
1

Note: The following paper was written in 1989. Only small corrections or editorial
changes were made in 2018. It provides a negative result in the prior attempt to apply
the QR algorithm to the derivative-free REML calculations that are typical of animal
breeding, and for that reason alone it could not be published. However, it is very helpful
for those that seek to find an improved QR algorithm that does work well, because it
strongly hints at what might work by first trying things that don’t work well. What
possibly works well comes with the attached discussion written entirely in 2018. All
footnotes written for the 1989 paper were made in 2018.

Running Head: QR Algorithm and Absorption

Efficient Implementation of Gaussian Elimination in Derivative-Free REML, or
How not to Apply the QR Algorithm

by

S.P. Smith, K. Meyer and B. Tier

The Animal Genetic and Breeding Unit
University of New England

Armidale, NSW 2351, Australia

 SUMMARY

A QR algorithm was designed using sparse matrix techniques for likelihood evaluation
in REML. The efficiency of the algorithm depends on how the order of columns in the
mixed model array are arranged. Three heuristic orderings were considered. The QR
algorithm was tested successfully in likelihood evaluation, but vector processing was
needed to finish the procedure because of excess fill-ins. The improvements made for
the QR algorithm also applied to the competing absorption approach, and hence
absorption was found to be more competitive than the QR algorithm in terms of
computing time and memory requirements. Absorption was made 52 times faster than a
first generation absorption algorithm.

Key Words: Absorption, Derivative-free, Gaussian elimination, QR algorithm, REML,
Sparse matrices, Vector Processing.

 I. INTRODUCTION

Derivative-free REML has proven very useful in estimating variance components in
simple additive genetic models (GRASER, SMITH & TIER 1987). This methodology is
still developing, and recently extensions have been made for more complicated models

2

(MEYER 1989; THOMPSON & JUGA 1989). MEYER (1989) recognized that
derivative-free REML is still computationally demanding for some models, and states
that there is considerable scope for improvement. For example, extending POWEL's
(1964) derivative- free search to (co)variance estimation may prove very useful.
Alternative methods to calculate the log-likelihood should also be considered, as we do
in this paper.

HUDSON (1986) described the QR algorithm and its application to an animal model.
Given realistic data structures, the QR algorithm would need to be implemented in a
sparse matrix mode. HUDSON notes that the QR algorithm can be organized in a way
that operations are performed only on non-zero elements. More detailed accounts can
be found in BJÖRCK (1976) and GILL & MURRAY (1976).

HUDSON concentrated on the prediction of breeding values and the calculation of
prediction error variance. SMITH (1987) noted that the QR algorithm can also be used
to compute the log-likelihood in REML. In fact, applying the QR algorithm in likelihood
evaluation is an easier exercise than HUDSON's implementation; solutions to the mixed
model equations are not needed.

The purpose of this paper is to test the QR algorithm with actual data and to determine
its suitability in likelihood evaluation. Comparisons are made with linked list absorption
(TIER & SMITH 1989). Improvements to both approaches are identified.

 II. THEORY

 A. Model and Log-Likelihood

The general mixed model is given as

 y=X$+Zu+e

where: y, $, u and e are vectors of observations, fixed effects, random effects and
random residuals; X and Z are incidence matrices; and

 E{u}=0, E{e}=0,
 Var{u}=G, Var{e}=R, Cov{u,e }=0.T

The array 0 is understood to be a null vector or matrix of appropriate order.

 The log-likelihood that is to be maximized in REML is

 L= -½{log|R|+log|G|+log|C|+ y Py},T

where |C| is the determinant of one the largest non-singular submatrices of

3

and P=R -R X(X V X) X R where V=ZGZ +R. As noted by TIER & SMITH (1989),-1 -1 T -1 - T -1 T

|C| and y Py can be computed as by-products of linked list absorption, i.e., byT

Gaussian elimination. Terms |R| and |G| are easily calculated as well (MEYER 1989).

 B. Generalized Determinants

To evaluate L we calculate determinants. Quadratic y Py is a function of determinants,T

|M|/|C| where

The absolute value of determinants, denoted ||@||, have interesting geometrical

1 2 3interpretations. Let w , w and w be three vectors in R , or 3 dimensional Euclidean3

1 2 3space. Then ||W||, where W={w , w , w }, is the volume of the parallelepiped (or

1 2 3trapezoid) defined by w , w and w (STRANG 1976). The edges of this trapezoid are

i i j i j k(a, b), (b, c) (c, d) where a is the orgin, b=w , c= w +w , d = w +w +w and (i,j,k)
assume any of the 6 permutations of (1,2,3) (see Figure 1). Hence ||W|| is the volume
of a three dimension trapezoid in three dimensional space. This interpretation
automatically extends to n dimensional space. More importantly, this view extends to
rectangular matrices to give the root of Gram determinant: the volume of an m
dimensional parallelepiped imbedded in an n dimensional Euclidean space, denoted as

n×mG(W) where the columns of W , m#n, define the parallelepiped. When W is square ½

 G(W) = ||W||,½

but in general

 G(W) = |W W| , or just G(W) = |W W|.½ T ½ T

When W is a column vector the parallelepiped is a line segment and G(W) is the½

length of the segment, i.e. the Euclidean measure of distance. When W has 2 columns
G(W) is the area of a two dimensional surface.½

 Hudson uses different notation.1

4

Figure 1. A Three dimensional Trapezoid in a three

1 2 3dimensional space. Vectors w , w , and w project out
from the origin and define the edges of the trapezoid.

Following HUDSON , define the rectangular matrix H such that1

(1)

where L L=G and T T=R . By construction H H=C. Defining ={H, í} where T -1 T -1 T

í ={0 , y T } gives =M. We have:T T T T T

 ½log|C| = ½log G(H)

 y Py = G(ë) = G() /G(H) T

Hwhere ë is the projection of í in the null space of H ; i.e., ë=M í whereT

HM =I-H(H H) H .T - T

The QR algorithm will be adapted for the computation of G(H) and G(ë).

 C. The QR Algorithm

It is well known that any matrix H can be represented by the product QÛ where Q is

5

orthogonal (i.e. Q Q = QQ = I) and Û has the form T T

 ,

such that U is upper triangular and square (Press et al 1986). It follows immediately that

 G(H) = G(Û) = ||U||,½ ½

i iiand |U| is simply a product of diagonal elements of U: i.e., J u . If H does not have full
column rank, U is singular and at least one of the diagonal elements will be zero. For
derivative-free REML, we calculate the determinant of one of the largest non-singular
submatrices of C=H H. To find this submatrix we omit appropriate columns of H.T

Operationally, zero diagonals are skipped and the associated column of H is implicitly

i ii iideleted. The log-determinant is calculated as G log|u | where u is never zero by

i iiimplicit construction. To avoid overflow we never calculate the product, J u , directly.

It is possible to evaluate y Py by computing G(H) and G() and forming the ratio.T

However, for any square matrix U we have the following identity

(2)

the proof of which has two parts. First if U is singular, both sides of (2) are zero. For
non-singular U,

 Hence, if H=QÛ, then

where ,

 Had more attention been given to Givens rotations the results found would have very2

likely been more positive.

6

2 2 nnimplying by (2) that G() = ||U|| × G(y). The ratio is just G(y)=u . Note that 2 2

2 2 2 G(ë)=G(y), but that ë�y as the vectors ë and y have different dimensions.

To calculate ½log|C| and y Py, the QR algorithm is applied only to . If n is the numberT

iiof columns of after redundant columns have been deleted, then log|u |, i=1,2, @@@ n-1,

nncontribute additively to ½log|C| and u =y Py. 2 T

 D. Implementing the QR algorithm

Matrix Q can be a product of Householder transformations or Givens rotations. GILL &
MURRAY (1976) describe sparse matrix implementation of the QR algorithm. For the
present study we programed a version based on HUDSON's presentation of the
Householder method. A linked list similar to that of TIER & SMITH (1989) was used.2

Our strategy is outlined below.

1 1 1 1Given a rectangular matrix H = , a Householder matrix, Q is found such that Q HT

has only one non-zero element in the lead column. We can assume that the non-zero
element is in the first row because G(@) is invariant to row permutations. Thus, the first

1 1row of Q H equals the first row of Û. The non-zero element being on the diagonal of UT

1 1contributes to ||U||. By (2), the first row and column of Q H contribute nothing furtherT

to the determinant. Hence the first row and column are removed and placed in the

2 2 1garbage collector, and H is formed. Matrix H has one less row and column than H .

2 2 2Next a new Householder transformation Q is found such that Q H has only oneT

non-zero element in the lead column. With row permutations the non-zero element is

2 2moved to the first row. Thus, the first row of Q H represents the second row of Û. AT

3 2 2matrix H is formed by removing the first row and column of Q H . This pattern isT

n 2 n niterated until we have a vector H =y (see Figure 2), and Q H is zero for all its entriesT

except for the first element that is positive.

Our procedure is designed for the calculation of the likelihood and it is not surprising
that it differs with the method given in GILL & MURRAY. Their method is a general
purpose algorithm designed for solving systems of linear equations. It requires saving

ithe Householder transformations: components of matrices Q . Columns of U are
dumped to an exterior file as they are calculated and they are not saved in core. For our

icase, fill-ins are needed as we progress down the sequence H , i=1, 2, @@@, n. Moreover,

iwe do not save Q and U as they are no longer required.

7

Figure 2. Diagrammatic representation of the QR
algorithm showing a sequence of shrinking

1 2 nrectangles depicted by the arrays H , H , @@@, H . The
sequence of triangles depicts half-stored matrices

1 1 2 2 n nH NH , H NH , @@@, H NH which are the intermediate
arrays in absorption.

 E. Improvements

The efficiency of the QR algorithm is a function of the order columns are transformed. A
desirable ordering is one where the sparsity is maintained. Initially our construction
used an ordering determined as good prior to the first Householder transformation: we
ordered the columns by the number of non-zero elements in each column. We were
optimistic as the original algorithm was applied to a matrix with over 160000 columns.
The procedure was very fast initially but slowed down after the first 80000 columns and
became unusable. The QR algorithm was not working and modifications were clearly
needed. This same problem was also observed for matrices of order 6000; the first 50
per cent of the columns were processed quickly but again the fill-ins became too
numerous.

Our first observation was that the criterion for ordering was not unique and that

 What is described as the least commonality is the same as the minium degree, and3

produces the minium degree ordering.

8

alternative methods could be used. Secondly, a desirable ordering can change after
several columns have been processed. It is neccessary to find an ordering dynamically.
Finding the best ordering is NP-complete (TARJAN, 1976) and hence we can only hope
for an approximate solution that has been arrived at heuristically.

We studied three criteria for ordering columns dynamically. As indicated above, the first
procedure is to select columns with least non-zero elements. This is referred to as the
column-fill heuristic. The second procedure is to order columns on least fill-ins. The
fill-ins resulting from processing a single column can be calculated and updated
dynamically. Our third method is to order columns on least commonality: the
commonality of column A is the number of columns that are affected when applying the
QR algorithm to process column A. The column-fill, fill-ins and commonality need only
be calculated implicitly: at any one time we need only know those coefficients smaller
than some limit where the limit grows as the QR algorithm progresses. A special
program was developed to find the heuristic orderings: simply the QR algorithm with
added overheads for switching columns and calculating heuristics. Orderings are found
only once; subsequent likelihood evaluations can use the same ordering.

The QR algorithm can be used to implement absorption. For example,

2 1 1 1 1 2 1B B=H (I- H (H H) H)H is the array obtained from processing columns of H whereT T T -

(3)

Half-stored arrays, B B, are represented diagrammatically as triangles in Figure 2.T

Therefore, it is not surprising that the ordering based on least commonality corresponds
to the ordering of pivots in absorption (TIER & SMITH, 1989) where rows with least
elements are absorbed first: the commonality of columns of H equals the number of
non-zero elements in rows (or columns) of H H. The advantage of ordering columns byT

the least commonality heuristic is shared by both the QR algorithm and absorption.3

Alternatively, the criteria based on least column-fill and least fill-ins do not seem to have
analogs in absorption. There are some matrices where H is sparse and H H isT

non-sparse (BJÖRCK 1976). For these cases, heuristic orderings for the QR algorithm
are of little value in absorption. There are situations where the QR algorithm should be
used because absorption is infeasible.

Heuristic orderings found dynamically worked well: we were now able to process
130000 columns of the total of 160000. Unfortunately, we were unable to finish many

 Referring to M in Section IIA.4

9

large or moderately sized implementations. Additional improvements were needed and
we abandoned our attempt to apply the QR algorithm on huge arrays. After applying the
QR algorithm to obtain B in (3), where the number of columns in B was greatly reduced,
we switched over from sparse matrix manipulation to vector processing. There was a
choice of two avenues. The first involves applying the QR algorithm and the second
entails forming B B and applying absorption to a half-stored array: all operations can beT

vectorized. Because with non-sparse matrices the number of operations and storage
requirements are greater for the QR algorithm we decided on the latter.

Note that improvements made for the QR algorithm apply also to absorption. Linked list
absorption was designed to take advantage of the commonality heuristic and vector
processing. Vector processing was implemented when the number of non-zero
elements (in the row being absorbed) became greater than 14 per cent. The theoretical
optimum for switching to vector processing is N per 1 fill where N=32 represents the-½

number of processors in the GOULD NP1 computer being used. Because there is some
overhead with linked list we decided on 14 per cent.

 III. APPLICATIONS TO REAL DATA

The QR algorithm and the modified linked list absorption was tested in two large data
structures: an animal model with direct and maternal additive genetic effects; and an
animal model with dominance effects.

 A. A direct and maternal effects model

The data was collected for a selection experiment conducted at the Agricultural
Research Center at Trangie (Peter Parnell, 1989, personal communication). The model
was:

d d m m y = Xb + Z a + Z a + e

where y is a vector of birth weight recorded on 1814 bull calves, b a vector of 18

d mmanagement group effects, a and a are additive genetic effects for the direct and
maternal influences, and e is a vector of random residuals. All known genetic

d mrelationships were used to define the covariance among a and a . The order of M was
6066. The log-likelihood is a function of 4 genetic parameters: two genetic variances,4

one genetic covariance, and one residual variance.

hHUDSON (1986) noted that computing the L matrix in (1), say L , for an animal model
is easier to build than even the numerator relationship matrix A. For the present case

 Referring to B in equation (3).5

10

h h h hG = M qA = S SqL L = (SqL) (SqL),-1 -1 -1 T T T

where q is the Kronecker product, S S=M is the inverse of a 2 by 2 (co)variance matrixT -1

h h hfor direct and maternal effects and L L = A . Hence, L=SqL and it too is easier toT -1

build than G.

It took 85, 122 and 128 seconds on a GOULD NP1 computer to determine the orderings
based on heuristics of least commonality, least fill-ins, and least column-fill. For the least
commonality and fill-in heuristics, the QR algorithm required 82 seconds to evaluate the
log-likelihood. The QR algorithm needed 86 seconds for the least column-fill heuristic.
The competing approach of absorption with the least commonality heuristic required only
69 seconds. A detailed account of the computing times and memory uses for the
algorithms is presented in Table 1. The least commonality and least fill-in heuristics
appeared marginally better than the column-fill heuristic. From Table 1, we find that the
number of fill-ins for the column-fill heuristic was slightly greater during the sparse matrix
implementation.

 While the QR algorithm is usable to calculate log-likelihoods for the present data
structure, it was slower than the absorption routine. Numerical stability is the only
justification that can be given for use of the QR algorithm over absorption. However, in
our example rounding errors did not seem to be a problem with absorption. Except for
the last or the 15-th decimal place, y Py and log|C| were calculated the same for allT

approaches. This comparison might be questionable because all procedures finish with
absorption for the last 13 per cent of the columns.

From Table 1, we find that the QR algorithm was in fact faster than absorption during the
sparse matrix implementation. The loss in time was due to calculating the product B BT

which was by-passed in absorption. The product was computed via vector processing5

ibut the procedure was nevertheless uncompetitive. Matrices H are generally sparser

i ithan H H during the start of the QR algorithm. Unfortunately, from figure 2 we see thatT

i i iprior to vectorizing, H contained many more elements than H H . The QR algorithmT

applied to non-sparse B requires more work than forming B B and applying absorption.T

This is the major problem of the QR algorithm. Perhaps it is advisable to form B B whenT

B is still sparse, then apply sparse matrix absorption, and end up in vector processing.
However, forming B B for sparse B can still be difficult because the work is proportionalT

i i ito ½En where n is the number of non-zero elements in the i-th row of B; in absorption2

iwe initially set up B B where B= when all the n are still very small, and hence theT

overhead is minor.

 B. Dominance Model

These data were collected for a second selection experiment, involving egg-laying hens,

 As a comparison with computing in 2018, Smith and Mäki-Tanila (2018) used the very6

same data set, but enlarged to include all 2706 hens with records on egg number (rather than the
culled number 1858), and performed a derivative-free REML. That calculation required 17
minutes of computing per likelihood evaluation using a home computer; and involved factorizing
an indefinite matrix of order 332937, rather than the positive definite matrix M of order 71445.

11

at the Department of Animal Breeding (Agricultural Research Centre, Jokioinen,
Finland). A brief description of the data set can be found in SMITH & MÄKI-TANILA
(1989), but summary statistics vary slightly because of editing. The model was:

a d y= Xb + Z a + Z d + e

 where y is a vector of 1858 female phenotypes, egg number; b is a vector of fixed
effects including 3 management groups and a continuous covariate for inbreeding
depression; a is a vector of additive gametic effects; d is a vector of dominance effects;
and e is a residual.

There were 396 hens which were inbred. Because the population was partially inbred,
the log-likelihood was a function of five genetic parameters (SMITH & MÄKI-TANILA,
1990). Further, the (co)variances involving a and d belong to a large matrix, E, of order
71440 and E can be evaluated directly. The L matrix of (1) is defined such that L L=E .-1 T -1

It is easier to calculate L than E and further, L is sparser; 204583 elements compared-1

to 313439. We thought that the QR algorithm should show some advantage because
 has many more non-zero elements than . The QR algorithm and absorption wereT

tested on this large data structure, , with 71445 columns. This example was studied
precisely because was very large. Our purpose was not to estimate the five genetic
parameters and indeed with only 396 inbred hens there was little information to estimate
some of them.

Ordering columns took 3.0 and 4.3 hours for the least commonality and least fill-ins
heuristics. The least column-fill heuristic was not studied as is explained below. An
account of the computing times and memory uses required for likelihood evaluation is
displayed in Table 2. The QR algorithm did not perform well. It took 1.1 and 2.1 hours to
evaluate the likelihood using the commonality and fill-in heuristics. Absorption worked
surprisingly well, requiring 22 minutes in total to evaluate the likelihood, which maybe
longer than desirable for derivative-free REML. Rounding errors were not a noticeable6

problem as each job gave nearly identical results. However, the QR algorithm with the
least fill-in heuristic produced discrepancies at the tenth decimal place.

For absorption (QR algorithm), vectorizing started when a first row (column) was
encountered with more than 14 per cent fill (commonality). Unlike the data structure with
6066 columns, there were considerable differences when vectorizing started. For
absorption and the QR algorithm with the commonality heuristic, the half-stored array
created for vectorizing was of order 3864. For the QR algorithm with the least fill-in

 See the 2018 discussion.7

12

heuristic the order was 6985. An attempt was made to determine an order for the
column-fill heuristic, but after 5 hours of computing only the first 63000 columns of a
total of 71445 had been processed. No attempt was made to study the column-fill
heuristic further as it suffered from a high degree of fill-ins and was clearly inferior. We
can infer that the order of the half-stored array for the column-fill heuristic would have
been about 8445. The column-fill heuristic was of little value. From Table 2, the
commonality heuristic out performed the fill-in heuristic. Choosing columns on least
fill-ins is by definition short sighted. The commonality heuristic apparently had a superior
long term behavior.

 IV. CONCLUSION

In terms of computing times and memory requirements the QR algorithm was found to
be inferior to Gaussian elimination for the two data structures studied. Unlike absorption,
the QR algorithm could not run from start to finish in a sparse matrix mode. It was
necessary to interrupt the procedure and invoke vector processing. In our case we used
absorption to finish what we were unable to do in a sparse matrix mode. It is important to
point out that the QR algorithm was found to be non-competitive only as we have
implemented the procedure: there may be better implementations.7

The QR algorithm is numerically stable and does not suffer from the rounding errors
(BJÖRCK, 1976) that may occur when implementing absorption or matrix inversion.
Further, we did not use the complete the "QR algorithm" because we turned to
absorption in the vector processing stage. If absorption is to be used it should be
implemented in double or higher precision. While rounding errors and collinearity may be
problems, particularly with continuous covariates, it does not follow that these problems
will automatically occur with all random effect models used in REML. This needs to be
investigated. If a random effects model has continuous covariates, corresponding rows
should be saved and not absorbed. It is possible to switch from absorption to a more
numerically stable method to finish likelihood evaluation. As the array would be very
small, computing time for the numerically stable procedure would be negligible.

Although our results are disappointing, it was surprising how well absorption worked.
Improvements made for the QR algorithm apply directly to absorption. The
enhancements resulted from the commonality heuristic, and vector processing. The first
generation software of GRASER et al (1986) used a good ordering of columns which
was determined prior to absorption. The software did not use vector processing. We
tested our software again omitting vector processing and using the initial commonality
ordering rather than one determined dynamically. For the direct and maternal effects
model, likelihood evaluation required 59 minutes and 50 seconds. Hence, the combined
effects of the dynamically determined ordering and vector processing was an increase in

 Regarding absorption, or factorization of a matrix, there are three main ways to apply8

the Cholesky decomposition to arrive at factorization: the outer product form, the inner product
form, and the bordering method. While the outer product form was good enough for typical
animal breeding problems back in 1989, the inner product form and the bordering method are
found to perform better on some sparse matrix structures (See Ng and Peyton 1993).

13

computing speed by 52 times. We tested the programs twice again omitting in turn each
one of the improvements. Vector processing by itself resulted in a 28 fold increase in
speed, and the dynamic ordering by itself resulted in a 2.9 fold increase. It appears that
the next generation of derivative-free software will be considerably faster than earlier
generations. These improvements apply directly to the programs of MEYER (1988).

Scientists should not become complacent just because a very competitive REML
algorithm appears to now be 52 times more competitive. Faster algorithms allow the8

solving of larger problems and hence calculations are still likely to be demanding.
Research in numerical methods should continue until REML becomes a computational
triviality. We have studied three heuristic orderings designed for the QR algorithm. It was
fortunate that the commonality heuristic corresponded to eliminating rows in absorption
with least elements first. There are other heuristics that should be considered that are
designed particularly for absorption. For example, a least fill-in heuristic for absorption
should be considered, and it is not the same as the least fill-in heuristic for our QR
algorithm.

 REFERENCES

 BJÖRCK, Å. 1976. Methods for sparse linear least squares problems.
 Sparse Matrix Computations, eds J.R. Bunch and D.J Rose. 453 pp.
 Academic Press Inc, New York.

 GILL, P.E., and MURRAY, W. 1976. The orthogonal factorization of a
 large sparse matrix. Sparse Matrix Computations, eds J.R. Bunch
 and D.J Rose. 453 pp. Academic Press Inc, New York.

 GRASER, H.-U., SMITH, S.P., and TIER, B. 1987. A derivative free
 approach for estimating variance components in animal model
 by REML. J. Anim. Sci. 64:1362-1370.

 HUDSON, G.F.S. 1986. Computing genetic evaluations through application
 of generalized least squares to an animal model. Genet.
 Sel. Evol. 18:31-40.

 MEYER, K. 1988. DFREML, programs to estimate variance components
 for individual animal models by restricted maximum likelihood

14

 (REML). Institute of Animal Genetics, Edinburgh University,
 Scotland. Memo.

 MEYER, K. 1989. Estimation of variance components for individual
 animal models I. Univariate analyses. Genet. Sel Evol (in press).

 POWELL, M.J.D. 1964. An efficient method for finding the minimum of
 a function of several variables without calculating derivatives.
 The Computer Journal, 7:155-162.

 PRESS, W.H., FLANNERY, B.P., TEUKOLSKY, S.A., and VETTERLING, W.T.
 1986. Numerical Recipes. 818 pp. Cambridge Unversity Press,
 Cambridge.

 SMITH, S.P. 1987. Estimation of genetic parameters in non-linear
 models. International symposium, Advances in Statistical Methods
 for the Genetic Improvement of Livestock. Eds D. Gianola and
 K. Hammond. Armidale, Australia.

 SMITH, S.P. and MÄKI-TANILA, A. 1990. Genotypic covariance matrices
 and their inverses for models allowing dominance and
 inbreeding. Submitted Genet. Sel. Evol, 22, 65-91.

 SMITH, S.P. and MÄKI-TANILA, A. 1989. Inverting the extended
 genomic table: a case study. Memo, vixRa archived, Quantitative Biology, 2018.

 STRANG, G. 1976. Linear algebra and its applications. Academic
 Press, Inc. New York, NY.

 TARJAN, R.E. 1976. Graph theory and Gaussian elimination.
 Sparse Matrix Computations, eds J.R. Bunch and D.J Rose. 453 pp.
 Academic Press Inc, New Yorki, NY.

 THOMPSON, R. and JUGA, J. 1989. A derivative-free approach for
 estimating variance and covariance components in bivariate
 animal models by restricted maximum likelihood. Submitted ?

 TIER, B. and SMITH, S.P. 1989. Use of sparse matrix absorption in
 animal breeding. Submitted Genet. Sel Evol.

15

Table 1. Computing times and memory uses needed for absorption and the QR algorithm1 2

applied to a data structure with 6066 columns.

Absorption QR Algorithm

LCH LFH LCF3 4 5

Space Time Space Time Space Time Space Time

Column :6

 0
 400
 800
 1200
 1600
 2000
 2400
 2800
 3200
 3600
 4000
 4400
 4800
 5200
 last7

51101
48715
46320
43920
41838
40201
38163
35958
34179
32995
32745
36005
46362
91685

113162

 .0
 .1
 .3
 .5
 .6
 .9
 1.1
 1.4
 1.6
 2.0
 2.6
 3.7
 6.2
17.5
28.1

 34325
 32723
 31131
 29531
 28020
 26820
 25620
 24420
 23313
 22372
 22417
 26096
 38585
115848
167704

 .0
 .1
 .2
 .3
 .4
 .5
 .6
 .6
 .7
 .8
 1.1
 1.5
 2.5
 7.6
12.1

 34325
 32710
 31110
 29510
 28008
 26793
 25557
 24304
 23041
 21761
 22120
 25724
 37589
113339
158494

 .0
 .1
 .1
 .2
 .3
 .4
 .5
 .6
 .7
 .8
 1.0
 1.5
 2.4
 7.5
10.6

 34325
 32936
 31553
 30173
 28791
 27403
 26001
 24602
 23187
 21782
 22191
 26318
 39489
118417
167874

 .0
 .1
 .2
 .3
 .4
 .5
 .6
 .7
 .9
 1.0
 1.2
 1.7
 2.5
 7.9
11.5

Vectoring : 1.0 30.4 30.0 31.58

Absorption : 39.6 39.4 41.9 42.79

Total: 68.7 81.9 82.5 85.7

 1 seconds on a GOULD NP1 computer
 2 number of non-zero elements in associated array listed under space
 3 least commonality heuristic
 4 least fill-in heuristic
 5 least column-fill heuristic
 6 number of non-zero elements and cumulative elapsed times to process
 7 last column was 5253 for absorption, LCH and LCF; 5249 for LFH
 8 time required to construct half-stored array for vector processing.
 For absorption, LCH and LCF the order was 813. For LFH the order
 was 817.
 9 vector processing

16

Table 2. Computing times and memory requirements needed for absorption and the QR1 2

algorithm applied to a data structure with 71445 columns.

Absorption QR Algorithm

LCH LFH3 4

Space Time Space Time Space Time

Column :5

 0
 4000
 8000
12000
16000
20000
24000
28000
32000
36000
40000
44000
48000
52000
56000
60000
64000
last6

 335164
 324653
 314303
 304115
 294041
 284056
 274501
 262840
 257242
 247557
 235146
 224441
 203379
 187191
 169270
 152538
 161404
1640075

 .0
 .3
 .7
 1.0
 1.3
 1.7
 2.2
 2.8
 3.8
 5.1
 6.5
 9.1
 11.2
 14.0
 18.4
 24.8
 40.1
636.8

 215736
 207733
 199733
 191733
 183733
 175733
 167903
 160317
 153951
 146167
 139202
 132990
 124406
 119390
 116696
 118564
 147269
2059264

 .0
 .5
 1.1
 1.7
 2.2
 2.7
 3.3
 4.1
 5.0
 6.2
 7.8
 9.3
 11.2
 14.0
 17.4
 23.5
 39.1
731.4

 215736
 200736
 192561
 184396
 176170
 168054
 159919
 151796
 143679
 135611
 127573
 119513
 110829
 108084
 119521
 190907
 948688
1995167

 .0
 1.5
 2.4
 3.3
 4.3
 5.3
 6.4
 7.7
 9.2
 11.1
 13.6
 17.0
 20.6
 23.5
 30.2
 58.4
331.9
867.2

Vectorizing : 15.5 2430.8 4643.37

Absorption : 663.5 689.8 3212.78

Total: 1315.8 3852.0 7723.2

 1 seconds on a GOULD NP1 computer
 2 number of non-zero elements in associated array listed under space
 3 least commonality heuristic
 4 least fill-in heuristic
 5 number of non-zero elements and cumulative elapsed time to process
 6 last column was 67581 for absorption and LCH; 64460 for LFH
 7 time required to construct half-stored array for vector processing.
 For absorption and LCH the order was 3864. For LCF the order was
 6985.
 8 vector processing

17

Discussion of Smith, Meyer and Tier’s 1989 Paper

by S.P Smith

2018

Davis (2016) provides an extensive review of direct methods to solve linear equations,
including use of the QR algorithm and its sparse-matrix variants. Björck (1996) provides
a detail account of the QR algorithm in the context of linear least squares. Given the
volume of research its difficult to make a singularly significant recommendation today,
but in 1989 it was more difficult.

If the goal is to calculate the log-likelihood function using a method that is faster, and
uses less memory, than absorption or Gaussian elimination, then the QR algorithm by
way of Householder transformations offers a possible avenue to proceed. The series of

1 2 nrectangular matrices, H , H , @@@, H , shown in Figure 1 are ever shrinking and can be
stored in sparse-matrix mode. Moreover, as only the diagonals of U are needed, the top
rows of U can be released from memory in turn once they are completely computed.
Unfortunately, Smith, Meyer and Tier demonstrated that the approach was

1 2 nuncompetitive because of excess fill-in occurring in the matrices, H , H , @@@, H . George
and Liu (1987) indicate that this is a more general criticism of the sparse-matrix
application of using the Householder transformations to perform the QR algorithm, and
that the more popular way to perform the QR algorithm is to apply Givens rotations to
build U completely (rather than releasing it) while limiting access to H, one row at a time
(the Row-Givens). The fill-in that results in building U can be well tolerated, whereas that

1 2 nfill-in found in H , H , @@@, H can be prohibitive.

George and Liu (1987) also provided a fix to the Householder approach making it as
affective as the method that uses Givens rotations. Their fix uses general row merge
trees that leads to a submatrix annihilation technique that utilizes Householder
transformations. Kauffman (1987) generalized the Householder transformation using a
blocking strategy, and it quite possible to use Kauffman’s generalization with the
submatrix annihilation technique.

The Row-Givens method is simple and one of the better recommendations developed by

iGeorge and Heath (1980). This method takes a row h from H, one at a time, forms aT

partition matrix with U on top, and then applies Givens rotations to annihilate the row

irepresenting h while updating U. This operation is outlined below for the i-th row of HT

,

iwhere G is the orthogonal matrix containing the Givens rotations. The upper triangular

18

matrix U is initialized to null, and when all the rows of H have been processed U returns
as the transpose of the Cholesky decomposition of H H. The columns of H are pre-T

permuted using the minimum degree ordering (George and Heath 1980), or some other
suitable heuristic (Duff 1974), which can be determined symbolically. This lets U share
the same sparse structure as the Cholesky decomposition. The rows of H can also be
permuted to minimize the operation count, particularly when combined with variable
pivot strategies (Robey and Sulsky 1994, Pandian, Parthasarathy and Soman 1999). An
interesting way to permute rows and columns of H follows, for examples found in animal
breeding.

Why not initialize U to something that is already upper triangular coming from a column
permutation and a row permutation of H? Then apply the Row-Givens only on those
rows left out!

Consider again the direct and maternal effects model. Note that S S=M , the inverse ofT -1

a 2 by 2 (co)variance matrix for direct and maternal effects described in Section III A.
Because S is already upper triangular (i.e., its transpose is the Cholesky decomposition
of M), the order of direct and maternal effects are left unchanged in our goal to-1

reconstruct U. If that order were switched that would induce a general substitution of S

r r rwith Ö=P SP , where P is the permutation matrix that reverses the order making Ö in this
case lower triangular. The inverse additive genetic matrix is in a form where oldest

h h hanimals are ordered first, implying that L L =A , where L is lower triangular. ByT -1

reversing the order of animals from oldest first, to youngest first, then the permuted

h h p h r h rinverse matrix is in the form ø ø =A where ø =P L P . Now L of (1) is in the formT -1

hL=Sqø , and is upper triangular. However, its better to perform one more permutation to
keep direct and maternal effects together for any animal in the model, turning L of (1)

hinto the upper triangular matrix U=ø qS. The matrix that is subjected to the Row-
Givens has been put into the following form.

The matrix Z has also been adjusted by the prior permutations. To apply the Row-
Givens leave U intact, and skip the first 6047 rows and only work on the last 1814 rows.
Even if U U was subjected to the Cholesky decomposition in the order given, theT

factorization would not return U with its sparse structure preserved because GaussianT

elimination is blind to mathematically defined zeros. Therefore, this approach might still
perform well even if a good heuristic was not actually used dynamically to define column
permutations. There are only 1814 rows to process before fill-in becomes a problem,
and so much was skipped.

The last 1814 rows of can be arranged by sorting rows by the position of the first non-
zero element in each row. Morever, the entries of each row of TZ are almost entirely

19

zero except for two non-zero elements that are positioned with the entry for the maternal
effect to come first followed by the direct effect. Therefore, once the leading columns of
 have been zeroed out below the diagonals of U, which is now designed to happen
automatically with the Row-Givens because of prior sorting, the leading rows of U can be
released from the computer’s memory (as Smith, Meyer and Tier did when they used
Householder transformations). The information can be saved to an exterior file.
However, only the diagonals of U are needed for likelihood evaluation.

Another common data structure found in animal breeding has to do with repeat records,
where rows that cut through TZ and TX have the same or nearly the same sparse
structure, and are otherwise identical with the exception of the last elements
representing Ty. Rows of representing repeat records are better processed together
using Householder transformations rather than Givens rotations.

Supplementary References

Björck, Å., 1996, Numerical Methods for Least Squares Problems, Philadelphia, SIAM.

Davis, T.A., 2016, A survey of direct methods for sparse linear systems, Technical
Report, Department of Computer Science and Engineering, Texas A & M University.

Duff, I., 1974, Pivot selection and row ordering in Givens reduction on sparse matrices,
Computing, 13, 239-248.

George, A., and M.T. Heath, 1980, Solution of Sparse Linear Least Squares Problems
using Givens Rotations, Linear Algebra and Its Applications, 34, 69-83.

George, A., and J.W.H. Liu, 1987, Householder Reflections versus Givens Rotations in
Sparse Orthogonal Decomposition, Linear Algebra and Its Applications, 88-89, 223-238.

Kauffman, L., 1987, The generalized Householder Transformation and sparse matrices,
Linear Algebra and Its Applications, 90, 221-234.

Ng, E.G., and B.W. Peyton, 1993, Block sparse Cholesky algorithms on advanced
uniprocessor computers, SIAM Journal of Scientific Computing, 14 (5), 1034-1056.

Pandian, A., K. Parthasarathy and S.A. Soman, 1999, Towards faster Givens rotations
based power system estimator, IEEE Transactions on Power Systems, 14 (3), 837-843.

Robey, T.H., and D.L. Sulsky, 1994, Row ordering for a sparse QR decomposition, SIAM
Journal of Matrix Analysis and Applications, 15 (4), 1208-1225.

Smith, S.P. and A. Mäki-Tanila, 2018, Estimating genetic parameters in a dominance
model that includes inbreeding, vixRa archived, Quantitative Biology.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19

