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Abstract

Einstein’s general relativistic field equation is a nonlinear partial differential equation that lacks

an easy way to obtain exact solutions. The most famous examples are Schwarzschild and Kerr’s

black hole solutions. The Kerr metric has astrophysical meaning because most of cosmic celestial

bodies are rotating. The Kerr metric is even more difficult to derive than the Schwarzschild metric

specifically due to off-diagonal term of metric tensor. In this paper, a derivation of Kerr metric

was obtained by ellipsoid coordinate transformation, which causes elimination a large amount of

tedious derivation. This derivation is not only physics enlightening, but also further deducing some

characteristics of the rotating black hole.
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I. INTRODUCTION

The theory of general relativity proposed by Albert Einstein in 1915 was one of the

greatest advances in modern physics. It describes the distribution of matter to determine

the space-time curvature, and the curvature determines how the matter moves. Einstein’s

field equation is very simple and elegant, but because Einstein’s field equation is a set of

nonlinear differential equations, it has proven difficult to find the exact analytic solution. The

exact solution has physical meanings, only in some simplified assumptions, the most famous

of which include Schwarzschild and Kerr’s black hole solution, and Friedman’s solution

to cosmology. One year after Einstein published his equation, Schwarzschild discovered

the spherical symmetry, static vacuum solution with center singularity.1 Nearly 50 years

later, Kerr solved the fixed axis symmetric rotating black hole in 1963.2 Some of these

exact solutions have been used to explain topics related to the gravity in cosmology, such

as Mercury’s precession of the perihelion, gravitational lens, black hole, expansion of the

universe, and gravitational waves.

Today, many solving methods of Einstein field equations have been proposed. For exam-

ple: Pensose-Newman’s method,3 or Bcklund transformations.4 Despite their great success

in dealing with the Einstein equation, these methods are technically complex and expert-

oriented.

The Kerr solution is important in astrophysics because most cosmic celestial bodies are

rotating and rarely completely at rest. Traditionally, the general method of the Kerr so-

lution can be found in The Mathematical Theory of Black Holes by the classical works of

S.Chandrasekhar.5 However, the calculation is so lengthy and complicated that college or

institute students find it difficult to understand. Recent literature review showed that it is

possible to obtain Kerr metric through the oblate spheroidal coordinates transformation.6

This encourage me to look for a more concise way to solve the vacuum solution of Einstein’s

field equation through coordinate transformation.

The motivation of this derivation simply came from my desire to use a relatively simple

way of Schwarzschild method to derive the Kerr metric, which can enable more students

interested in the general relativity to self-deduce the exact solution. In this paper, I will

introduce a more enlighted way to find this solution. It is not only a new try, but also the

derivation is further linked to some important features of the rotating black hole.
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II. SCHWARZSCHILD AND KERR SOLUTIONS

The exact solution of the Einstein field equation is usually expressed in metric. For

example, Minkowski space-time is four-dimension coordinates combining three-dimensional

Euclidean space and one-dimension time can be expressed in Cartesian form in Eq. (1):

ds2 = dt2 − dx2 − dy2 − dz2 (1)

and in polar coordinate form in Eq. (2):

ds2 = dt2 − dr2 − r2dθ2 − r2 sin2 θdφ2 (2)

Schwarzschild employed a non-rotational sphere-symmetric object with polar coordinate in

Eq. (2) with two variables from functions ν(r), λ(r), which was shown in Eq. (3):

ds2 = e2ν(r)dt2 − e2λ(r)dr2 − r2dθ2 − r2 sin2 θdφ2 (3)

In order to solve the Einstein field equation, Schwarzschild used a vacuum condition, let

Rµν = 0, calculating Ricci tensor from Eq. (3), and get the first exact solution of the

Einstein field equation, Schwarzschild metric, which was shown in Eq. (4).1

ds2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1
dr2 − r2dθ2 − r2 sin2 θdφ2 (4)

However, Schwarzschild metric cannot be used to describe rotation, axial- symmetry, and

charged heavenly bodies. From the examination of the metric tensor gµν in the Schwarzschild

metric, one can obtain the components:

g00 = 1− 2M

r
, g11 = −(1− 2M

r
)−1,

g22 = −r2, g33 = −r2sin2θ

Which can also be presented as:

gtt = 1− 2M

r
, grr = −(1− 2M

r
)−1,

gθθ = −r2, gφφ = −r2sin2θ

(5)

Differences of metric tensor gµν between the Schwarzschild metric in Equation (4) and

Minkowski space-time in Equation (2) are only in time-time terms (gtt) and radial-radial

terms (grr).
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Kerr metric is the second exact solution of the Einstein field equation, which can be

used to describe space-time geometry in the vacuum area near a rotational, axial-symmetric

heavenly body.2 It is a generalized form of Schwarzschild metric. Kerr metric in Boyer-

Lindquist coordinate system can be expressed in Equation (6):

ds2 =

(
1− 2Mr

ρ2

)
dt2 +

4Mra sin2 θ

ρ2
dtdφ− ρ2

∆
dr2

−ρ2dθ2 −
(
r2 + a2 +

2Mra2 sin2 θ

ρ2

)
sin2 θdφ2

(6)

Where define ρ2 ≡ r2 + a2cos2θ and ∆ ≡ r2 − 2Mr + a2 , M is the mass of the rotational

material, a is the spin parameter or specific angular momentum and is related to the angular

momentum J by a = J/M . In all physical quality, we adopt c = G = 1.

By examining the components of metric tensor gµν in Equation (6), one can obtain:

g00 = 1− 2Mr

ρ2
, g11 = −ρ

2

∆
, g22 = −ρ2,

g03 = g30 =
2Mra sin2 θ

ρ2

g33 = −
(
r2 + a2 +

2Mra2 sin2 θ

ρ2

)
sin2θ

(7)

Comparison the components of Schwarzschild metric Equation (4) with Kerr metric Equation

(6):

1. Both g03(gtφ) and g30(gφt) off-diagonal terms in Kerr metric are not present in

Schwarzschild metric, apparently due to rotation. If the rotation parameter a = 0, these

two terms vanish.

2. g00g11 = gttgrr = −1 in Schwarzschild metric, but not in Kerr metric.

3. When spin parameter a = 0, Kerr metric turns into Schwarzschild metric and therefore

is a generalized form of Schwarzschild metric.

III. TRANSFORMATION OF ELLIPSOID SYMMETRIC ORTHOGONAL CO-

ORDINATE

To derive Kerr metric, if we start from the initial assumptions, we must introduce

g00, g11, g22, g03, g33 five variables, all are a function of (r, θ), and finally we will get monster-

like complex equations. Apparently, due to the off-diagonal term, Kerr metric cannot be
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solved by the spherical symmetry method used in Schwarzschild metric. Besides, Previous

study showed that the space-time of Kerr metric is ellipsoidal.7.

Different from the derivation methods used in classical works of Chandrasekhar (1983),

the author used the changes in coordinate of Kerr metric into ellipsoid symmetry firstly to

get a simplified form, and then used Schwarzschild’s method to solve Kerr metric. First of

all, the following ellipsoid coordinate changes were apply to Equation (1)8:

x→ (r2 + a2)1/2sinθcosφ

y → (r2 + a2)1/2sinθsinφ

z → rcosθ

t→ t

(8)

Where a is the coordinate transformation parameter. The metric under the new coordinate

system becomes Equation (9):

ds2 = dt2 − ρ2

r2 + a2
dr2 − ρ2dθ2 −

(
r2 + a2

)
sin2θdφ2 (9)

Equation (9) has physics significance, which represents the coordinate with ellipsoid sym-

metry in vacuum; it can also be obtained by assigning mass M = 0 to the Kerr metric in

Equation (6). Due to the fact that most of the celestial bodies, stars and galaxy for instance,

are ellipsoid symmetric, Bijan started from this vacuum ellipsoid coordinate and derived a

Schwarzschild-like solution for ellipsoidal celestial objects following Equation (10)9:

ds2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1
ρ2

r2 + a2
dr2 − ρ2dθ2 −

(
r2 + a2

)
sin2θdφ2 (10)

Equation (10) morphs into the Schwarzschild’s solution in Equation (4) when the coordinate

transformation parameter a = 0 and therefore Equation (10) is also a generalization of

Schwarzschild’s solution.

In order to eliminate the difference between Kerr metric and Schwarzschild metric that

is described earlier, we can assume to rewrite the Kerr metric in the following coordinates:

ds2 = G′00dT
2 +G′11dr

2 +G′22dθ
2 +G′33dΦ2 (11)

To eliminate the off-diagonal term:

dT ≡ dt− pdφ, dΦ ≡ dφ− qdt (12)
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to obtain

G′00G
′
11 = −1 (13)

By comparing the coefficient, Equations (14) to (18) were obtained.

G′00p+G′33q =
−2Mrasin2θ

ρ2
(14)

G′00 +G′33q
2 = 1− 2Mr

ρ2
(15)

G′00p
2 +G′33 = −

(
r2 + a2 +

2Mra2sin2θ

ρ2

)
sin2θ (16)

G′22 = −ρ2 (17)

G′11 =
−ρ2

∆
(18)

By solving six variables G′00, G
′
11, G

′
22, G

′
33, p, q in the six dependent Equations (13) to (18),

the results shown in Equation (19) were obtained:

p = ±asin2θ, take positive result

q = ± a

r2 + a2
, take positive result

G′00 =
∆

ρ2

G′11 = −ρ
2

∆

G′22 = −ρ2

G′33 = −(r2 + a2)
2
sin2θ

ρ2

(19)

Put them into Equation (8) and obtain Equation (20):

ds2 =
∆

ρ2
(
dt− asin2θdφ

)2 − ρ2

∆
dr2 − ρ2dθ2 − (r2 + a2)

2
sin2θ

ρ2

(
dφ− a

r2 + a2
dt

)2

(20)

Equation (20) can be found in the literature and also textbook by O’Neil. It is also called the

Kerr metric with Boyer-Lindquist in orthonormal frame.10 There is no off-diagonal terms,

and g00g11 = −1 after the coordinate transformation.

IV. CALCULATING THE RICCI TENSOR

From previous discussion, Equation (9) can be recognized as the coordinate under the

ellipsoid symmetry in vacuum. Therefore, when the mass M approached 0, Kerr metric
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Equation (20) will also be transformed into Equation (21), which equals Equation (9). The

differences of metric tensor components are in time-time and radial-radial terms, just the

same as between Schwarzschild metric (Equation (4)) and Minkowski space-time (Equation

(2)). dT and dΦ defined in Equation (22) are ellipsoid coordinate transformation functions.

ds2 =
r2 + a2

ρ2
dT 2 − ρ2

r2 + a2
dr2 − ρ2dθ2 − (r2 + a2)

2
sin2θ

ρ2
dΦ2 (21)

dT ≡ dt− asin2θdφ,

dΦ ≡ dφ− a

r2 + a2
dt

(22)

In this paper, Schwarzschild method was used to solve Kerr metric from Equations (21) to

(22) by introducing two new functions e2ν(r,θ), e2λ(r,θ):

ds2 = e2ν(r,θ)dT 2 − e2λ(r,θ)dr2 − ρ2dθ2 − (r2 + a2)
2
sin2θ

ρ2
dΦ2 (23)

Define the parameters ρ2 and h in Equation (24):

ρ2 ≡ r2 + a2cos2θ

h ≡ r2 + a2
(24)

Metric tensor in the matrix form shown in Equations (25) to (26):

gµν =


e2ν(r,θ) 0 0 0

0 −e2λ(r,θ) 0 0

0 0 −ρ2 0

0 0 0 −h2sin2θ
ρ2

 (25)

gµν =


e−2ν(r,θ) 0 0 0

0 −e−2λ(r,θ) 0 0

0 0 −ρ−2 0

0 0 0 − ρ2

h2sin2θ

 (26)

Chrostoffel Symbols can be obtained by the following steps in Equation (27):

Γαµν =
1

2
gαβ

(
∂µgνβ + ∂νgβµ − ∂βgµν

)
(27)
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Non-zero Chrostoffel symbols are listed in Equations (28) to (37):

Γ1
00 = e2(ν−λ)∂1ν (28)

Γ1
11 = ∂1λ (29)

Γ0
10 = Γ0

01 = ∂1ν (30)

Γ2
12 = Γ2

21 =
r

ρ2
(31)

Γ3
13 = Γ3

31 =
2r

h
− r

ρ2
(32)

Γ1
22 = −re−2λ (33)

Γ3
32 = Γ3

23 = cotθ

(
h

ρ2

)
(34)

Γ1
33 = −re−2λsin2θ

(
2h

ρ2
− h2

ρ4

)
(35)

Γ2
22 = −h

2sinθcosθ

ρ2
(36)

Γ2
33 = −sinθcosθ

(
h3

ρ6

)
(37)

The calculation of Ricci curvature tensor can be derived by the following Equation (38):

Rαβ = Rρ
αρβ = ∂ρΓ

ρ
βα − ∂βΓρρα + ΓρρλΓ

λ
βα − ΓρβλΓ

λ
ρα (38)

and the results are listed in Equations. (39) to (50):

R0
101 = ∂1ν∂1λ− (∂1ν)2 − ∂21ν (39)

R0
202 = −re−2λ∂1ν (40)

R0
303 = −re−2λsin2θ

(
2h

ρ2
− h2

ρ4

)
∂1ν (41)

R1
212 = e−2λ

(
r∂1λ− 1 +

r2

ρ2

)
(42)

R1
313 = re−2λsin2θ

(
2h

ρ2
− h2

ρ4

)
∂1λ (43)

R2
323 = sin2θ

[
h4

ρ8

(
5r2 − 4ρ2

h

)
− r2h

ρ4

(
2− h

ρ2

)
e−2λ

]
(44)
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R1
010 = g11g00R

0
101 = e2(ν−λ)

[
−∂1ν∂1λ+ (∂1ν)2 + ∂21ν

]
(45)

R2
020 = g22g00R

0
202 = e2(ν−λ)

r

ρ2
∂1ν (46)

R3
030 = g33g00R

0
303 = e2(ν−λ)

(
2r

h
− r

ρ2

)
∂1ν (47)

R2
121 = g22g11R

1
212 =

1

ρ2

(
r∂1λ+

r2

ρ2
− 1

)
(48)

R3
131 = g33g11R

1
313 =

(
2

h
− 1

ρ2

)(
r∂1λ+

2r2

ρ2
− 2r2

h

)
(49)

R3
232 = g33g22R

2
323 =

[
h2

ρ4

(
5r2 − 4ρ2

h

)
− r2

h

(
2− h

ρ2

)
e−2λ

]
(50)

Rµν can be calculated by the Equations (51) to (54):

R00 = R1
010 +R2

020 +R3
030 = e2(ν−λ)

[
−∂1ν∂1λ+ (∂1ν)2 + ∂21ν +

2r

h
∂1ν

]
(51)

R11 = R0
101 +R2

121 +R3
131 = ∂1ν∂1λ− (∂1ν)2 − ∂21ν +

2r

h
∂1λ (52)

R22 = R0
202 +R1

212 +R3
232 = e−2λ

(
r (∂1λ− ∂1ν)− 1 +

2r2

ρ2
− 2r2

h

)
+
h2

ρ4

(
5r2 − 4ρ2

h

)
(53)

R33 = R0
303 +R1

313 +R2
323

= sin2θ

(
2h

ρ2
− h2

ρ4

)[
e−2λ

(
r (∂1λ− ∂1ν)− r2

ρ2

)
+
h2

ρ4

(
5r2 − 4ρ2

h

)(
2h

ρ2
− h2

ρ4

)−1] (54)

V. FINDING A SOLUTION OF THE VACUUM EINSTEIN FIELD EQUATIONS

To solve vacuum Einstein’s field equations, first we set the Ricci tensor as zero, which

means: Rµν = 0R = 0, in empty space, θ is approximately constant. Then combine with R00

and R11 to get Equation (55), and solve the equation, Equations (56) to (58) were obtained:

e−2(ν−λ)R00 +R11 =
2r

h
(∂1ν + ∂1λ) = 0 (55)

∂1ν + ∂1λ = ∂1 (ν + λ) = 0 (56)

ν = −λ+ c, ν (r, θ) = −λ (r, θ) + c (57)

eν = e−λ (58)

To solve this partial differential equation, one has to remember that when the angular

momentum approaches zero (a → 0), Kerr metric (Equation (6)) turns into Schwarzschild
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metric (Equation (4)). Then Equations (59) to (63) were obtained:

lim
a→0

h = r2, lim
a→0

ρ = r (59)

lim
a→0

R22 = e−2λ (r (∂1λ− ∂1ν)− 1) + 1 (60)

lim
a→0

R33 = sin2θ
[
e−2λ (r (∂1λ− ∂1ν)− 1) + 1

]
= sin2θR22 (61)

lim
a→0

R22 = 0 (62)

e2ν = 1 +
C

r
, let C = −2M (63)

So, under the limit condition when angular momentum approaches zero (a→ 0), the equa-

tions could be solved as shown in Equation (64):

lim
a→0

e2ν = 1− 2M

r
=
r2 − 2Mr

r2

lim
a→0

e2λ =

(
1− 2M

r

)−1
=

r2

r2 − 2Mr

(64)

One could also demand another limit condition of flat space-time, where the mass approaches

zero (M → 0) in the Equation (18), which could be represented as in Equation (65):

lim
M→0

e2ν =
r2 + a2

ρ2
=

r2 + a2

r2 + a2cos2θ

lim
M→0

e2λ =
ρ2

r2 + a2
=
r2 + a2cos2θ

r2 + a2

(65)

Deduced from the above conditions in Equations (64) to (65), the equations of Ricci tensor

could be solved as in Equation (66):

e2ν =
r2 − 2Mr + a2

r2 + a2cos2θ

e2λ =
r2 + a2cos2θ

r2 − 2Mr + a2

(66)

Finally, the Kerr metric was gotten as shown in Equation (67):

ds2 =
r2 − 2Mr + a2

ρ2
(
dt− asin2θdφ

)2 − ρ2

r2 − 2Mr + a2
dr2 − ρ2dθ2

− (r2 + a2)
2
sin2θ

ρ2

(
dφ− a

r2 + a2
dt

)2 (67)

VI. DISCUSSION

It is proven that the Kerr metric (Equation (67)) can be obtained by combining the

ellipsoid coordinate transformation and the assumptions listed in Equations (21) to (23)
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following these steps: transforming the Euclidian four-dimention space-time in Equation (1)

to vacuum Minkowski space-time with ellipsoid symmetry in Equation 9; transforming from

(t, r, θ, φ) to (T, r, θ,Φ) under the new coordinate system to eliminate the major difference

in metric tensor components between the Kerr metric and the Schwarzschild metric: there

are no off-diagonal terms and the product of g00g11 becomes -1; solving vacuum Einstein’s

equation by using the Schwarzschild method from Equation (23); applying limit method to

calculate Ricci curvature tensor; and finally deducting the Kerr metric.

Table I shows the list of the metric tensor components discussed in previous sec-

tions, including the Minkowski space-time, the Schwarzschild solution, empty ellipsoid,

a Schwarzschild-like ellipsoid solution, and the Kerr solution. The Minkowski space-time

and the Schwarzschild solution have spherical symmetry, and the others have ellipsoid

symmetry.

Further, some of the characteristics with deeper physics meaning of ellipsoid symmetry,

Kerr metric, and rotating black hole can be obtained from this new coordinate function

dT, dΦ. Remember, when a approaches to zero (a→ 0), dT, dΦ degenerates to dt, dφ.

A. Ellipsoid symmetry and the Kerr metric

While metric with spherical symmetry in vacuum has the following expression:

− r2dθ2 − r2sin2θdθ2 (68)

And metric of ellipsoid symmetric in vacuum has the following expression in Equation (69),

where a
r2+a2

and a sin2θ term can be seen in multiply and divide combination:

− ρ2dθ2 −
(
r2 + a2

)
sin2θdφ2

= −ρ2dθ2 −
(
r2 + a2

a

)(
asin2θ

)
dφ2

(69)

Terms of dθ2, dφ2 in the Kerr metric is showed in Equation (70), where a
r2+a2

and asin2θ

term can also be seen in linear combination:

− ρ2dθ2 −
(
r2 + a2 +

2Mra2sin2θ

ρ2

)
sin2θdφ2

= −ρ2dθ2 −
(
r2 + a2

a
+

2Mrasin2θ

ρ2

)(
asin2θ

)
dφ2

(70)
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The a in Equation (69) represents a parameter in the ellipsoid symmetric coordinate trans-

formation, however,a in Kerr metric (Equation (70)) represents a spin parameter, which is

proportional to angular momentum. Both a ’s are equivalent in mathematic perspective

and used to transform the space-time into ellipsoid symmetry with a rotational symmetric

z-axis. As a→ 0, both Equation (69) and Equation (70) degenerate into spherical symmetry

Equation (68).

B. Frame-dragging angular momentum

In physics, a spinning heavenly body with a non-zero mass will generate a frame-dragging

phenomenon along the equators direction, which has been proven by Gravity Probe B

experiment.11 Therefore, an extra term 2Mra2sin2θ
ρ2

in the Kerr metric is found in Equation

(70) compared to the vacuum ellipsoid symmetry in Equation (69). As the mass approaches

zero M → 0, Equation (70) degenerates into Equation (69).

To order to describe frame-dragging, Kerr metric can be re-written as Equation (71):

ds2 = gttdt
2 + 2gtφdtdφ+ grrdr

2 + gθθdθ
2 + gφφdφ

2

=

(
gtt −

g2tφ
gφφ

)
dt2 + grrdr

2 + gθθdθ
2 + gφφ

(
dφ+

gtφ
gφφ

)2 (71)

The definition of angular momentum (Ω) in frame-dragging:

Ω = − gtφ
gφφ

=

2Mrasin2θ
ρ2(

r2 + a2 + 2Mra2sin2θ
ρ2

)
sin2θ

=
2Mra

ρ2 (r2 + a2) + 2Mra2sin2θ

=
2Mr

ρ2
(
r2+a2

a

)
+ 2Mr (asin2θ)

(72)

So, we see both the asin2θ and a
r2+a2

term in Ω , which means dT, dΦ would have some

relation with frame-dragging angular momentum.
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C. Black hole angular velocity

Its close relationship to the black hole angular velocity (ΩH) can be easily identified by

examining dΦ term in Equation (73).

dΦ = dφ− a

r2 + a2
dt

ΩH =
a

r2+ + a2

from ∆ = 0, solve r± = M ±
√
M2 − a2

(73)

Based on this derivation, in the future we will further study whether the method mentioned

in this paper can be extended to other more general cases. For example, suppose we start

with three functions e2ν(r,θ), e−2ν(r,θ), e2λ(r,θ), e2µ(r,θ) as shown in Equation (74):

ds2 = e2ν(r,θ)dT 2 − e−2ν(r,θ)dr2 − e2λ(r,θ)dθ2 − e2µ(r,θ)dΦ2 (74)

Besides, as dT, dΦ is shown to be related with ellipsoid symmetry, frame-dragging angu-

lar momentum, and black hole angular velocity, which are all rotation parameters, it de-

serves further study to determine if this method could be extended to solve the other axial-

symmetry exact solutions of vacuum Einstein’s field equation.

VII. CONCLUSION

In this paper, we derive the Kerr metric from the coordinate transformation method.

First, we obtain the Kerr Metric with Boyer-Lindquist in orthonormal frame, and then we

prove that it is possible to derive the Kerr metric from the vacuum ellipsoid symmetry, and

this derivation allows us to better understand the physical properties of the rotating black

hole, such as the frame-dragging effect, and the angular velocity. This deduction method

is different from classical papers written by Kerr and Chandrasekhar, and is expected to

encourage future study in this subject.
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TABLE I. Metric Tensor Components and Symmetry

Metric Tensor dt2(dT 2) dr2 dθ2 dφ2(dΦ2) Symmetry and State

Minkowski 1 −1 −r2 −r2sin2θ Spherical, Empty

Schwarzschild r2−2Mr
r2

− r2

r2−2Mr
−r2 −r2sin2θ Spherical, Static, Mass

Ellipsoid r2+a2

ρ2
− ρ2

r2+a2
−ρ2 −(r2+a2)

2
sin2θ

ρ2
Ellipsoid, Empty

Schwarzschild-like r2−2Mr
r2

− r2

r2−2Mr
ρ2

r2+a2
−ρ2 −

(
r2 + a2

)
sin2θ Ellipsoid, Static, Mass

Kerr r2−2Mr+a2

ρ2
− ρ2

r2−2Mr+a2
−ρ2 −(r2+a2)

2
sin2θ

ρ2
Ellipsoid,Axisymmetric, Mass
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