         

              

      

min min min min min

2 2 2 2

2

2 2 2

2

min min

min min min min m

2

in

2 2

(Total)        

                                  But  

Before changes (Tota

(1 )

(1 ) 1
1

l)

M M M M

M

Gk Gk Gk Gk

Gk Gk Gk

M M M

M

M M M

K dk K dk K dk

K dk K dk K

   


  







 



   





 

  
min minGk

dk

 

 

 

    (2.2. 15) 

 

If we now increase the volume to that in the new metric, the new volume is 
Mrr

g   times 

the original volume. So in the new metric we must divide this value by M
  to get  

 

min min

min min min min m n

2

i
Diluted (To a t l) Gk

Gk GM M M

M

k Gk

K dk
K dk K dk  


     but in the new 

metric time changes make min minM
k k    and    minmin M

d kk d     or     m nmin i
/

M
dkdk   

 

     In the new metric 2min

min min23 min min min min
(Total) 

Gk Gk G

M

kM Gk
K K K

dk
dk dk





        

(2.2. 16) 

 

If for example 2
M

  , frequencies are doubled so min min
2k k  , the number density of 

gravitons ( minGk
  min

2
Gk

 ) is doubled, but so is the measurement of a local small volume 

element, which is now 2V  . The above equations tell us that the original minGk
 background 

gravitons which occupied one unit of volume is now compressed into 1/2 a unit of volume 

and the remaining 3/2 units of volume is taken up by extra gravitons due to the central mass. 

Figure 2.2. 2 illustrates this. The metric adjusts itself so that minGk
K (the cutoff wavelength 

graviton probability constant) is an invariant number, and this should be true in all metrics at 

any peculiar velocity (See Figure 2.5. 1 also.) What we have done in this section is only true 

if the increase in measured volume is equal to the increase in measured frequency. In the 

Schwarzchild metric this is equivalent to saying that 1
rr tt

g g  or 1g  .  But what happens 

in the Kerr metric with angular momentum?  
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2.3 Angular Momentum and the Kerr Metric 

In the Schwarzchild metric the increase in volume is the same as the frequency increase as 

1
rr tt

g g   and 4 2
sing g r     is invariant if there is no angular momentum. With angular 

momentum both &g g   change. The volume ratio of g  space, to g  space in 

 

any metric at fixed &r   is 
4 2

( )( ) ( )( )

( )( ) sin

rr rr

rr

g g g g g g g gV

V g g g g r

       

   

 

 

          
 

  
 

 (2.3. 1) 

 

 

The Kerr metric can be written in      
2 2 2

cosg r     

 Boyer-Lindquist coordinates as        2 2 2 2 2

2
( sin ) sinS

r r
g r    


    

                                                          2
sinS

t

r r
g

g




   

                                                          rr

g
g 


       &     1 S

tt

r r
g

g

   

 

Where 
2 2

S
r r r        and    

J

mc
     and   

2
2

S

Gm
r m

c
   is the Schwarzchild radius in  

Planck units where 1G c  . Everything is in units of 
2

length or (length) , except &
rr tt

g g

which are dimensionless.  Because we want volume ratios as in Eq. (2.3. 1) we can write the 

above version of the Kerr metric in a dimensionless form, leaving the length squared, and 

length terms 
2 2 2 2 2 2 2 2
, sin & sin  in d , sin d & sin  etcr r r r r r d        outside the metric 

tensor. This effectively gives us the denominator 4 2
sinr   we want in Eq. (2.3. 1) as we will 

see. We must also remember that angular momentum parameter   is a length dimension.  

 

Writing the above in dimensionless form as follows, using      for the line element 2
ds :                               

Measured local volumes double, & 3/2 units of volume   

the increased number density equals the extra maximum 

wavelength gravitons at that point due to a central mass. 

Figure 2.2. 2 An infinitesimal local volume in a Schwarzchild metric where 2
Mrr

g   .  

 

The background min
k gravitons that originally occupied one 

unit of volume are compressed into 1/2 a unit of volume as 

number densities are doubled in this new metric. 
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 A Dimensionless form of the Kerr Metric where     
2 2

2

2 2
1 sin

A
g

r g r




 
                          

 
2

2
1 A

r


      and  

2m
A

r
  but we will add an     

2

2

2
1 cosg

r



                                                                                                   

also dimensionless 
2

2

m

r
later. See section 2.6             

rr

g
g 


                                            

(We assume silent 2
1G c   Planck value               sin

t

A
g

g r





  

 constants in 
2

 a dimensionless term)
m

A
r

            1
tt

A
g

g

   

                                                                       

 

 

 

 (2.3. 2) 

 

The space surrounding a rotating mass corotates with it. If we move in this corotating 

reference frame there is a new metric time component, which after some rearranging of plus  

and minus signs just for convenience, we can write as: 

2

t

tt tt

g
g g

g





   .            

Thus using Eq. (2.3. 2)        

2 2
2

2 2 2

2 2
2

2 2

sin

(1 )

1 sin

t

tt tt

A

g g rA
g g

g g A

r g r

 

 






 


     
 
  

 

  

                                         

2 2
2

2

2 2
2

2 2

sin

(1 )

1 sin

A

g rA

g A
g

r g r












 


  
 
  

 

 

                          

2 2 2 2 2 2 2
2 2 2

2 2 2 2 2 2 2

2 2
2

2 2

(1 sin ) (1 ) sin sin

(1 sin )

A A A
g A

r g r r g r g r

A
g

r g r



  





    
  

 


     



 

  

                                               

2 2 2
2

2 2 2
(1 sin ) (1 )A g

r r r

g g



 

  
    

         

                                               

2 2
2

2 2
(1 cos ) (1 )A g

r r

g g



 

 
   

                                                                           

2 2

2 2
(1 ) (1 )

      
tt

Ag g g A
r rg g

g g g g

  



   

 
    


     

       

      (2.3. 3) 

 

 

We have explicitly gone through this to show that if the parameter 2 /A m r is 

dimensionless, there is potentially freedom to change it without changing Eq.       (2.3. 3).  
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(See Section 2.6.6 as this is similar to what happens in the Kerr-Newman metric, where 

instead of a dimensionless 2 2
/m r  term, a dimensionless 2 2

/
Q

r r  or equivalently a 

dimensionless 2 2
/Q r is included in term A . See for example Table 2.6. 2 and Table 2.6. 3.) 

We will work in corotating frames. Space is swirling around the black hole effectively at rest 

in these frames, simplifying our calculations and equations. (Section 2.9 puts this into a four 

vector form, invariant in all frames.) If a small mass, at rest at infinity in the same rest frame 

as the rotating black hole, falls inwards, it will have the same circumferential velocity as the 

corotating rest frames at all radii. It will be falling radially through these corotating frames. 

As in section 2.2.2 we call this radial velocity M
  where as in the non-rotating case        

                  
2

1

1
M

M





   but now 

2

11

1
M t

M

t
g







 the new inverse rate of clocks.  

                      In  corotating frames        

2

2

1
t

M

M

t
g

g

g










 




 

     

    (2.3. 4) 

 

 

Frequencies measured in corotating frames increase as M
 . Similarly using Eq’s. (2.3. 1) & 

(2.3. 4) we can get the (three) volume element ratio in this corotating refence frame. 

 

 The 3 volume element ratio ( )
rr M

gg
V g g g g g g g


          

 
 

   (2.3. 5) 

 

 

With angular momentum we no longer have the same increase in frequency as volume as in 

the Schwarzchild case. With no angular momentum we found that the probability density of 

time polarized min
k  gravitons Eq. (2.2. 14) 

min min

2

min

2

M MGk Gk
K dk  

i in

2

m n m

2
GkM

m
K dk

r
  . 

(Again temporarily adding 2

M
 ). With rotation we will find a circularly polarized 2

cos   type 

distribution of gravitons around the axis. These add to the time polarized dimensionless 

number 
2m

r
 to get an as yet unknown number we simply label as X where 

2
X

m

r
   



Let us rewrite Eq.(2.2. 14) as     min min mi

2

nk MG Gk
XK dk   with rotation 

   (2.3. 6) 

 

 

Where the factor
2

M
   is for clarity only.  Repeating the derivation of Eq.(2.2. 15)  

          min min min

2

min min m min

2

in
(Undiluted Total) (1 )

Gk Gk Gk GkM M
XK dk K dk K dX k      
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As in Eq.(2.2. 16) we need to divide this undiluted total by the new volume M
V g in Eq. 

(2.3. 5) to get the new 
min

k  graviton density
min

 
Gk

  . If our conjectures are correct 

m m minin niGkGk
K dk  is always true, and as our measurement of 

min
k increases to 

min minM
k k  

in the new metric, 
min

 
Gk

 
min minGk M

K dk .   So rewriting Eq.(2.2. 16) as follows 

 

    min min min min

min min m

2 2

mi inn min

(1 ) (1
 

)
Gk Gk

Gk Gk k

M M

G M

M

K dk K dk
K dk K

V g

X X
dk



 
 



 
                

                                          
min min mi i

2

m

2

n n
(1 )

M MGk Gk
K dk g K dkX     

 

                                          2 2
1 

M M
X g    

                                         
2

2

2

2 2

1 1
(1 cos ) 

M M

X g
r









      

                                         
2

2

2
(1 cos )

r g
X







    using Eq. (2.3. 4)  

                                         

2

2
2

2

2 22
2

2 2

1

1 cos

1 sin

A

A
X r

r

r g r






 


 

  

 

 using Eq’s.(2.3. 2) 

We can write this as        

2 2 2
2

2 2 22

2

2 22
2

2 2

1 sin 1

cos

1 sin

A
A

r g r r

Ar

r g r

X




  





 


   
       

  
 

 

 

                                       

2 2

22

2

2 22
2

2 2

sin
1

cos

1 sin

A
r g

r

X
Ar

r g





 




 


 
 

 
 

 

 

                                      

2 2

22

2

2

sin
1

cosX

A
r g

r g





 




 
 

 
    using Eq’s.(2.3. 2) 

 

                                     
2 2 2

2

2 2

sin
cos             

A
A

r g r g g
X

  

  
    

 

Sectio 2.3.3 discusses why there is no separate term in 
2 2

2

sin
A

r g g 

 
 so we will write this as                 
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2 2 2

2

2 2

sin
cos             

Ag
A

r g g r g g
X 

   

  
     

                                  

2
2

2 2 2
2

2

2 2

(1 cos )
sin

cos     

A
r A

r g
X

g r g g   




  




    

                              Which we finally write as   
2

2

2
2

2

(1

os

)

c

A
rX

g gr  








  

 (2.3. 7) 

 

Putting 
2m

A
r

 ,  the extra min
k  virtual gravitons 2

M
X  (due to a mass m  rotating with 

angular parameter   that has dimensions of length) are the following two polarization 

groups (The background min
k  virtual gravitons have been normalized to one when 1

M
  )   

 

Circularly polarized spin2: 
2

2

2
cos ( 2)m

r




 
   

 
 & Time polarized spin 2: 

2

2

2
(1 )

m

r r

g g 

 
 

 
 
  

 

We can rewrite Eq. (2.2. 16) using 2 2
1 

M M
X g         or      

2

2

2 2

 
cos

1
1

M

X
r

g





      

2 2

2

2

2

2

2 2

2

 
cos cos1

(1
1

)

M

A
r

r g g r 

 
 



 
 
 
 




 

 

 



 or 
2

2

2
(

 
)

1
1

1

M

A
r

g g 

 
  

  
 
  

 where 

2

2
2

(1 )

M

A
r

g g 





 
 
 
 
 





 

 

We have a 4 vector equation again as circular polarization cancels on both sides. The main 

thing to notice here is that the circularly polarized min
k gravitons are independent of the 

central mass, suggesting they are due to the effect of the rotation of space, or frame dragging, 

on the min
k graviton background. We will discuss this in section 2.3.2.  The extra min

k

gravitons due to the central mass have a 2 2
(1 / ) / ( )r g g   factor, distorting them from 

spherical symmetry. Figure 2.3.1 & Figure 2.3. 2 compare the above with spinning charged 

spheres in electromagnetism. The electrostatic energy density surrounding a charged sphere 

however, reduces with radius as 4
r
 , and magnetic energy as 6

r
 , or two more powers of 

radius. With gravity however we have been looking at the probability density of minimum 

wavenumber min
k  gravitons surrounding a mass. With no angular momentum there are only 

time polarized min
k gravitons, and their extra probability density drops as 1

r
 , as so far we 

have only focussed on those min
k gravitons (the vast majority), that interact with the rest of 

the mass in the universe. If a charged sphere rotates, there is a radial magnetic field of 

circularly polarized 1m    photons varying in intensity as 2
cos   and a transverse magnetic 

field (of transversely polarized 1m   photons) varying as 2
sin   as in Figure 2.3.1.  
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  Figure 2.3.1 Spinning electrically charged sphere. At same radius @( 0) 2 @( / 2)
R T

B B     . 

  

 

 

 

         

 

 

 

                  

 

 

 

 

 

 

Figure 2.3. 2  Spinning mass m  with angular momentum length parameter   as viewed in a 

corotating frame. There are circularly polarized min
( 2)m k   gravitons due to the effect of 

frame dragging on the background time polarized min
k gravitons. There are no transversely 

polarized min
( 2)m k   gravitons due to a rotating mass m as seen in a corotating frame. 

Radially polarized extra min
k  gravitons due to mass m are distorted from spherical symmetry 

as
2 2

(1 / ) / ( )r g g  . For Sw
r r  we can ignore the effects of ,g g  .  as they rapidly 

tend to one, with the metric written in dimensionless form as in Equ’s.(2.3. 2).   

 

Time polarized min
k graviton extra probability density  

outside sphere due to mass m.        

2

2
(1 )

2m r

r g g 

 
 

 
 
  

 

Spin Axis R
B Circularly polarized radial 1m    photon magnetic field 

energy density varies as 2 6
cos / r  

T
B Transversely polarized 1m    photon magnetic field 

energy density varies as 2 6
sin / r  

 


  

Spherically symmetric time polarized photon electrostatic 

field energy density outside sphere varies as 4
1/ r . 

Spin Axis 

 Circularly polarized 2m    min
k graviton probability 

 density due to rotating mass m.    
2

2

2
cos

r




 
 
 

 

There are no transversely polarized 2m    min
k gravitons  

 

due to rotating mass m as observed in corotating frames.         

 


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2.3.1 Stress tensor sources for spin 2 gravitons & 4 current sources for spin 1 

Spin 1 particles behave like a 4 vector as they come from a 4 current source, transforming 

with velocity as in the Special Relativity transformations of Minkowski spacetime. Spin 2 

gravitons in contrast come from mass/energy density sources. There are two factors in their 

transformations with velocity. One from the mass increase per source particle, and the second 

from the increase in particles per unit length due to length contraction. Thus Spin 2 particles 

transform as a 4x4 rank 2 tensor, which Einstein connected with spacetime curvature.  

The rules of quantum mechanics tell us that spherically symmetric spin 2 particles should be 

equal 1 / 5  superpositions of 2, 1,0, 1, 2m       states. But the shape of gravitational 

waves behaves like transversely polarized 2m    particles, suggesting the min
k  gravitons 

surrounding mass concentrations may only consist of time polarized, plus 2m    circularly 

polarized, spin 2 particles. In [7] we showed that a spherically symmetric spin one state is 

built from equal 1 / 3  superpositions of 2,0, 2m     states, and if this is true then we will 

conjecture that the same superposition of 2,0, 2m     states must be able to build a 

spherically symmetric spin 2 state. When we looked at non rotating spherical masses it 

appeared that, even close to black holes, the spherical symmetry of the Schwarzchild metric 

suggested similarly spherically symmetric, time polarized, extra min
k gravitons down to the 

horizon; with space expanding only radially.  Thus before we considered angular momentum 

we could treat all min
k  gravitons as only time polarized. A stress tensor source with no 

angular momentum has spherically symmetric spacetime curvature with time polarized min
k

gravitons. But angular momentum in the source produces cylindrically symmetric spacetime 

curvature. We still have radially polarized min
k  gravitons (in co-rotating coordinates) due to 

the central mass, but distorted from spherical symmetry as 
2 2

(1 / ) / ( )r g g   which only 

affects the close in region, disappearing as 0  . But there are also circularly polarized

2m   min
k gravitons only related to angular momentum. These circularly polarized min

k

gravitons do not have the 2 /m r  factor and must be very different. As we will discuss below 

it appears that they are generated from the background time polarized min
k gravitons by the 

swirling velocity of corotating space.  

 

2.3.2 Circularly polarized gravitons from corotating space 

The circularly polarized gravitons do not have a 2 /m r factor.  The Kerr metric is an exact 

solution to Einstein’s field equations, which we conjecture (in an infinitesimally modified 

form as in Eq. (2.5. 1) are consistent with the min
k  Graviton constant being invariant at all 

points in spacetime, or that Eq. (2.2. 11) is always true. If this is so then Eq. (2.3. 7) should be 

true also. We can perhaps just accept that it must be true, but at the same time we can look at 

whether it makes sense? 
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The angular momentum parameter has dimensions of length, and is defined as 
J

mc
  . 

Because angular momentum is the cross product of momentum by radius or m v r , we can 

think of this length parameter as a vector of length  , pointing along the axis of spin, with 

components cos   at any polar angle   to the spin axis. Space corotates around spinning 

masses with angular velocity 
t

g

g





   which in the plane of the equator simplifies to  

                                
3 2 2 3

S S

S

r c r c

r r r r

 

 
  

 
 when &

S
r r  .  

                          At large radii the corotating velocity   
2

S
r c

V
r


  r  

      (2.3. 8) 

Because &
S

r   have dimensions of length this equation has dimensions of velocity, and if 

we divide it by c  it is dimensionless. We will call it Coratating C
    

         At large radii   
2

S

Coratating C

rV r

c c r


 


      a dimensionless number. 

   (2.3. 9) 

If we now think of 
J

mc
   as 

m

m c c


 
 

v r v r
 we can consider a similar vector along the 

spin axis consisting of the cross product of the corotating velocity of space 
2

S
rV

c r


  by the 

radius .r  The length along the spin axis of this cross product vector 
c

V r
 is simply S

r

r


.   

                                

 At the equator: Length of vector 
c

V r
 along the spin axis is S

r

r


  for S

r r   
  (2.3. 10) 

We need this vector length to be a dimensionless number representing the amplitude that a 

background time polarized min
k graviton generates a circularly polarized min

k graviton around 

the spin axis. If we divide Eq. (2.3. 10) by the Schwarzchild radius S
r , all rotating black holes 

with the same percentage of maximum spin look identical, and we get a dimensionless  

magnitude as required 

             Magnitude of normalized dimensionless vector S

S S

r

r c r r r

 
 

V r
 

 (2.3. 11) 

 

The whirling velocity of space is a maximum out from the equator, but circularly polarized 

gravitons generated in this region have to be distributed on this shell around the spin axis as 

the square of the component of angular momentum. We thus conjecture that the probability 

of background time polarized min
k gravitons, on a corotating thin spherical shell at large 

radius, generating circularly polarized min
k gravitons around the spin axis on the same shell is  
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       Probability of 
2 2

min

2

min

Extra circularly polarized 2 gravitons cos

 Background time polarized  gravitons

m k

k r

   
   

 

(2.3. 12) 

There is a background density of time polarized min
k gravitons on each corotating spherical 

shell. The swirling velocity of these min
k gravitons generates extra circularly polarized min

k

gravitons around the spin axis with a 2
cos   distribution around the spin axis on the same 

shell, in agreement with Figure 2.3. 2. For simple explanatory purposes, we approximated at 

large radii only.  At small radii we must use 
3

t S
g r c

g r g g



  


   .  On the equator 1g  , the 

co-rotation velocity V g r .  The circumferential volume generating these circularly 

polarized gravitons also expands as g
. Rederiving Eq’s. (2.3. 9) and those following, the 

effective angular momentum term becomes g g    r r
2

3

S S
r c r c

r g
r g r





  
   
  

 

just as before; our derivation applies down to the equatorial horizon. This circular 

polarization appears to be the result of the swirling or corotating velocity of space as it has no 

mass term, only angular momentum terms. 

 

2.3.3  Why there are no transverse polarized gravitons in co-rotating coordinates? 

In Section 2.1 we showed that the majority of min
k gravitons around any non rotating mass m 

is due to the interaction between that mass and the rest of the mass in the universe

min Universe Universe
( * * )

Gk m m
       ; and these were all time polarized min

k gravitons. Let 

us imagine that a rotating mass emits transversely polarized min
k gravitons, there will only be 

a small number unless there are also transversely polarized min
k gravitons from the rest of the 

universe for their amplitudes to interact with. But from what we have just done above there 

appears to be only circularly polarized min
k gravitons due to the corotation of space. Also if a 

rotating mass emits its own circularly polarized min
k gravitons, these would interact with the 

circularly polarized min
k gravitons due to the corotation of space. It thus appears that, when 

observed in corotating coordinates, a rotating mass does not itself emit either tranverse or 

circularly polarized min
k gravitons. This perhaps makes sense, as in corotating frames, we are 

effectively at rest above the horizon which is rotating in sync with us. 

 

2.3.4 Does our time polarized min
k  value in co-rotating coordinates make sense? 

The inner horizon radius R  is defined when 
2 2

2 2

2
1 1 0

m
A

r r r

 
         where we 

initially define the dimensionless number 
2m

A
r

  . Using 
2m

A
r

  the inner horizon is 
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where 2 2
2 0r mr    . So horizon radius 2 2

2R r m m m      when 0  , and at 

maximum spin r R m   when m  . But we will, for generality, revert to the 

dimensionless A  and look at what happens near the horizon for various spins.  

  

2

2

2 2

2 2

Let   be the value of    at the horizon where 1 0 is always true

                     So       1        and        1

H H

H H

A A A
R

A A
R R



 

  

   

   

   

  (2.3. 13) 

2 2 2 2

2

2 2 2

sin
At the horizon (1 cos )(1 )

H
g g A

R R R g
 



   
   

2 2

2

sin
( )

H H
g A A

R g




 
   

                                   
2 2

2

sin
(1 )

H
g A

R g




 
        

2

2
( sin )

H
A g

R



   

    
2 2 2

2 2 2

2 2 2
At the horizon  (1 cos sin ) (1 )

H H H
g g A A A

R R R
 

  
        

    and independant of angle  near the horizon only.  This is true regardless of 

    spin from zero to maximum as the radius shrinks.  

 

(2.3. 14) 

 

              2 2
Near the horozon the black hole surface area is   4 4

H
R g g R A        (2.3. 15) 

 

We have shown in co-rotating frames  the extra time polarized min
k graviton density due to a 

central mass is 

2

2

min min min

1

Gk Gk

rA K dk
g g 







     where 
2m

A
r

  so far, and  dimensionless. 

Using Eq’s.  (2.3. 13) & (2.3. 14) above, near the horizon in a corotating frame, this becomes  

 

       Extra time polarized min
k graviton density near horizon for all Black holes  

                         

2

2
2

min min min min min min min2

1
H

Gk H Gk Gk Gk

H

ARA K dk K dk K dk
g g A
 







        

 

(2.3. 16) 

 

Ignoring the factor min minGk
K dk the extra radially polarized min

k graviton probability density is 

always one in Planck units regardless of spin and is spherically symmetric, but only near the 

horizon where the background density
mi

2 2

n i

2

m n
0/  as 1&

k M MG M
K dk      , providing it 

is observed (somehow) in a corotating reference frame. It can also be shown that near the  

horizon of a black hole 
2

2

2 4
M

R

s
   and 

2
M

R

s
   is always true regardless of the degree of  

spin, and  the value of the dimensionless number H
A , where R  is the horizon radius  and s  

the proper distance from it, providing it is all measured in co-rotating coordinates. The region 

well above the horizon is not spherically symmetric until several Schwarzschild radii away 

where spherical symmetry is gradually retained as in the non-rotating case.  
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Also near the horizon this density due to a central mass is so great that we can effectively 

ignore the background value, but the rotation of space generates circularly polarized min
k   

gravitons, of probability density 
2

2

2
cos

r


  from this background. The extra radially, plus 

circularly, polarized min
k graviton probability density near the horizon ignoring the factor

min minGk
K dk  is 

            

2 2

2 2

2 2
Time polarized  1  +  Circularly polarized  cos  (1 cos )

 as in our original derivation, but ignoring the background, which 

is infinitesimal near the horizon.

R R

g

 
  

  

 

 (2.3. 17) 

 

As the Kerr metric is an exact solution for rotating black holes we can say that if the extra 

min
k gravitons due to a rotating mass are consistent with X  as in Eq. (2.3. 7) then it is also 

consistent with keeping the Graviton constant minGk
K  as in Eq. (2.2. 11) invariant in the 

spacetime surrounding it. (We come back to this, and potential changes to the dimensionless 

term 2 /A m r  in section 2.6.) When we looked at non rotating black holes in section 2.2.2 

we used simple first principles to show that the warping of spacetime around them is 

consistent with an invariant Graviton constant minGk
K . With rotating black holes we turned 

the argument around and assumed this invariance to derive the extra probability densities of 

time, and circular polarized min
k gravitons, before the density dilution from the expansion of 

space around the rotating mass. Equations (2.3. 16) & (2.3. 17) can perhaps increase our 

confidence that our hypothesis is possibly correct. If it is correct on the horizon, and also far 

from a rotating black hole, we will conjecture that it is also correct in all regions between, 

even if it might not initially appear to be so. It is important to remember that the Kerr metric 

is an exact solution for rotating black holes, not for rotating masses in general. We have only 

considered here the exact solution. We can thus perhaps summarize section 2.3 as follows: 

Spherically symmetric spacetime curvature generates only time polarized min
k gravitons. 

Cylindrically symmetric spacetime curvature, due to angular momentum, generates time 

polarized min
k gravitons and circularly polarized 2m    min

k gravitons in corotating coordinates.  

We have not yet included the relatively small number of min
k gravitons emitted by the mass 

itself ( * )
m m

  , which has effect close to black holes; but we will first look at the expanding 

universe. This is a much revised version of section 5.3 in [7] with Figure 2.4. 1 & Equ’s.(2.4. 

12) helping to make clear why the min
k graviton constant minGk

K  is invariant throughout 

spacetime. It is the cutoff wavenumber where densities for action available equals action 

required, by min
k graviton superpositions. The value of min

k reduces with cosmic time T but 

increases around mass concentrations with the local metric clock rates. See Figure 2.5. 1. 
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2.4 The Expanding Universe 

Section 2.1.1 describes virtual gravitons as superpositions of the three modes 3,4,5n   at a 

single wavenumber k  as in Table 4.3.1 in [7] which also tells us 3.33n  . Equation .(3.2.1) 

in that paper tells us 
2

( )
k k

debt n p k  is the debt of k  spatially polarized quanta 

they borrow. Equation (2.1. 2) tells us  
0 min

m n k  &  Eq. (3.1.6) in [7] says they borrow 

from time polarized quanta a mass 
0 0 min

/ ( 2 ) / (2 ) / (2 )m s m n k     for spin 2 gravitons. 

Equation 6.2.2 in [7] tells us that min
@ k for gravitons 2 2

min min
2 &  1/ 2   . From this we 

can see that min
@ k , the spatially polarized debt is 2  larger that the time polarized debt.  

So we only need to consider the spatially polarized debt when equating quanta available to 

quanta required, as when these are equal there is a small surplus of time polarized quanta. 

However to plot these curves near min
k k we need the number density of gravitons at any 

wavenumber  k , so rewiting Eq. (2.1. 9)   using Eq.(2.2. 10) for 
2 4

min
/

U
k & Eq.(2.2. 11)  

     

   

2 2
2

4

0.61 2

min

0.61 2

2 2
2 2

108 (1-e ) 11.09 108 (1-e ) 11.09

2 1

0.14

1.09 2 11.0

9

9
0.115

x

G

G

x

G

U

k
d

x x

x xxk x
k dk

 


    
    

    
 



 

         

(2.4. 1) 

 

min
Both blue boxes are one when  / 1k k x   . Using Eq’s. (3.1.11), (3.1.12) & (3.2.10)  in [7] 
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k
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x

x
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
 

wavenumber k quanta. But wavenumber k virtual quanta last for time / 2T k  , whereas 

the time the superposition lasts is / 2T E  . We are borrowing Energy Time   or Action, 

and the superposition energy 
2 2

min
11.09E k k k   as in Eq. (2.1. 4) lasts for a shorter time 

when k  is near min
k .  So the Action Quanta of Energy Time  required, reduces as  

2 2

min

2
11.0 099 11.

k k

k k

x

xk 
 


  and the quanta density required @k by gravitons is thus 
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(2.4. 2) 
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But the density of zero point modes available min
@ k is 

2 2

min
/k dk   (ignoring some small 

factors). Even if 1
G

   this is too small by about
2 2

min
1/

OH
k R . However the area of the 

causally connected horizon 
2

4
OH

R suggests possible connections with Holographic horizons 

and the AdS/CFT correspondence [24] but in a very different way. 

 

2.4.1 Holographic horizons and red shifted Planck scale zero point modes 

Malcadena [24] proposed AntiDesitter or Hyperbolic spacetime where Planck modes on a 2D 

horizon are (almost) infinitely redshifted at the origin by an (almost) infinite change in the 

metric. In contrast we have assumed flat is space on average to the horizon. In section 2.2.3 

in [7] we defined a rest frame, in which preons are born with zero momentum and infinite 

wavelength, forming infinite superpositions. If we also have a spherical horizon with Planck 

scale modes, but receding locally at the velocity of light, these Planck modes can be absorbed 

by infinite wavelength preons (from that receding horizon) and red shifted in a radially 

focussed manner inwards. We will argue in what follows, that at the centre where the infinite 

superpositions are built, approximately 1/6 of these Planck modes can be absorbed from that 

horizon with wavelengths of the order of the horizon radius. This potential possibility only 

exists because zero momentum preons have an infinite wavelength. If any source of radiation 

recedes at velocity /v c   the frequency/wavenumber reduces as  (1 )
observer source

k k     

where
2 1/2

(1 )  
  .  In the extreme relativistic limit 1   & we can put1       .  
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         (2.4. 3) 

There is always some rest frame travelling at nearly light velocity that can redshift Planck 

energy modes into a min
1 /

OH
k R  mode and also many other frames travelling at various 

lower velocities that can redshift Planck energy modes into any min
k k  mode .  This is 

special relativity applying locally. But in sections 2.1.2 & 2.2.1 we used the fact that clocks 

in comoving coordinates tick at the same rate.   So how does Eq.(2.4. 3) help? Space between 

comoving galaxies expands with cosmic or proper time t and is called the scale factor ( )a t . It 

is normally expressed as ( )
p

a t t   and we will start at time 0
t T with time T  now.                                                

                     Thus 
1

( )
p

a t pt


 and the Hubble parameter
( )

( )
( )

a t p
H t

a t t
   

    (2.4. 4) 

 

 

We have been assuming to here that space is flat on average and will use the properties that in 

flat space at the current time the coordinate, proper and comoving distances are all equal. 

Writing the present scale factor normalized to one so that ( ) 1a T   implies ( ) /
p P

a t t T , we 

can get the causally connected horizon radius and the horizon velocity V. Using Eq. (2.4. 4)  
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(2.4. 5) 

 

 

 

 

 (2.4. 6) 

 

The Hubble flow velocity of a comoving galaxy on the horizon is ( )
OH

V H T R   and thus 

from Eq.  (2.4. 6)  the horizon velocity is always 1V V   .  In other words the horizon is 

moving at light velocity relative to comoving coordinates instantaneously on the horizon as 

measured by a central observer. Now clocks tick at the same rate in all comoving galaxies but 

clocks moving at almost the horizon light velocity (relative to comoving coordinates 

instantaneously on the horizon) will tick extremely slowly or as 
61

1 / 10


  from Eq.(2.4. 3)  

as special relativity applies locally in this case. Thus Planck modes on the receding horizon 

will obey Eq’s.(2.4. 3) as seen in all comoving coordinates. Let us now imagine an infinity of 

frames all travelling at various relativistic velocities relative to comoving coordinates 

instantaneously on the horizon, and radially as seen by central observers. We can think of 

these as spherical shells on the horizon all of one Planck length thickness as measured by 

observers moving radially with them. Transverse dimensions do not change for all radially 

moving observers and the effective surface area of all these shells is
2

4
OH

R . The internal 

volume of all these shells, as measured in rest frames by observers moving radially with 

them, and each of these observers measures their thickness R  as one Planck length; is 

 

                        2 2
Rest frame internal shell volume  4 4

OH OH
V R R R       (2.4. 7) 

We want the zero point quanta available where these quanta have Planck energy E , lasting 

for Planck time T such that / 2E T   . Before redshifting, a single zero point quanta 

thus has Planck energy (temporarily using a single primed k  that is not the k  of Eq.(2.1. 4)) 

where 1k   before, and k after the frequency change. The density of modes in this shell is 
2 2

/k dk   (where each quanta & the superposition it builds both last for time / (2 )T E   )  

             
2

2

k dk



 
  quanta, which we will write as mode quanta density 

3

2

d

k

k k



 


. 

  (2.4. 8) 

At Planck scale 1k   and redshifing to k  then using Eq. (2.4. 3) /k k   & /dk dk  .  

Thus / /dk k dk k   .  As 1k   Eq.(2.4. 8) becomes  

              
3

2 2

1 1
Planck Scale Quanta Density before redshifting

dk dk

k k 






  

  (2.4. 9) 
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Multiplying density by volume ie. Eq’s. (2.4. 7) & (2.4. 9) gives the total Planck scale quanta 

inside the rest frame shell 2

2
4

1
OH

R
dk

k
  .  Two thirds of these modes are transverse and one 

third radial. Only the inward 1/ 6  of these modes can be radially redshifted inwards. After 

redshifting to wavenumber k , in flat on average space in a thought experiment, we can 

imagine them forming spherical standing waves, with a central spherical first node at radius

/ 4 / 2R k   , where   is the De Broglie wavelength of momentum k  particles or 

waves. The polarization directions are spherically symmetric (as required to build infinite 

superpositions in their rest frame, see section 2.4.7), forming virtual spin 1 quanta with a 

radial probability of 
2

2 cosk kr   . Inside this sphere the expectation value of the radius 

that a quantum is at is / 4r k  as 2
cos 1/ 2kr  , so the expectation value of the 

probability density is  

 
3

3

3

m

2 2 2

in

3

2 2 2

2 cos 2 cos ( / 4) 16 1.62

4

1.62

4 ( / 4 ) 4 44 OH

k kr k k k k k

Rkr k



     
   

 
 
 

 where we have used min OH
k R   

 

This is the average probability density of a single quantum. So the total density is this single 

quantum probability density, times the number from the horizon; but we also need to divide 

by 2 as we are only considering the spatially polarized or vector half. Again using

min OH
k R   the total quanta density becomes, after dividing by the two factors of  2 & 6   

 

3 2
3

2

3

min min mi

2

2

2

n

2

@ 2 2

1 1.62
 where

1 1

2 6
 

4 .
4
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H
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dR

k k k
x x

dk

k R
k

k k
dk

k


  

   
    



 
 
 

 





 
   

              Density of quanta available after redshifting 
2

@ 2

2

7.4
Quanta k

dkx



   

 (2.4. 10) 

 

Now an observer at the centre of all this sees flat space being added inside the horizon at the 

rate of the horizon velocity  1 ( )
OH

V H T R   as in Eq.(2.4. 6). We will conjecture that the 

space added in one unit of Planck time inside the expanding horizon also creates the source of 

these zero point action quanta that we can borrow. Thus Eq. (2.4. 10) becomes  

 

        

2
2 2

2

min  2 2

min

2

2

2

min

Density of quanta available
7.4 7.4

(1 )
                                               where  

7.

 

4

k

OH

V k V
k dk x dk

k

H R k
x dk x

k


 



  
   

 

  
 

                      

   

  (2.4. 11) 

 

  



33 

 

2.4.2   Plotting available quanta densities, and required quanta densities               

         

       

 

 

 

 

 

 

 

 

            
min min mi

2

nmin2

2

min min

  Quanta required 0.055

Where 0.055 is the "Quanta required @ Co

Quanta available  =
7.4

 &  nstant "
4

G Qk

Qk G G

dk K dk
V

dk

V
K k




 

 







 

  

  (2.4. 12) 

 

 

Equation (2.2. 10)
2

2
the average density of the 0.univ 8823erse  

U

OH
R




 allows us to solve 

the present value of min OH
k R   .  Using WMAP data for Baryonic and Dark Matter density 

124
5.6 10

U
 

   in Planck units & the radius 
61

2.7 10
OH

R    Planck lengths ( 9
46.5 10 

light years) puts
2

0.42
U OH

R   in Planck units so 
2 2

0.8823 0.42
U OH

R     now.  

Spatial mode quanta 

available from horizon 

Spatial mode quanta required  

with 
2

0.61
(1 )

x
e


  cutoff 

min

k
x

k
    

  Figure 2.4. 1 plots Eq’s. (2.4. 2) &   (2.4. 11)) as a function of min
/x k k  Going through similar 

procedures for the time mode quanta as for space modes, we have plotted both time and space. 

An exponential
2

0.61x
e


cutoff fits available and required reasonably for min
k k  in both cases; 

also showing there should be an adequate supply of time mode quanta from the horizon for all  

infinitesimal mass particles. The spatial mode crosses @ min
k k . Both plots always look the 

same at all cosmic times T. And, in any metric only the value of min
k changes.  It only works   

in an expanding flat universe. Equating required and available spatial modes @ min
k k  

 

Time mode quanta  

available from horizon 

min
k

  

min
k

  

Time mode quanta required  

with 
2

0.61
(1 )

x
e


 cutoff 
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              min
Using -CDM model & WMAP data    0.69 now

OH
k R          (2.4. 13)                                             

  

                         

              
                       Figure 2.4. 2  plots 

2 2
0.8823

U OH
R      

 

The CDM  model &WMAP data Horizon velocity 1 ( ) 1 3.37 4.37
OH

V H T R      if 

( ) 1/H T T  now, and putting this and 0.69   into Eq.(2.4. 12) we get an approximate 

value for the graviton coupling constant G
   

       

2 2

G

2

V (0.69) 4.37 2.08
Using -CDM model & WMAP data 0.52

4 4 4

                          Or if 1 as expected, we should expect  V 4
G





 
    

  

 

(2.4. 14) 

 

 

Using the current CDM  model and WMAP data with 2
2.08V  , puts G

  in the right 

ball park, suggesting that our approximate analyses is not too far off the mark, and that we 

can perhaps turn it around to show we should expect 2
V 4  . The CDM  model has to 

be fine tuned for flatness requiring a critical density. It also has to have a fixed ratio of Dark 

Energy to total matter to get the observed accelerated expansion. The current figures are 

5%  Baryonic 23%  Dark matter and the rest Dark energy. This puts the ratio of Dark 

Matter to Baryonic as   4.5 to 1 whereas it can be as much as 9 or even 10 to 1 in some 

galaxies. If for example it was approaching 10 to 1 then 2
V 4   at the current horizon 

velocity and horizon radius we used above.  However the most important part of the above is 

that 2
V  has to be constant, and as we will see this naturally leads to exponential expansion. 

In the next section we will find slightly different values for both the horizon radius and 

velocity, which combined with a smaller increase in Dark matter of about 6.5 to 1 , can give
2
V 4  . And it all only works in flat on average space. 
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OH
k R  
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2.4.3 A possible exponential expansion in a flat matter dominated universe 

We have been assuming space is flat on average, and this allows very simple calculations. 

Using Euclidean space properties, of equal coordinate, proper and comoving distances at the 

current time, let the scale factor be a with density
3

1

a
   in this era. Eq. (2.2. 10) tells us the 

average density of the universe 

2

2
0.8823

U

OH
R




 or 

2

2 3

1
U

OH

K
R a




   where   

     0.8823K  is constant and 3 2 2 2/3 2/3
a KR a K R

      where OH
R R    (2.4. 15) 

 

The Hubble parameter H is 

     

1/3 2/3 2/3 5/3

2/3 2/3 2/3 2/3

(2 / 3) (2 / 3) 2 1 1
   

3

dR dK R K Ra dR ddt dtH
a K R K R R dt dt

  

 

    
         

  

 

2
Thus the Hubble Horizon flow velocity @  is 

3
OH

dR R
R V H R

dt

d

dt

 
     

  


 

(2.4. 16) 

We can also write either of Eq’s.(2.4. 14) as 2
a constant ,V K    with 2

2 0dV d V     .  

Thus  
1

2

1dV

V dT

d

dT






  and Eq.  (2.4. 6) tells us that the Horizon velocity OH
dR dR

V
dt dt

  .  

 

Equation  (2.4. 6)  also tells us that 1V H R V      so we can write Eq. (2.4. 16) as  

      
2 2

3( 1) 2
2

d

d

R R dV
V

V tt
V

d

 
  




  

 
 3

R dV
V

V dt
       ( 3)

dV V
V

dt R
   

  (2.4. 17) 

We will look for an exponential increase of the horizon velocity so / 0dV dt  and 3 .V      

Let us simply try 3 ( )V Exp bt with 3V  for all values of & 0b t  .    Assume a starting time  

after transition of 0
0t   initially, and only consider times  0

t t  .  

If space is flat we can simply put
0 0

 3 ( )
t t

t t
R Vdt Exp bt dt   &

3[ ( ) 1]Exp bt
R

b


  if 0

( )t t   

Putting this value for R   plus 3 ( )V Exp bt  &  3 3[ ( ) 1]V Exp bt    into Eq. (2.4. 17) 

                ( 3) 3 ( ) 3[ ( ) 31]
3[ ( ) 1]

( )
V b

V Exp bt Exp bt
R Exp b

dV
bExp bt

d tt
      


.  

But 3 ( )V Exp bt and again  3 ( ) 3 ( )
dV d

Exp bt bExp bt
dt dt

  . Thus Eq’s. (2.2. 10) & (2.4. 14) 

are consistent with 3 ( )V Exp bt for positive b regardless of the value of graviton coupling G
  

     A possible expansion solution is 3 ( )V Exp bt  & 
3[ ( ) 1]Exp bt

R
b


 , 0.b   

  (2.4. 18) 



36 

 

But is this consistent with the local special relativity requirement for OH
R ? In other words 

does
0

3[ ( ) 1]
@ time ( )

( )

T dt Exp bT
R T a T

a t b


   ?  Now Eq. (2.4. 15) tells us the scale factor 

3 2 2 2/3 2/3
a KR a K R

      but Eq.(2.4. 14) says 2
1/V   so the scale factor 1/3 2/3

.a V R   

From Eq. (2.4. 18) ignoring the constant factors 3 & b, ( )V Exp bt  &  ( ) 1R Exp bt   

           

1/3 2/3

0

1/3 2/30

1/3 2/3

( )

( ) [ ( ) 1]

The scale factor ( ) ( ) [ ( ) 1]  and  
( )

            =
( ) [ ( ) 1]

3[ ( )
                                                        

T

T

dt
a t Exp bt Exp bt R

a t

dt

Exp bt Ex

a T

Ex
p b

p
t

Exp bT

bT Exp bT 

  










1]

b

 

(2.4.19) 

And Eq. (2.4. 18) appears to be a consistent exponential expansion for both V and R.  

From Eq. (2.4. 14) we showed   
1

2

1dV

V dT

d

dT






. Using Eq. (2.4. 18) 3 ( )V Exp bt  &  

3 ( )
dV

bExp bt
dt

 implies ( / 2)K Exp bt    . The current CDM /WMAP value 0.69   

from Eq.   (2.4. 13), and our best guess of 0.48b   from Figure 2.4. 3 yields 

 

                                    min
0.88 ( 0.24 ) in radians

OH
k R Exp t      

  

Several of the above formulae only apply in Euclidean or flat on average space. 

    (2.4. 20) 

 

This simple exponential expansion starts after the transition, and is very different to current 

-CDM models, which keep the Hubble parameter / 2 / 3H a a t   constant (if 1  ) until 

Dark Energy starts to take effect. Current  -CDM models put the Hubble parameter as 

/ 1/H a a T   at present (based on 
9

13.8 10T   years). In the plots below we put 
9

13.8 10  years 1T    , with OH
R  or radius R  becoming multiples of 1T  . Using Eq.  (2.4. 

6) 1 ( )V H T R  , Figure 2.4. 3 plots the Hubble parameter by time ( 1)T   now, as a 

function of the exponential time coefficient b, showing if 0b   that ( ) always 2 / (3 )H t t  as 

in current cosmology at critical density with no dark energy. Also if 1/H T now, the best 

guess is 0.48b  . This yields 3.85R T  or 15%  greater than current cosmology. Figure 

2.4. 4 plots horizon velocity which @ 4.85V   now is also 11%  greater. The current 

CDM  model puts Baryonic matter at 5%  and Dark matter at 23%  but if we make 

this ratio say about 6.4 to 1, the total matter density of the universe increases from 28%  to 

37% , and 
U

 increases as 37 / 28 1.32 . Now 
2 2

0.8823
U OH

R     and if 
OH

R  is 15% 

greater, then 2 2 2
1.32 1.15 1.75 0.47 0.825        as 2

0.47   in current CDM  

models.  If 4.85V    then 2
4V    which fits our model.  Figure 2.4. 5 plots the scale factor 

based on 0.48b  , but of course the actual value of b or rate of change with time must be in 

agreement with the redshifts currently observed when looking back in time. These could well 

change b and radius R. Figure 2.4. 6 plots the transition to positive acceleration of the scale 

factor showing the effect of changing the value of b.  
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These plots show an 15% increase in Horizon Radius, an 11% increase in Horizon

Velocity, which if combined with an increased Dark Matter to Baryonic Matter ratio

of 6.5 (versus the -CDM ratio 4.5) give

 

  
2 2

s the required  (0.91) 4.85 4V   

 

 

    

 

 

2.4.4 The radiation dominated era up to approximately 47,000 years 

 

 
 

Figure 2.4. 8 An example of a possible radiation dominated exponential exapansion. 

In the mass dominated era the density 
3

1/ a  , and in the preceding radiation dominant era

4
1/ a  . We can repeat section 2.4.3 with horizon velocity 2 ( )V Exp ct , & horizon radius 

0 0
 2 ( )

t t

R Vdt Exp ct dt    2[ ( ) 1] /Exp ct c  . The horizon velocity starts @ 2V   and 

horizon radius @ 2R t  with a scale factor 1/2
a t  and is the value used in current models 

of this era before transition, which predict results in close agreement with the current 

measurements of normal matter in the universe. At the start of the matter dominated era, 

3V  , and one possibility is 2 (0.4 )V Exp t , where time is normalized to one at the end of 

this era. This exponential expansion can, with some smooth transition, continue on into the 

3 (0.48 )V Exp t  of the matter era, with the normalization of time then changed to the current 
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      Figure 2.4. 7  Plots min
1.155 ( 0.24 )

OH
k R Exp t    out to 10 times the age of the universe. 
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cosmos age. If 1
G

   as in Eq.(2.4. 14) with 2V  ,  has to be 1.4   initially to get 2
4V  . 

By the end of this era when the horizon velocity has increased to 3V  , has exponentially 

reduced to 1.155  to keep 2
4V  . Because the transition time is so small in relation to 

the 10
10  year age of the universe, this era has insignificant affect on all our above graphs.  

 

2.4.5   Peculiar velocities and non-commoving coordinates 

We have up to here been focussing more on commoving coordinates for simplicity. 

Velocities relative to comoving coordinates are usually referred to as peculiar velocities, so, 

does all our previous work still apply in non-comoving coordinates? The average momentum 

of the universe is zero in comoving coordinates and all background gravitons are time 

polarized. As explained in section 2.1.2, if we move at a peculiar velocity, equal and opposite 

gravitomagnetic vectors all sum to zero, resulting in zero spatially polarized gravitons, just as 

the magnetic field is zero at the centre of long circular conductors with uniform currents. 

Thus the background, at the centre of any observer’s universe, in non-rotating spacetime, 

always contains only time polarized or spherically symmetric min
k gravitons, regardless of 

peculiar velocities.  

We can think of a box of these min
k gravitons fixed in commoving coordinates. It will have a 

3 volume density 3

min min min

V

Gk Gk
K dk  as we have previously calculated. (The superscripts here 

are for convenience only, and nothing to do with tensors.) If we now move relative to it at 

peculiar velocity P
  it will shrink in size as 

1 2
1

P P
 

   so that it’s new 3 volume density 
3

mi minn min

V

Gk Gk
kK d   , where mn inmi

/
P

dkdk    is the local increase in wavenumber min
k . If we 

repeat our derivations of the background 3 volume density, and the extra emitted by local 

mass concentrations, we find they also both increase by  mn inmi
/

P
dkdk    with no change in 

the ratio /  , so all our logic is unchanged at any peculiar velocity. But all this, is the 

same as saying that at any peculiar velocity, and in any metric, the 4 volume density of min
k

gravitons is Invariant at any cosmic time T. 

 

2.4.6 Invariant 4 volume cosmic wavelength graviton densities 

Define 3 min min

min

Gravitons Gravitons

3Volume

V

Gk

k k

x y z
  

  
 and as 4 volume x y z t x y z t             

           4 min min min

min

Gravitons Gravitons Gravitons

4Volume   

V

Gk

k k k

x y z t x y z t
   

          
  is an invariant.  

We will define 4 volume min
k  graviton density at any point in space-time as 

 

                  

4 3

min min

4

min

4 Volume Density      3 Volume Density  

but only in commoving flat space coordinates, however 

 is invariant in all coordinates and in any metric.

V V

Gk Gk

V

Gk

 





 

    

    (2.4. 21) 
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This is equivalent to dividing min
k  , in any metric, at any peculiar velocity, by MP

   thus 

returning it to flat space commoving value min
k at any cosmic time T. Similarly Eq.(2.2. 16)  

              2min

min min2

3

min min min min
(Total)

V

Gk Gk G

M

kM Gk
K K K

dk
dk dk 




    in commoving coordinates, 

which can be written as  

             3 3

min min m

in

in

m

2
 (Total)

V V

Gk Gk Gk

M

d
K

k






   , becomes using invariant 4 volume notation    

            4 min

min min min min min

2

n2 mi
(Tot ) al

M

M

V

Gk Gk Gk Gk

dk
K K dk K dk


     which can be written as 

            4 4min

min min min2
(Tot l a )

V V

Gk G G

M

k k

dk
K 


     

Where  4

min mi

2

min n
 

M

V

Gk Gk
K dk   ;       3

min m n

2

mini
   

M

V

Gk Gk
dkK   ;        

min

min
x y z t

dk x y

k

z t

d    
 

    






 

As both 4 4

min min
  &    

V V

Gk Gk
  are invariant, their ratio is also invariant in any coordinates, and 

at any peculiar velocity at any particular cosmic time. But the flat space commoving value of 

min
k decreases with cosmic time. We also know that 2

2 / 
M

m r  is always true. 

                                            

2.4.7 Cosmic wavelength graviton action densities 

In deriving Eq. (2.4. 2) we said that each 
min

k  graviton always borrows a fixed amount of 

action, where Action E T    per graviton is constant but min
E k  .  So if four volume 

density
min

4 
Gk

V  is invariant the four volume action density required by 
min

k  gravitons must 

also be invariant. In Eq.((2.4. 11) we calculated the 
min

k action or quanta density available 

from the horizon in commoving coordinates. But if we move at a peculiar velocity P
 , both 

energy E  and time T increase as P
 , so the four volume action density available from this 

source should increase by 2

P
  and not be invariant, appearing to destroy our logic. (If there is 

more action available than what is required by
min

k  gravitons there is nothing to keep their 

density controlled.) If we go back to the building of superpositions (page 13 in [7]), we see 

that in their rest frame, they have a wave equation generated from a vector potential squared, 

or 2
A  term. This can only come from a spherically symmetric source of spatially polarized 

quanta. At high frequencies this spherically symmetric source is the invariant vector potential 

squared portion of the local zero point fields. At low frequencies this source is from the 

receding horizon, but it must also be spherically symmetric (see sections 2.4.1, 2.7.2 & 

2.7.3). We derived Eq. ((2.4. 11) in commoving coordinates where the spatially polarized 

source from the horizon is spherically symmetric as required to build superpositions in their 

rest frame. But it is not spherically symmetric at peculiar velocities. We showed (page 22 in 

[7]) that if we move at a peculiar velocity P
  relative to a spherically symmetric spin one 

source, its probability of being spherically symmetric is 2
1/

P
 . But the 4 volume action 

density increases as 2

P
  so these two factors cancel. Exactly the same happens in any metric. 
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The 4 volume 
min

k spin one quanta action density from the horizon increases as 2

M
  but the 

spherical symmetry probability drops as 2
1/

M
 , and both these effects cancel again.   

Spherically symmetric 4 volume 
min

k action density available from the receding horizon is 

always invariant at any particular cosmic time in a region of space. (At any cosmic time it 

depends on the value of 
min

k in commoving flat space but decreases with cosmic time.) 

 

So our hypothesis is that at any point in spacetime: Gravity is consistent with the spherically 

symmetric 4 volume action density available from a receding horizon always being equal to 

the spherically symmetric 4 volume 
min

k action density required by gravitons; with both 

remaining invariant in any coordinates.  

 

We will use the superscript ss  for spherically symmetric invariant 4 volume densities. 

 

      
4

min min

4

min

4

min

Define Invariant Spherically Symmetric 4 Volume Action Density as 

Where  action a 0.48( ) requiredvailable    by  gravitons.

     This equation is true in any coor i

 

d

  

VSS

Qk

VSS

Gk

VSS

Qk
k



 

nates, and at any point in spacetime.

  

  

(2.4. 22) 

 

2.4.8  If Gravity is due to metric changes then what about exchanged momentum? 

Let us now consider exchanging 
min

k  time polarized gravitons between Planck masses (or in 

fact between any masses) instead of simply considering 
min

k  graviton densities. As we have 

noted many times, by far the vast majority of gravitons in the universe are near
min

k , so we 

will only look at the effect of 
min

k  exchanges. If the 4 volume densities of both spherically 

symmetric
min

k action available, and 
min

k  gravitons are invariant everywhere, each mass is 

interacting with the rest of the universe in a spherically symmetric manner. Quantum field 

theory tells us that coulomb or scalar forces are due to the exchange of virtual photon 3 

momentum. Assuming virtual gravitons are no different, and this exchange happening in a 

spherically symmetric manner, there can be no nett force in any direction due to these 

exchanges, but only momentum squared terms. If two masses are orbiting each other they 

will also be exchanging higher frequency gravitons, but to a first approximation the effect of 

these is small in relation to the spherically symmetric exchanges of 
min

k  gravitons with the 

rest of the universe. But perhaps spin 2 gravitons do not exchange 3 momentum in such 

interactions. On Page 34 in [7], at the bottom, we mention a possible such interaction 

between superpositions with no 3 momentum exchanged, but only time will tell. Regardless, 

the warping of spacetime does guarantee spherical symmetry of 
min

k exchanges.  

Einstein always felt that gravitational forces were fictitious, that gravity was due to metric 

changes only, and not exchanged gravitons. If in time, our hypothesis proves to be true, he 

may well prove to have been correct. 
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2.5 An Infinitesimal change to General Relativity at Cosmic Scale 

We started everything here in flat space with no mass concentrations. So, uniform densities 

don’t curve space. We introduced mass concentrations and space has to curve around them so 

as to keep our spherically symmetric 4 volume
min

k  action densities, required and available, 

invariant. If we think of the mass in the universe as a dust of density U
 essentially at rest in 

comoving coordinates we can define a tensor (Background)T . In comoving coordinates 

(Background)T has only one non zero term 00
(Background)

U
T  . In any other coordinates 

this same (Background)T  tensor is transformed by the usual tensor transformations that 

apply in GR. If these coordinates move at peculiar velocity P
  then 

2

00
(Background)

P U
T   

2

00
(Background)

P
T . The same transformation happens in any metric but with 2

M U
   . We 

argue that Eq.(2.4. 22) is consistent with the infinitesimally modified Einstein field equations 

  

                            
4

1 8
(Background)

2

G
G R g R T T

c
    


       

   (2.5. 1) 

 

This infinitesimal modification is only relevant in the extreme case as T approaches 

(Background)T . Far from mass concentrations (Background)T T  . Space curvature, in 

these remote voids, is in general somewhere between slightly negative and zero; but the 

causally connected universe is always flat on average regardless of the value of .  Equation 

(2.5. 1) is also consistent with Eq. (2.1. 10)  min min minGk Gk
K dk  at all cosmic times. If there 

is no inflation, in flat commoving coordinates, at the Big Bang or slightly after, min
k starts at 

just under one and is always close to the inverse of the causally connected horizon radius. It 

is also close to the inverse of cosmic timeT . It is always at its minimum far from mass 

concentrations, but increases with the slower clock rates in the local metric around mass 

concentrations as in Figure 2.5. 1  

 

 

 

 

    

 

 

 

 

 

 

 

 

minGk

G

K




  

min
k    

min
0.1 0.25k   

very approximately 

@ the Big Bang 

62

min
10k


   

 Now 

At any cosmic time T  in any coordinates, and in any metric, 

in the infinitesimal band min
dk , min min minGk Gk

K dk   is always 

true. minGk
K is invariant, but the measurement of min

k only,  

depends on both local metric clockrates and cosmic time T . 

Future 

 

Figure 2.5. 1 
Past 
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2.5.1 Is inflation in this proposed scenario really necessary? 

There are two main reasons, usually given, for why inflation is necessary:  

 

(a) The average flatness of space.  

 

 (b) The almost uniform temperature of the cosmic microwave background from regions that 

were initially out of causal contact.  

 

If we put (Local) (Background)T T  in Eq.(2.5. 1), the right hand side is identically zero, 

and 
1

0
2

G R g R      on average throughout all space. The average curvature of all  

space must be zero and space is compelled to be flat on average. In section 2.4.3 we found 

that space naturally expands exponentially as in Eq. (2.4. 18) and plotted in Figure 2.4. 4. The 

value of the constant b  in  3 ( )V Exp bt  has to fit experimental observations. But if it is 

some fundamental constant, which does not seem unreasonable, it must be the same for all 

commoving observers. If this is so, the physics is identical for all such observers regardless of 

whether they are in causal contact.  Provided we can assume identical starting points 

everywhere, of say the Planck temperature at cosmic time 0T  , then apart from quantum 

fluctuations, the average background temperature should be some function of cosmic time T

for all comoving observers, or at least up to the time the universe became transparent. The 

physics controlling this should be identical in each comoving frame. Causal contact should 

not be essential for this. Inflation only guarantees that the starting temperature is uniform 

everywhere when it stops at approximately 0.T   It also has to assume identical physics 

everywhere from 0T   for about the first 375,000 years, or until the universe is transparent. 

What we are proposing in this paper should produce results not too different from this. 

 

2.5.2    Why do we think virtual particle pairs do not matter? 

For almost a century it has been a puzzle why spacetime is not massively curved by Planck 

scale zero point energy densities. However space appears to be flat on average regardless of 

this massive Planck scale zero point energy density so something must be different and what 

is it?  In the first paper [7] we conjectured that virtual particles are just single wavenumber k  

superposition members, whereas real, or observable particles are full infinite superpositions 

of all wavenumbers k  from min
k  to Planck

k . Only full infinite superpositions have real 

properties that can be measured (such as measured mass/energy) rather than implied. Because 

min
k virtual gravitons are such single members they can couple to min

k members of full infinite 

superpositions. On the other hand virtual particles out of the vacuum are mainly short lived 

high k single value members that will not couple to min
k ; provided these virtual particles are 

single wavenumber k members only, and of a higher k value than min
k . The density of min

k
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virtual pairs from the vacuum is virtually zero, as it is based on the Lorentz invariant supply 

of local zero point fields, not from the receding horizon (sections 2.7.2 & 2.7.3 clarify this).  

But this is not the full story. The virtual particles that dress electrons and quarks for example 

add mass to the real particles. In fact the majority of proton and neutron mass is due to the 

virtual gluons interacting between quarks. If short lived virtual particles somehow contribute 

to the mass of full infinite superpositions, then these high k value virtual particles indirectly 

contribute to the min
k virtual graviton coupling, which is based on the actual mass of the 

infinite superposition as in Eq. (3.2.3) in [7]. The conservation of energy, or more correctly 4 

momentum, says that what we call “real matter or energy” can last for close to the age of the 

universe. It will have mass and by definition it can be weighed. It can move around, even 

close to the speed of light, but it is conserved. Gravitons that last this long we have called 

min
k gravitons and they can only couple to real, or long lasting energy/matter that can be 

weighed in whatever manner. The rotating dark matter in galaxies we cannot weigh directly, 

but it contributes to the theoretical weight of a galaxy.  We have to allow for this mass when 

studying galaxy dynamics.  

 

The particle beams in accelerators have real energy which can be temporarily converted into 

virtual particles. The total energy or 4 momentum is always conserved, but can fluctuate for 

time 1/ 2T E   . The long term average is what counts. In this sense the mass of short lived 

virtual particles can contribute to min
k virtual graviton coupling, just as it does in the virtual 

particle dressing of real charged particles as above. If it can be somehow weighed, it will 

couple to min
k virtual gravitons. But we cannot weigh the zero point background.  
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2.6 Messing up what was starting to look promising, or maybe not? 

2.6.1 The kmin virtual gravitons emitted by the mass interacting with itself 

In section 2 we started out by finding the average min
k graviton probability density in a 

uniform universe. We then placed a mass concentration in it, and calculated the extra 

probability density of min
k gravitons (before the dilution due to local space expansion) due to 

the amplitude of this mass multiplied by the amplitude of the rest of the mass in the universe. 

This ended up being proportional to 2 /m r  in Planck units. (In this section we revert to 

simple 3 volume min
k graviton probability densities, with no need for 4 volume superscripts.) 

 

                min Universe Universe
( * ) ( * ) 2 /

Gk m m
m r         as in Eq.(2.2. 6)  

 

And this is true in weak field metrics, except as we start approaching the Schwarzchild radius 

because of the extra min
k gravitons from the mass interacting with itself: *

m m
  .  

 

           Using Eq. (2.1. 5) and coupling probability: 
2 2

min0.61 /
(1 )

k k
e



22

G
dk

m
k

 
 
 

 

  

2 2 2 2
min min0.61 / 0.6

2 2 2

2

2 2 2

1 /2 2
* (1 ) (1 )

4

k r k r

m

k k

m

G

G

k kdk k e m k e dk
m

k r r k
e e


 

  

 

 

    
    

   
 

  

                      Also using Eq. (2.1. 4)
2 2

min min
11.09 3.477k k k k      when min

k k  

                             

min

min

2(3.477 )2

min min

2 2

min

0.61

6.952

min min2 2

3.477
*

1.588
             when  

(1 )

k r

m m

k

G

G

r

k e dkm

r k

m e
dk

e

k k
r

 
















 



  

 

The radial exponential decay term  mi n6.95
1

k r
e


   as we are only interested in radii r  that 

are small in relation to the observable radius of the Universe 
1

minOU
R k


 , just as in the 

assumptions we made in section 2.2.1.  Thus in these regions we can approximate this 

equation with good accuracy as                           

                                                   

2

min2 2

1.588
*

Gm m

m
dk

r
 


      

              

2

min min2
 due to self emission * 0.161

m GGk m

m
dk

r
       

                                               

2

min min2
1.4 0.115  when  

G

m
dk k k

r
                                                                     
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              minGk
 due to *

m m
 

2

min min2
1.4

Gk

m
K dk

r
  using Eq.(2.2. 11)                       

    (2.6. 1)    

 

  

2.6.2 What does this extra term mean for non rotating black holes? 

When deriving Eq.(2.2. 14) we found (about two equations previous) that due to interactions 

with the rest of the Universe  min min min min

2
 0.115 2

Gk GG k

m m
dk K dk

r r
      

     

2

min min min2
Thus  total 2 1.4

Gk Gk

m m
K dk

r r


 
   

 
 in Planck units.   

    (2.6. 2) 

Staying on our current path appears to contradict General Relativity, but temporarily ignoring 

this, let us repeat section 2.2.2 which modifies a non rotating black hole metric to     

          

2

2 20

2

2

2

0

2

2
1

1 2 / 1.4 /

2
                                               

2 1
1 1.4

 1.4            

;   

 

M

rr

M

m r m r

m m
g

r r g

m m

r r





     


 

 
                                                    

     

   (2.6. 3) 

 

Where M
  is the velocity reached by a small test mass falling in from infinity in the same 

rest frame.  Applying the same proceedures as in section 2.2.2 we can use Equ’s.    (2.6. 3) to 

show that min min minGk Gk
K dk   in this new metric, and we will discuss how this relates with 

General Relativity in sections 2.6.5 & 2.6.6.  The modified non rotating horizon radius occurs 

when 2 2
2 1.4 0r mr m    or the:       

               

                           Modified non rotating horizon radius 2.55r m      (2.6. 4) 

                           or   27.5% larger than the Schwarzchild value. 

 

2.6.3 What does it mean for rotating black holes? 

In section 2.3 when we looked at the Kerr Metric we used a dimensionless form of the metric 

in Equ’s.(2.3. 2). We also used a dimensionless parameter A where we initially put 2 /A m r . 

We also showed that we could change A  without changing /
tt

g g
    the time component 

in the corotating frame, provided there is a modified 
2

2
1 A

r


    . So again temporarily 

ignoring potential conflicts with General Relativity let us change 
2m

A
r

  to 

2

2

2
1.4

m m
A

r r
   and look at the consequences.  Firstly from Equ’s.    (2.6. 3) we can see that 

2

M
A   where M

 is the radial inward velocity, in a corotating rest frame, of a small test mass  
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falling from infinity (in the rest frame of the rotating black hole centre).  The inner event 

horizon is the radius where rr
g    so using Equ’s.(2.3. 2) let 

rr

g
g   


  or  put 

                                                  

2

2

2 2

2 2

2 2 2

1 0

2
  1 1.4 0

or  2 1.4 0

A
r

m m

r r r

r mr m







    

    

   

 

                                                  
2 2 2

2 4 5.6 4

2

m m m
r

  
  

Event Horizon radius                
2 2

2 9.6 4

2

m m
r

 
  

When 0    
2

2 9.6 2 3.1
2.55

2 2

m m m m
r m

 
    as in the non rotating case. 

Maximum spin is when            2 2
4 9.6m     or    max

1.55m   

At this maximum spin               r m  as in the usual Kerr Metric. 

 

 

   (2.6. 5) 

 

The outer horizon occurs when  1 0
tt

A
g

g

    or 0g A    and using Equ’s.(2.3. 2) 

                               
2 2 2

2 2

2 2 2

2
1 cos 1 cos 1.4 0

m m
A

r r r r

 
         

                                               2 2 2 2
2 1.4 cos 0r mr m       
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2 4 5.6 4 cos

2

m m m
r

   
   

                                              
2 2 2

2 9.6 4 cos

2

m m
r

  
                    

                  

2 2

2

2 9.6 4
Ergosphere radius   @ 0 &

2

2 9.6
                               2.55  @

2 2

m m
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m m
m


 




 
 


  

 

 

   (2.6. 6) 

 

 

Figure 2.6.1 illustrates these changes from the Kerr Metric. The main effect from changing A  

is to allow an increase in maximum spin from m   to 1.55m  , and 27.5%  increase in 

the maximum ergosphere radius from 2  to 2.55mr m . It appears to contradict General 

Relativity whch we discuss in sections 2.6.5 & 2.6.6, but provided the extra densities of time 

polarized and 2m    circular gravitons are as in Eq.(2.3. 7) with
2

2

2
1.4

m m
A

r r
   then 

min min minGk Gk
K dk   is still true in rotating space outside black holes. 
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Figure 2.6.1 Modified Kerr Metric with the dimensionless parameter A changed from  

2m
A

r
  

2

2

2
1.4

m m
A

r r
   . It initially appears to clash with GR near the horizon.  

 

 

  

 

 

         

 

 

 

                  

 

 

 

 

 

Figure 2.6. 2  Spinning black hole mass m  with angular momentum length parameter  , but 

with the dimensionless parameter A changed from  
2m

A
r

  

2

2

2
1.4

m m
A

r r
   . The 

determinant of the metric is independent of A. The denominator terms &g g  , in 

dimensionless form as in Equ’s. (2.3. 2), rapidly tend to one for radii Sw
r r ,  and can then 

be ignored. It shows the probability densities of time polarized, and circularly polarized 

2m    min
k  gravitons as in Eq.(2.3. 7) in this modified metric which keeps the min

k  graviton  

constant minGk
K invariant outside the black hole. This is as observed in corotating coordinates. 

  

Event Horizon r m  @ maximum spin is same as Kerr 

Metric, but maximum spin has increased by 55% . 

Ergosphere maximum radius 2.55r m  is 

the same as a modified non-spinning black 

hole. 

Time polarized min
k graviton extra probability density outside 

sphere due to mass m  

2 2

2 2

2
1.4 1

m m

r r r

g g 

   
     

     

Spin Axis 

      Circularly polarized 2m    min
k graviton probability  

      density due to frame dragging 
2

2

2
cos

r




 
 
 

 

 
There are no transversely polarized 2m   min

k gravitons due  

to a rotating mass m from frame dragging; when observed in 

corotating coordinates.       

 


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2.6.4 Determinant of the metric and the min
k  graviton constant minGk

K   

Working in dimensionless form as in Equ’s.(2.3. 2), using Eq. (2.3. 3) tt
g

g


   and the steps 

used in its derivation; the determinant of the metric is 

         2
( )

tt t rr tt rr
g g g g g g g g g g     

    
2g

g g g
g


  




 



2

2 2

2
(1 cos )

r


   

As 4 volumes are invariant in relativity and min min minGk Gk
K dk  is true in corotating frames 

              If 
2

2 2 2

2
(1 cos )g g

r
 


    then min min minGk Gk

K dk  is true in  

              all frames, and is independent of the dimensionless parameter .A   

 

    

   (2.6. 7)  

Despite what initially appears to be a conflict with General Relativity (which we discuss 

below), if the metric determinant Eq. (2.6. 7) is 
2

g  then the min
k graviton probability density 

is always min min minGk Gk
K dk  in all frames outside the black hole, and this is also true if there 

is no rotation, regardless of the value of the dimensionless parameter .A (See section 2.9) 

 

2.6.5 The Reissner-Nordstrom Metric and 2 2
/m r  terms 

Reissner [27][28] solved the metric surrounding an electrically charged non-rotating mass not 

long after Schwarzchild had solved the metric around a static mass. He added the 

electromagnetic stress tensor surrounding a charge to the usual Einstein Energy-momentum 

tensor, in the region where the mass density term had previously been zero as in the 

Schwarzchild case. As before we will put 1G c   so we can work in Planck masses. The 

Schwarzchild radius 
2

2 /
S

r Gm c  has length dimension and thus 2
2 /Gm rc  becomes 2 /m r , 

and both 2 /m r  and 2 2
/m r  are effectively dimensionless as, in these units, mass effectively 

has a length dimension.   

    Reissner similarly used the characteristic length Q
r  where 

2

2

4

0
4

Q

Q G
r

c
   

    Working in length units of charge with the Coulomb force constant 
0

1
1

4
   

    If 1G c   & these units of charge 

2 2

2 2

Q
r Q

r r
 are both dimensionless numbers. 

 

 

    

   (2.6. 8) 

 

Table 2.6. 1. Both parameters, mass m  and charge Q , effectively have dimensions of length. 

    Metric   Schwarzchild      Modified Schwarzchild   Reissner-Nordstrom 

  
1

00 rr
g g


         

2
1

m

r
            

2

2

2
1 1.4

m m

r r
           

2

2

2
1

m Q

r r
   

Using our modified Schwarzchild metric from Eq    (2.6. 3) we can see the similarities to the 

Reissner-Nordstrom metric for a charged mass, providing we measure charge parameter Q  in 

a similar manner to measuring mass in Planck units. The signs are reversed however.  
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We can crudely think of this another way as follows: In the units we have been working in, 

the electrostatic field energy outside any radius r is 
2

/ 2Q r . This mass/energy must be 

subtracted from the original central charged mass as work is done bringing these charged 

particles together to establish the field energy.  

So we can very crudely say the original central mass m  becomes 
2

2

Q
m m

r
    at radius r  .  

                  Thus 
2

2

2 2m m Q

r r r


   and the new

2

00 2

2 2
1 1

m m Q
g

r r r


     .  

 

It is very tempting from this, to think of our modified Schwarzchild metric, as somehow 

including the negative gravitational field energy; which in Planck units is 2
/ 2m r outside 

radius r . Using the same logic as the electrostatic case, but reversing signs, as gravitational 

field energy is negative, the original central mass m  becomes 
2

2

m
m m

r
    at radius r . 

        Thus      
2

2

2 2m m m

r r r


            and the new        

2

00 2

2 2
1 1

m m m
g

r r r


     .  

Of course our coefficient of 1.4 for 2 2
/m r  does not fit this scenario, but our analysis is full of 

approximations and we could have it wrong. Roger Penrose in Chapter 19 of his “Road to 

Reality” gives a very good discussion on the concerns of many eminent physicists early last 

century when General Relativity was first published. They worried that gravitational energy 

was not explicitly included in the stress tensor. But Einstein could not do this and maintain 

covariance. In the century since, many eminent physicists have tried unsuccessfully to 

include gravitational energy in a covariant manner. So we must conclude that it is probably 

not related to gravitational energy; and as we have shown in this section, it is really due to the 

small number of min
k  gravitons (except close in) emitted by the mass itself.  

The Maxwell stress tensor tells us in the the electrostatic case, that if the field is in the z  

direction, there is a tension or negative pressure 
2

/ 2
Z

P E   along the z  axis and transverse 

positive pressures 
2

/ 2
X Y

P P E    such that 
2

/ 2
X Y Z

P P P E    and the mass/energy 

density 
2

/ 2E   if they are all in appropriate units. The stress tensor contracts to 

0
X Y Z

P P P     and this is a property of massless particles. Thus the presence of an 

electromagnetic field does not alter field equation covariance. So if we simply reverse all 

these signs with a negative mass energy density of 
2

1.4 / 2m   with transverse tensions 
2

1.4 / 2
X Y

P P m    and in the field direction positive pressure 
2

1.4 / 2
Z

P m  such that the 

stress tensor contracts again contracts to 0
X Y Z

P P P     . We can thus include a negative 

energy massless particle in the stress tensor in the same way as in the positive energy 

electrostatic case, and similarly maintain covariance. 
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2.6.6 The Kerr-Newman Metric and 2 2
/m r  terms 

In 1965 Newman [29][30] solved the charged version of the axisymmetric rotating black hole 

solved earlier by Kerr [31] in 1962. In section 2.3 and Equ’s .(2.3. 2) we introduced the 

dimensionless parameter 2 /A m r  where as above we have assumed a silent 1G   in the 

numerator and a silent 2
1c   in the denominator and in section 2.6 modified this to get a  

dimensionless 
2

2

2
1.4

m m
A

r r
  .We showed in section 2.3 that provided this A  is 

dimensionless it does not change Equ’s.(2.3. 3). If we look carefully at the Kerr-Newman 

metric we can see that it fits Equ’s. (2.3. 2) provided we put 

2

2

2 Q
rm

A
r r

   which is 

equivalent to putting 
2

2

2m Q
A

r r
  where 

2

2

4

0
4

Q

Q G
r

c
  and we have again measured charge 

Q  in length units as in Equ’s.    (2.6. 8). 

               Thus our modified Kerr metric where 
2

2

2
1.4

m m
A

r r
   is again similar to: 

               The Kerr-Newman metric where        
2

2

2m Q
A

r r
   but with opposite signs. 

These two metrics are the rotating versions of our modified Schwarzchild metric and the 

Reissner-Nordstrom metrics. We can perhaps summarize this in the following two tables. 

 

Table 2.6. 2  The non rotating metrics where dimensionless parameter A  is as in Eq. (2.3. 2) 

The modified Schwarzchild and Reissner-Nordrom metrics both have the same form of 

changes to the Reimannian curvature tensor but of opposite sign. 

        Schwarzchild      Modified Schwarzchild        Reissner-Nordstrom 

          
2m

A
r

           
2

2

2
1.4

m m
A

r r
          

2

2

2m Q
A

r r
   

 

Table 2.6. 3  The rotating versions of the above. Again the modified Kerr and Kerr-Newman 

metrics both have the same form of changes to the Reimannian tensor but of opposite sign. 

              Kerr            Modified Kerr        Kerr-Newman 

         
2m

A
r

          
2

2

2
1.4

m m
A

r r
          

2

2

2m Q
A

r r
   

 

Again massless particles in the electromagnetic field apply equally in the Reissner-Nordstrom 

and Kerr-Newmann metrics. The arguments we used above in the non rotating case using 

massless negative energy particles in our modified stress tensor apply equally in the rotating 

case. The small changes in the Riemannian curvature tensor, due to this 2 2
/m r term, are of 

opposite sign for both our modified Kerr and Schwarzchild metrics, when compared to the 

Kerr-Newman and Reissner-Nordstrom metrics, but of exactly the same form. 
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So, provided we include such an appropriate negative energy massless particle in the stress 

tensor, solutions to 
4

1 8
(Background)

2

G
R g R T T

c
   


      are consistent with min

k

graviton probability density min min minGk Gk
K dk  where minGk

K  is invariant for all observers; 

whether they are near the horizon of black holes, or if they are at our current cosmic horizon. 

Also for any observers outside it, who are looking at their own cosmic horizons; and for all 

cosmic time since the big bang. But wavenumber min
k depends on the local metric and cosmic 

time. It is approximately the inverse of the causally connected radius at any cosmic time.  

 

Einstein based his remarkable equation on the “Equivalence Principle”, or the same physics 

in all free falling frames as in empty space; with covariant tensor equations that apply in all 

coordinates throughout all spacetime. He wanted it to be similar to Gauss’s law and Poisson’s 

equation
2    ignoring constants, but in curved spacetime. This naturally leads to inverse 

square force laws with inverse potentials where masses are concerned, but the inclusion of an 
2 2

/m r potential term in the metric due to *
m m

  seems to mess all this up. But does it 

really? Could it be trying to tell us something that we need to know, but did not want to 

know?  Quantum mechanics in the form of QED tells us that, close to the Compton 

wavelength, the normally simple inverse square force law starts to change, close in shielding 

makes fundamental electric charge appear to increase, and QED takes over with increadible 

accuracy. Simple inverse square electric force laws had ruled with remarkable accuracy for 

over a century before QED arrived on the scene. In fact it was the announcement of the Lamb 

Shift at the Long Island conference in 1947 that started the big breakthroughs in QED. World 

War II developments in radar had enabled these remarkably accurate experiments. Is it 

possible that similar developments today will allow improvements in Gravitational Wave 

observation accuracy? Developments that may see effects in gravity close to black holes with 

some parallels to QED changes inside the Compton wavelength of electric charges?  

 

2.6.7 What is the effect of this term in the solar system? 

The distance to Mars can be measured very precisely as we have instruments on the surface 

that can reflect radar from Earth at known locations. On the other hand we don’t know the 

exact diameter of the Sun. If we look at the outer rim it will be deflected outwards by 

1.75 / 2  arc seconds (half that of the gravitational bending of starlight because it is coming 

from the rim). At the distance of the sun, 6
150 10   KM this is roughly 640 KM in radius. 

Even if we optically measure the diameter precisely with no error the actual sun diameter will 

be about 1275 KM smaller so we only know the true diameter approximately. We also do not 

know the exact surface of radar reflection. The Astronomical unit is quoted as 

149,597,870,700 metres, but this is really based on knowing interplanetary measurements 

accurately and then using Kepler’s laws modified by the Schwarzschild metric to give us this 
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level of accuracy. So, let us do a crude first order approximation of what happens if we 

include an 2 2
/m r  term in the metric. Using low velocity (compared with light) Christoffel 

symbol approximations and circular orbits for simple comparisons the accelerations are:   

 

    2

00 2

1 1 2
(1 )

2 2

d d m m
r g

dr dr r r
      in the usual Schwarzschild case if 00

1g   and 

     
2 2

2

00 2 2 3 2

1 1 2 1.4 1.4 1.4
(1 ) (1 )

2 2

d d m m m m m m
r g

dr dr r r r r r r
          in the modified metric 

case. So 2

3

m

r
   in the usual Schwarzschild case and 2

3

1.4
(1 )

m m

r r
    in the modified 

metric case. In weak gravitational field accelerations we can replace mass m  with a new 

effective mass 
1.4

(1 )
m

m m
r

    but orbital periods and angular velocities   cannot change 

as we know them very precisely. So we will try the following modification to all planetary 

radii     
2

3 3
3 3 3

1.4 1.4 1.4
(1 ) (1 ) (1 )

3( )
(1 ) (1 )

m m m m m m m

r rr r r r r r r r r
r r

r r

       
        

 

 

           
2

3 3 3

3 1.4 3 1.4
(1 )(1 ) (1 )

m m r m m r m

r r r r r r r r r


 
      

   
 and if   is unchanged   

                
3 1.4

1 1
r m

r r r


  

 
     and      

3 1.4 1.4r m m

r r r r


 

 
       thus   

1.4

3

m
r    

The Schwarzschild radius 2
SW

R m  and the extra distance to the sun 
1.41.4

3 6

SW
Rm

r     

The Schwarzschild radius of the Sun is 3
SW

R   km   so  
1.4

0.7
6

SW
R

r    km. 

The change r  for our solar system is about 700 metres. But all interplanetary radial 

separations do not change. So we can still use the old metric and the astronomical unit 

unchanged with Kepler’s laws to a first approximation, or the new metric and just add 700 

metres to all the planetary radii from the sun. Orbital periods are identical to a very high 

accuracy. The gravitational constant does not change in both cases.  

What we have done here is a bit like dipoles with the electrostatic field dropping as 2
1/ r  

and the resultant field as 3
/r r  where 

2 2 3

1 1 2

( )

r

r r r r


 

 
. However, in the non-

spinning gravity case there is spherical symmetry but not in an electric dipole.  

 

2.6.8 Can we measure this difference? 

We used circular orbits for a simple crude calculation but the same arguments apply in a 

slightly more complicated way for eccentric orbits; in a similar manner as Kepler’s original 

arguments with elliptical orbits that sweep out equal angular segment areas with time. The 

orbit of Mars in particular is highly eccentric and Earth much less so. If the eccentricity of 
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both Earth and Mars orbits were known, to better than say a hundred metres or so between 

max and min, we should be able to check this difference by measuring the distance (also to 

around a 100 metre or so accuracy) between Mars and Earth at various points around their 

orbits. It would seem however that this would be pushing at the very border of current 

technology, as radar measurements to the sun are inherently a little blurry due to surface 

variability. We need these to get a very precise value for the eccentricity of Earth’s orbit. 

Even if we can measure Earth-Mars with complete accuracy we have to add in errors due to 

lack of accuracy in Earth’s eccentricity. Also when Mars is on the opposite side of the sun to 

us, if the distance measuring signal grazes the sun there will a Shapiro type delay that is 

equivalent to roughly a 15 km error that reduces logarithmically with the minimum radial 

distance of the signal from the sun. Even if the beam passes through a half Earth-Sun radius 

there is still a few km error. All these effects introduce possible errors that make it difficult to 

measure a 700 metre difference in all planetary radii.  

 
Figure 2.6. 3 Scales are grossly exaggerated for clarity. We have also assumed circular obits 

here for simplicity, and ignored errors due to the centre of mass of the solar system not being 

at centre of sun. We have also assumed infinitesimal planet masses so we can simply ignore 

the effect they have on each other.  

 

2.6.9 What about the Hulse Taylor binary pulsar, can it show this change? 

The timing of this pulsar is accurate to 14 significant figures and it would initially seem that 

this accuracy would show up such differences. However, the semi-major orbit of this binary 

is 9
2 10   metres, with a decay rate of 3.5  metres per orbit, or a change 100r   metres 

over 30 years due to gravitational radiated energy. If we totally ignore this change in the 

radius, treating it as effectively zero, the accumulated time delay is parabolic; or proportional 

to elapsed time squared. If we include the small effect of the change in radius, 

Radial separation between planets does not change.  

 

00

2
1

m
g

r
 

  

2

00 2

2 1.4
1

m m
g

r r
     

Radial distance to Sun centre increases by 700  metres equally for all planets. 



55 

 

2 2
2 / 1.4 /m r m r  increases minutely to

2 2
2 / ( ) / ( )m r r m r r      adding two minute cubic 

terms, both proportional to elapsed time cubed, where the 2 2
/m r contribution is about 7

10
  

of that due to the 2 /m r  term. Even the cubic effect of a 100r   metres change in the usual 

/m r term (which is currently 7
/ 5 10m r


  ) on the parabola over 30 years, is miniscule. 

The chances of measuring either the /m r , or the 2 2
/m r  cubic terms are very small in the 

foreseeable future; let alone distinguish between them. The best chance of measuring any 

difference will almost certainly turn out to be gravitational wave observations. 

 

2.6.10  Gravitational Wave observations of Black Hole mergers 

Some of the mergers observed so far have been suggesting relatively larger Black Hole 

masses than current astrophysics theory had expected. If we look at our new metric term we 

can write  
2

00 002

2 2 2
1 1.4 1 (1 0.7 ) 1

m m m m m
g g

r r r r r


             where   1 0.7

m
m

r
      

For a maximum spin black hole when r m  we can say the effective mass at merger is 

1.7m m   or about 70% greater. The addition of an 2 2
/m r  term in our modified metrics 

increases the total merging energy, and hence that in the resulting gravitational waves. 

Inward radial accelerations would appear to be greater also. However computer simulations 

with these changed metrics would be required to model all this in detail, but our rough 

analysis above suggests that the masses of the black holes before merging could well be less 

than what they have so far seemed. In other words, a pair of smaller black holes merging 

might create the gravitational waves current theory predicts from the mergers of two, up to 

maybe 70% larger black holes. Spins had also been expected to be roughly perpendicular to 

their orbiting plane, but their merging speeds don’t tie up with this. Is it possible that this 

unexpected behaviour is trying to tell us something is different; something different in the 

metric as we get close to Black Hole Horizons? 

 

Finally in this section, does this extra 2 2
/m r term alter what we said in Eq.(2.3. 16)? We first 

used 2 /A m r , before we introduced the self emission term 2 2
1.4 /m r  we found that the 

extra time polarized min
k graviton density near the horizon, for all black holes is 

         

2

2
2

2

1

1H

H

H

ARA
g g A
 




    and this is still true, but now 
2 2

2 2

2
1.4 1

H

m m
A

R R R


     

Where    is the increased spin parameter due to the extra 2 2
1.4 /m R  term and we have also 

reused Eq’s. (2.3. 13)  & (2.3. 14). Everything we did there is not affected by this extra term. 
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2.7 Revisiting some other aspects of the first paper  

2.7.1 Infinitesimal rest masses  

In section 6.2 in [7] we showed infinitesimal rest mass 2N   infinite superpositions have
2

min
1

k
K  . From Table 4.3.1 in [7] 

                   2N  infinitesimal rest mass spin 1 superpositions have 3.98n   

                   2N  infinitesimal rest mass spin 2 superpositions have 3.33n   

 

Using Eq’s. (3.1.11) in [7] and Eq. (2.2. 10). 

      

2

2 2 2 2

min min

2

m

2 2

min

in

15.82
  or  0.355  for Spin 1

2 2

11.09 2
                                

1

1  or  0.300  for Spin 2   
2

OH

C C C

OH

C C

k

n s R
k k

R
k

K   


 









  

 

 

Using the value for 0.69   from Eq.    (2.4. 13) based on WMAP data which also puts 

the horizon radius at  9
46 10   light years and 

61
2.7 10

OH
R    in Planck lengths.   

 

  Spin       n      Compton Wavelength c
      Infinitesimal Rest Mass 

    1       3.98             0.52
OH

R           34
8.8 10 .eV


   

    2       3.33             0.43
OH

R           33
1.04 10 .eV


   

        Table 2.6. 4  Infinitesimal rest masses of 2N   photons, gluons & gravitons.  

 

These Compton wavelengths and rest masses are the present values, reducing slowly but 

exponentially with cosmic time T. They are based on WMAP data where 1   and could be 

slightly greater if   does not need to be one as we have discussed. They also depend on the 

actual value of b in the exponential expansion 3 ( )V Exp bt . These infinitesimal rest masses 

limit the range of virtual photons, gluons and gravitons to approximately the horizon. The 

graviton rest masses above are close to recent proposals explaining the accelerating 

expansion of the cosmos [8]. 

 

2.7.2 Redshifted zero point energy from the horizon behaves differently to local 

Local zero point energies are Lorentz invariant. At high frequencies there is no shortage 

locally to build the high frequency components of superpositions. If a massive 1N   virtual 

pair emerges from the vacuum its life is short and it places little demand on long range 

quanta. If there were no redshifted supply from the horizon there would be only a few modes 

of the local supply of min
1 /

OU
k R  quanta inside the horizon. Because preons are born with 

zero momentum and infinite wavelength they can however absorb a different supply of 

redshifted min
1 /

OU
k R  quanta from the receding horizon as we have discussed.  



57 

 

This min
k quanta redshifted supply behaves differently to normal Lorentz invariant zero point 

local fields. It behaves as min min
0.055 "The Quanta required @ Invariant"

Qk G
K k of Eq. (2.4. 

12) Where min min min
0.48 "The Graviton Invariant"

Qk Gk
K K k   of Eq. (2.2. 11).This redshifted 

supply is only available in a continuously expanding universe to preons born with zero 

momentum, or infinite wavelength, in the rest frame in which infinite superpositions are built.  

 

2.7.3 Revisiting the building of infinite superpositions 

In section 2 of the first paper we developed equations to determine the probability of each 

mode of a superposition using local zero point fields and when we found the cosmic 

wavelength supply inadequate we switched to a different redshifted supply for long range 

quanta. So how do we justify our use of the local zero point fields to determine mode 

probabilities and behaviours? There is simply a plentifull supply of high frequency local zero 

point fields. This local supply is adequate for high densities of superpositions for all modes 

from the Planck energy 1k   high energy mode cutoffs to somewhere around 20
10k


 or 

near nuclear wavelengths. Thus, until we reach somewhere near nuclear densities, there is a 

sufficient supply of local high frequency zero point fields to build infinite superpositions. The 

coupling to local zero point fields in this high frequency region determines the primary 

coupling behaviour (see page 5 Part I) of all the standard model particles. There is however a 

gradual transition to absorbing quanta from the redshifted horizon supply as the wavelength 

increases. Because the redshifted supply of min
k  quanta behaves as the invariants 

min min
or 

Qk Gk
K K above and entirely differently to Lorentz invariant local zero point fields, 

spacetime has to warp around mass concentrations and the universe has to expand. 

 

2.8 Gravitational Waves 

Our hypothesis has been throughout, that the warping of spacetime is directly related to 

maintaining the maximum wavelength, or min
k  graviton density min min minGk Gk

G dk   invariant 

throughout all spacetime. Around non-rotating (spherically symmetric) mass concentrations 

this warping decreases inversely with radius (at least well away from black holes) but always 

in a spherically symmetric manner as the extra min
k  gravitons due to this mass are distributed 

in the same spherical way. Likewise we get cylindrical symmetry for rotating mass 

concentrations. Both these types of symmetries are the lowest action/energy stable state of the 

metric. Disturbances to this stable state will travel as waves at the speed of light. 
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2.8.1 Constant transverse areas in low energy waves 

If these mass concentrations accelerate, then just like accelerating electric charges they will 

radiate gravitational energy in the form of real transversely polarized 2,m   gravitons. This 

energy is a disturbance or oscillation in this lowest energy state min
k  graviton background.  

Perhaps min min minGk Gk
G dk  can oscillate about its mean, but if it cannot change during these 

disturbances, what might be going on?  Let us imagine a region of spacetime far from mass 

concentrations where the metric g  and using , , ,t x y z  coordinates let 

00
1, 1, 1, 1.

xx yy zz
g g g g         Ignoring signs the determinant of the metric 1g  .  

Let a gravitational wave pass through in the z  direction with a tranverse wave in the ,x y  

plane. We know that a circular transverse ring of particles will oscillate into, and out of, 

ellipses perpendicular to each other, in such a manner that the enclosed area does not change, 

or that 1
xx yy

g g   during this oscillation. Thus the measured volume of space does not 

change as the wave passes through and min min minGk Gk
G dk  does not change. The determinant 

of the metric 1g   also does not change. This is only approximately true as there are extra 

real transversely polarized min
2,m k  gravitons passing through due to the energy in the 

wave, but the error is second order unless the amplitude of the wave is quite large.  

 

2.8.2 What might happen in high energy waves? 

We can imagine the extra gravitons around a mass concentration and the background 

gravitons as in section 2.2 (if they are undergoing an acceleration as in binary pairs) 

generating real transversely polarized 2m   , gravitons. This has some parallels to what we 

found in the Kerr metric, but now with real gravitons.  But the intensity, or probability 

density, of these real gravitons will drop as the inverse radius squared, at least when far away. 

We can also show from Equ’s.(2.1. 9) & (2.2. 5) that most of these gravitons are close to the 

locally measured value of the min
k  wavenumber. About 66% are between min

k & 2 min
k  and 

about 96% are between min
k & 5 min

k . Thus most of this radiated energy is near min
k . Just as 

measured volumes around mass concentrations had to increase to accommodate extra min
k

gravitons, the transverse area of the wave has to increase in relation to the oscillating constant 

area. Ignoring signs again, if 1
xx yy

g g     then  
1

00
1g 


   to keep the metric 

determinant 1g  . The  energy density in the wave increases the local measurement of 

min
k , but min min minGk Gk

G dk  can remain invariant if it can’t oscillate. Close to orbiting binary 

black holes or neutron stars this radiated energy intensity is huge and the changes in 

00
&

xx yy
g g g become large in relation to the oscillating changes. Transverse areas and hence 

measured volumes change significantly. This is in complete contrast to what happens at 

extremely large distances, such as when we observe gravitational waves here on Earth, where 

the transverse areas are virtually constant during these oscillations. 
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2.8.3 No connection between wave frequency and radiated quanta energy  

The frequency of the radiated wave is twice the orbital frequency of the binary pair source. 

As most of the energy in the wave is in quanta near min
k there is no connection with the 

frequency of the radiated wave as in spin 1 photons in electromagnetism. In the recently 

observed gravitational waves the wave frequency was 250  cycles per second just before 

merger with wavelengths 1200 kilometres or approximately 41
10  Planck lengths, whereas 

the wavelength of min
k gravitons is 

62

min
1/ 10

OU
k R   Planck lengths. The ratio between 

them is 21
10 . This ratio is inverse to the binary pair orbital frequency. It could only 

approach one if the orbital period is approximately twice the age of the universe. 

 

2.9 Four Vectors and Four Volume Action Densities  

2.9.1 Graviton densities represented as invariant 4 velocities 

Four velocity vectors have the property that  
2 2

0 1
1UU    is invariant under local Lorentz 

transformations; where 0
U  is the time component of the four velocity, and 1

U  the spatial 

component.  We will, as previously, use the notation  

                                
22

0 M
U      and    

22

1

2

M M
U     where 2

2

1

1
M

M







  

We can think of the spatial component 1
U  as the four velocity M M

   of a free falling mass 

that came from rest at infinity, in the same coordinate frame as the black hole, and pointing 

radially inwards. We can also write 

 

                                  
2 2

0 1
1UU    as 

2 2

1 0
1 U U   or 

2 2 2
1

M M M
   .  

This was what we did for the Schwarzschild metric when we had temporarily multiplied both 

sides by 
2

M
  and normalized the background min

k  graviton  three volume probability density 

to 1 with  
2 2

M M
   the extra min

k  graviton density due to a central mass, and 
2

M
  the total; this 

equation only applies before we have expanded the volume and changed time in the new 

metric. Because this is a 4 vector relationship it is true in all coordinates. Multiplying both 

sides temporarily by
2

M
  does not change its validity. 

 

We can also add a term 
22

M
X  to both sides to get  

2 22 2 2 22
1

M M M M M
X X         and still 

maintain covariance as    
2 2 2 2 22 2

( ) ( ) 1
M M M M M

X X        , and we can put 
2

2 2

2
cosX

r


  

so that:                            
2 2

2 22 2 2 2

2 2

2 2
1 cos cos

M M M M M M
g

r r
     

 
      .   
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We are not adding another 4 vector here; we are simply adding squared terms, which are 

equal on each side, so that Lorenz invariance is not affected. This is still an invariant equation 

in any coordinates. In the above the local metric clock rate is always 1 /
M

  .  

 

The three volume probability density of circularly polarized min
k  gravitons due to rotation,  

before volume expansion and time changes in the new metic, always obeys   
2

2

2

2 2

M M
X

r
 


  

and the remaining min
k  graviton three volume probability density is

2 2

M M
  .    

 

This section on invariant 4 vectors, is really just saying the same thing as our invariant 4 

volume densities of min
k  gravitons.  

 

2.9.2 Four volumes in changing metrics 

Using our dimensionless form of the metric tensor, the nonrotating space metric determinant 

has magnitude Det 1
tt rr

g g g g g g    , but we want the square root of this 1g  . 

However in rotating space this becomes 
2

2

2
1 cosg g

r



    which reverts to 

1g g   when the angular momentum length parameter 0  . At a large radius from 

any mass concentration let us start with a unit four volume such that 
4

1x t x y z        

when g  , where for simplicity we use , &x y z  for the space components. As we 

approach the central mass in the new metric, this four volume becomes  

                                
2

4 2

2
1 cosx g t x y z g t x y z

r



                   

Four volumes at a fixed point in spacetime are invariant as coordinates change, and also as 

the metric changes if in nonrotating space. In rotating space however it increases as g .     

4

4

Curved spacetime 4 volume
1 when angular momentim is zero

Flat spacetime 4 volume

x t x y z
g

x t x y z


       
   
    

.  

We also know that clocks change as 
tt

M

t
t g t




      in curved spacetime so that  

                            
M M

t x y z t x y z x y z
g

t x y z t x yz x y z


 

                   
  

         
  

The expanded spatial volume in the new metric 
3 3

M M
x x y z g x y z g x                . 

Spatial volume in any metric expands as  
3 3 2

2

3 3 2
(1 cos )

M M

V x d x
g

V x d x r
 




  
    


 

Where as above we have defined 
1/2

ttM
g 

  as the local metric clock rate.  

The 4 volume density invariance of min
k graviton still applies, as the extra circularly polarized 

gravitons due to angular momentum, occupy this expanded volume. 
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3 Some Loose Ends 

3.1.1  Preferred Frames 

It might seem that we have been arguing for a preferred frame. But there is really no 

difference in what we are proposing compared to current physics. In commoving frames the 

cosmic microwave background is isotropic. At peculiar velocity P
  it is no longer isotropic, 

and the average background temperature increases by ,
P

  exactly the same increase as min
k  

to min minP
k k  , and that is if we could measure it, which is most unlikely. We have 

frequently talked in this paper about local observers measuring min
k , but only as a thought 

experiment, and the average (over all directions) background temperature can be used to 

measure either peculiar
 or .

metric
  There are no other changes in physics in this commoving 

frame; it is exactly as Einstein originally postulated, an important experimentally verified 

feature of General Relativity [33]. However it does make everything we did here much 

simpler if we work in commoving coordinates. All the mass moving at peculiar velocities in 

random directions does not affect the average universe density of either min
k gravitons or the 

min
k action density that they require. We calculated the average density of min

k action from the 

horizon in these commoving coordinates. But if we think in terms of spherically symmetric 

four volume min
k action density invariance, then whether we are in a non commoving frame, 

or in a non-flat metric, it makes no difference; and is why we can use 4 vector notation for the 

extra min
k gravitons around mass concentrations. 

 

3.1.2 Solar System Constraints and do our proposed changes fit? 

See “The Confrontation between General Relativity and Experiment” Clifford M. Will. [33] 

Probably the most important constraint mentioned in this review is the Cassini Time Delay 

data that gives a fit with GR of 5
10


  for signals passing close to the solar horizon, where 

our extra 2 2
1.4 /m r  term is 6

3 10


  . So it should be within the Cassini Constraint and also 

within the light deflection constraint. The remaining changes are discussed in section 2.6.7. 

 

3.1.3 Action Principles and the Einstein Field Equations 

The field equations of GR can be derived from an invariant action principle 0I   where 

41
( , )

16
m m

I R g d x I g
G




     and R  is the Ricci scalar, with m
I  the matter action 

which depends on matter fields m
  coupled to the metric .g  Varying the action with respect 

to g we obtain Einstein’s field equations 
1

8
2

G R g R GT      . This paper suggests  

however, that an “Invariant spherically symmetric 4 volume cosmic wavelength graviton 

action density” applies to the solutions of infinitesimally modified stress tensor. 
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At any fixed cosmic time T in commoving coordinates, a homogenous flat universe with no 

mass concentrations has both 3 volume & 4 volume spherically symmetric action density 

invariance for cosmic wavelength gravitons, but only 4 volume invariance with local mass 

concentrations. We argue the changing metric due to this relates with gravity. This 4 volume 

invariance is true in all frames. However an infinitesimal change to Einstein’s Energy 

Momentum tensor is required with almost zero local effects, but significant implications at 

cosmic scale. The extra 2 2
1.4 /m r  term we had to include in the metric (mainly significant 

around Black Holes) is irrelevant in these invariant properties, but must have some effect on 

Black Hole mergers, with possibly faster supermassive Black Hole formation than had been 

expected. 

4 Conclusions 

If the fundamental particles can be formed from infinite superpositions as outlined in [7], our 

hypothesis is that the warping of spacetime is consistent with a maximum wavelength, or 

min
k  graviton probability density min min minGk Gk

K dk  , or equivalently, an invariant “Four 

Volume Spherically Symmetric Action Density”. But the value of min
k decreases with cosmic 

time and is roughly inverse to the horizon radius, it also depends on the local clockrate 
00

g   

 

Thinking in a simple way and using the proportionality symbol as follows:   

In a universe with no mass concentrations Universe Universmin e
( * )

Gk
  .  With a concentration 

of mass m ,   UnUniverse Univers iverse Universemi en
( * * )* ( *) )(

m mm mGk
           but space 

expands locally to restore minGk
  back to min min minGk Gk

G dk  .  The green term 

Universe Universe
( * * )

m m
     requires 2 /m r  in the metric, and meshes well with an 

infinitesimally modified General Relativity. This modification changes the 00
T  component 

from 00
T  , where   is the local mass density, to 00 U

T    , where U
 is the average 

density of the Universe (only a few hyprogen atoms per cubic metre). It matches the 

Schwarzchild metric, and fits the Kerr metric. In the earlier paper we focused only on this 

term to illustrate a possible connection with quantum mechanics, provided the fundamental 

particles can be made from infinite superpositions borrowing action/energy from zero point 

fields.  This paper messes up that nice connection by introducing the troublesome blue term 

( * )
m m

  with its associated 2 2
/m r  in the metric. This requires a (possibly problematic?) 

negative energy massless particle to be added to Einstein’s stress tensor, similar to the 

positive energy massless particles in the electromagnetic field. This 2 2
/m r term is of opposite 

sign to the 
2 2

/
Q

r r , or equivalently dimensionless 
2 2

/Q r term, of both the Reissner-

Nordstrom and Kerr-Newman metrics. The effect on the Riemannian curvature tensor is of 

identical form, but opposite sign to these metrics. It does not, however, alter the event 

horizon radius of a maximum spin black hole, but allows about 55% more spin.  
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These values as with other findings are only approximate however. A more rigorous analysis 

of everything we have done will almost certainly change these findings, and the coefficient of
2 2

/m r  in the metric due to ( * )
m m

  , and the extra maximum spin. But if our conjecture is 

true, this 2 2
/m r  term will not go away. The extra radial acceleration that it introduces could 

alter the merging rate of black holes. The third merger observed [26] suggests that General 

Relativity holds to the horizon, but the spins appear not to align with their mutual orbit, 

possibly challenging conventional astrophysics. If the spins are aligned, as had been thought 

more probable, the merging rate is slightly too fast. Could we turn this around and say:  

“If the spins are in fact aligned, does General Relativity need modifying near the horizon?” 

This paper requires two such changes, one that is significant, mainly near black holes, and the 

other only significant at cosmic scale. Testing these two changes has to await future accuracy 

improvements in gravitational wave detectors and further refinements in our observations of 

the accelerating expansion of space. 

 

Finally, supermassive black holes are appearing much earlier in cosmic time than expected. 

Could this extra 2 2
/m r term, alter the inflow rate of the surrounding swirling matter; above 

that of current models? Also the Hubble parameter, predicted by -CDM models based on 

Cosmic Microwave data, is 9%  less than the recent, or more current, Hubble parameter 

measurements [32]. The expansion velocity in our exponential expansion model predicts 

expansion velocities 11%  greater than -CDM models. Is there a connection here? The 

future refinements expected in these measurements over the coming years, mentioned above, 

will no doubt clarify this. 
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