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Abstract

In this paper we propose a new and simple theory of quantum gravity, inspired by Newton, that gives the
same prediction of light bending as Einstein’s theory of general relativity. This new quantum gravity theory
also predicts that non-light beams, that is to say beams of particles with rest-mass such as electron and proton
beams, will only have half the bending of light as GR. In other words, this theory is testable. Based on this
theory, we will suggest that it is a property of light that makes it bend twice as much as the amount that is
predicted by Newton’s theory. This quantum gravity theory also seems to predict that for masses below the
Planck mass, we are dealing with quantum probabilities and gravity force expectations. This may explain the
di↵erence between the strong and weak force – the di↵erence is simply related to a probability factor at the
Planck time scale.

We are also suggesting a minor adjustment to the Newtonian gravitational acceleration field, which renders
that field equal to the Planck acceleration at the Schwarzschild radius, and gives the same results as predicted
by Newton when we are dealing with weak gravitational fields. This stands in contrast to standard Newtonian
theory, which predicts a very weak gravitational acceleration field at the Schwarzschild radius for super-massive
objects.

Key words: Quantum gravity, Newton’s gravitational constant, bending of light, bending of non-light,
strong force, gravitational acceleration field.

1 Introduction to Big G as a Composite Constant and Planck
Quantization of Newton

The role of Newton’s gravitational constant is to calibrate data generated by empirical observations in order
to get Newton’s theory of gravity to work. In addition, the inverse is also possible: Newton’s theory can be
combined with gravitational observations to find the gravitational constant. In 1798, Cavendish was the first to
indirectly measure the gravitational constant; see [1].

One hundred years later, in 1899, Max Planck [2] first described his natural units, which he thought repre-
sented something fundamental and deep. He derived the Planck length, the Planck second, the Planck mass,
and the Planck temperature (energy) from what he assumed were the most fundamental constants, namely the
speed of light, Newton’s gravitational constant, and the Planck constant; see also [3]. The Planck length was
given by Planck himself as

lp =

r
Gh̄
c3

(1)

Based on this, it has always been assumed that the Planck length is a derived constant and the gravitational
constant is a more fundamental constant. However, from the formula above we can see that this can be rewritten
so that the gravitational constant is a function of the Planck length, the speed of light, and the Planck constant

G =
l2pc

3

h̄
(2)

This is Haug’s suggested way to look at the gravitational constant as a composite constant; see [4, 5, 6, 7].
This can also be derived from dimensional analysis, and in fact, it is not so strange that one can derive the
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gravitational constant from dimensional analysis assuming the Planck length, the speed of light, and the Planck
constant are the fundamental constants, even if that not should be given too much weight. It is basically just
flipping the Planck coin around, so to speak. In 2013, McCulloch [8] derived basically the same gravitational
constant based on Heisenberg’s uncertainty principle, see also [9]. Further, Haug [10] has also derived the
same composite gravitational constant using Heisenberg’s uncertainty principle in combination with his newly-
introduced maximum velocity for matter.

Some physicists will likely protest here. Because we can measure the gravitational constant, and one can
mistakenly assume that the Planck length must be derived from it. In this view, claiming the gravitational
constant is a composite constant seems to introduce a circular problem, at least until recently. Haug [6] has
shown that the Planck length can be found through a Cavendish-style experiment, without any knowledge of big
G. The Planck length, as a logical idea that we can relate to, is simply a length, and likely the shortest length
we can measure, even hypothetically. Studying this length in greater depth, Haug has also recently shown that
for all observable gravity phenomena, only one of the Planck lengths in the gravitational composite constant
cancels out in the corresponding formulas. In other words, the Planck length is always there, at least in gravity
calculations above the subatomic scale. Thus, all observable gravitational phenomena seem to be dependent
on the Planck length. Continuing along the track of measurements that are intuitive, the speed of light is also
something we can easily relate to: it represents how far the light has traveled during a given time interval.
Of these fundamental constants, only the Planck constant is hard to conceptualize and therefore leads us to a
di↵erent story, which is discussed in [6].

Another strong indication that the gravitational constant is a composite constant may be seen in its units,
which are m3 · kg�1 · s�2. It would be very strange if something concerning the fundamental nature of reality
would be meters cubed, divided by kg and seconds squared. What kind of exotic animal is that? If it quacks
like a composite, it most likely is a composite.

There is yet another argument that strengthens our hypothesis that Newton’s gravitational constant is a
composite constant. In 2014, McCulloch published an interesting paper where he derives Newton’s gravitational
formulation based on Heisenberg’s uncertainty principle utilizing the Planck mass [8]. We will argue this might
only be possible if the Planck length (and therefore the Planck mass) plays a special role, even for macroscopic
gravitational phenomena.

As previously shown by Haug [4], all of the Planck units are much simpler to understand from a logical point
of view when we replace big G with its composite structure. In the standard Planck units, one can find c7, c8,
and even c9. What is the intuition of the light speed powered to the seven, or even to the nine? When we replace
big G with its composite structure, no Planck unit has more than c2 in its formula. Suddenly things start to
make logical sense. And if we have two theories that give the same result, shouldn’t we give preference to the
simpler theory? We can leave such philosophical questions for another day. However, we will show that using
the composite structure of Newton’s gravitational constant can take us one step further; we will obtain a gravity
prediction, di↵erent than the one that is predicted by GR and by Newton, that actually can be tested.

2 Mass and Energy under Atomism

We suggest that the key to developing a consistent theory of quantum gravity is to understand that Newton’s
gravitational constant is a composite constant and also to grasp how it should be adjusted to hold for things
like light as well. To do this properly, it is helpful to understand something about the recent rise of atomism.

In recent years, Haug has published a new theory rooted in ancient atomism, which holds that at the deepest
level of nature, there only exists one indivisible particle and empty space (void) that makes up all matter and
energy. This particle always moves at a constant speed, which must be the speed of light, except when it is
colliding with another indivisible particle. The collision lasts for only one Planck second. This particle has no
rest-mass and therefore no mass when it is moving; it only has mass when it is colliding. The collision points
between indivisible particles are what modern physicists calls mass. Viewed in the light of atomism, this leads
to an invariant Planck mass particle, an invariant Planck second, and an invariant Planck length.

In his book [11] and a series of papers, Haug has shown that, based on such postulates, one must get the same
mathematical end results as Einstein’s special relativity theory as long as one uses Einstein-Poincaré synchronized
clocks. In addition, he gets an upper limit on the maximum velocity matter can take, which leads to a series of
maximum limits on kinetic energy, proper velocity, maximum acceleration, and more. Under modern physics,
even an electron can basically attain any level of kinetic energy as long as it is below infinity. However, we ask:
Is a limit that almost reaches infinity, really that di↵erent than on that truly does touch infinity? Bear in mind
that we know the latter is impossible, as it would require an infinite amount of energy; see [12] for interesting
examples. Modern physics has no clear mechanism to explain why an electron cannot achieve a relativistic mass
equal to one kg, or even equal to the rest-mass of the Moon or the Earth.

There is a solid mathematical and logical framework behind this renewed atomism theory. The view of matter
and energy in atomism plays a central role in producing a simple Newtonian-type theory of quantum gravity
that predicts the observed bending of light, something classical Newtonian gravity does not do.
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3 Back to the Planck Mass

While Max Planck was the first to describe the natural unit of a Planck mass, he said little about what it
represented, except that it was likely related to something fundamental. Even now, what the Planck mass is
related to and whether or not it means something special is still a mystery in modern physics. We might also
wonder if a Planck mass particle even exists.

Lloyd Motz, while working at the Rutherford Laboratory in 1962, [14, 15, 16] suggested that there was
probably a very fundamental particle with a mass equal to the Planck mass. Motz named this particle the
Uniton.1 Motz suggested that the Uniton could be the most fundamental of all particles and that all other
particles were initially made of Unitons. Motz acknowledged that his Unitons (Planck mass particles) had far
too much mass compared to known subatomic masses. He tried to get around this issue by claiming that Unitons
had radiated most of their energy away:

According to this point of view, electrons and nucleons are the lowest bound states of two or more
Unitons that have collapsed down to the appropriate dimensions gravitationally and radiated away
most of their energy in the process. – Lloyd Motz

Others have suggested that there were plenty of Planck mass type particles around just after the Big Bang;
see [17], but that most of the mass of these super-heavy particles has radiated away. Modern physics has also
suggested a hypothetical Planck particle that has

p
⇡ more mass than the Uniton suggested by Motz. Some

physicists including Motz and Hawking have suggested such particles could be micro-black holes [18, 19, 22].
Planck mass particles have even been suggested as being candidates for cosmological dark matter, [23, 13]. We
are actually quite skeptical towards dark matter, but that is beyond the scope of this paper.

In 1979, Motz and Epstein [19] suggested the possible existence of a fundamental particle with half the Planck
mass that could be essential to solving the mysteries of gravity. Motz and Epstein may have been the first to
suggest a fundamental particle with this mass. Although, the Planck mass is still considered more or less to be
an unsolved problem today, we think that the recent rapid advancement of mathematical atomism may provide
a compelling answer to this longstanding challenge. Based on atomism, Haug [11] [24] has suggested that there
is indeed is an essential half Planck mass particle. 2 Under atomism, this is an indivisible particle always moving
at the speed of light as measured with Einstein-Poincaré synchronized clocks. When moving at the speed of
light, it is mass-less. Only when colliding with another indivisible does it have mass, or we could say that it is
mass then. Actually, an indivisible particle’s collision with another indivisible particle constitutes the only true
mass, and when not colliding, it is energy. The mass of two colliding indivisible particles is the Planck mass
particle. Since the Planck mass particle consists of two indivisible particles, then a single indivisible particle is
half of this, and therefore has half the Planck mass as rest-mass. The so-called reduced Compton wavelength of
a Planck mass particle is the Planck length

�̄ =
h̄

mpc
= lp (3)

And naturally we can also use the reduced Compton wavelength in combination with the Planck constant
and the speed of light to calculate the rest-mass of a particle

mp =
h̄

�̄

1
c
=

h̄
lp

1
c

(4)

The diameter of the indivisible particle is the Planck length, and the distance from center to center between
two indivisible particles corresponds to the reduced Compton wavelength of the mass in question. This means
the minimum reduced Compton wavelength is, in this theory, the Planck length.

Again, two indivisible particles need to collide to create this mass. The collision is the pure mass. Each
indivisible, therefore, has a rest-mass of half of this pure mass. This means that even if an indivisible particle
does not have a reduced Compton wavelength, it must have an equivalent reduced Compton wavelength of 2lp.
This is a very important point.

For example, an electron has a reduced Compton wavelength of �̄e. This reduced Compton wavelength is
enormous compared to the Planck mass particle’s reduced Compton wavelength. The electron is, under this
theory, simply two indivisible particles each traveling back and forth over the reduced Compton wavelength and
colliding occasionally. This means we have c

�̄e
⇡ 7.76344 ⇥ 1020 collisions per second in an electron. This is

very similar to Schrödinger’s [25] hypothesis in 1930 of a Zitterbewegung (”trembling motion” in German) in

the electron that he indicated was 2mc2

h̄ ⇡ 1.55269⇥ 1021. This is actually exactly twice our number. This just
to point out that our theory even if coming in from a very di↵erent and new perspective seems to have many
similarities hypothesis as modern quantum mechanics. Each collision is a Planck mass, but each collision only
lasts for one Planck second. The mass of the electron can be written as

1See also [26] who introduces a similar particle that he calls Maximons.
2It is also important to understand that we thought and wrote about this long before we tried to derive a quantum gravity theory.
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c

�̄e
mp

lp
c

=
h̄

�̄e

1
c
⇡ 9.10938⇥ 10�31 kg (5)

Since the electron consists of two indivisible particles, the shortest distance we can have between them is the
Planck length. The maximum distance between two indivisible particles making up an electron is 2�̄e and the
minimum distance is lp (the latter is what we could call the collision point wavelength embedded in any mass).
The average distance is its reduced Compton wavelength.

Further, when an electron is moving, it is the reduced Compton wavelength that undergoes length contraction
as observed with Einstein-Poincaré synchronized clocks from the stationary frame. The indivisible particles with
diameter equal to the Planck length cannot undergo length contraction.3

Clearly, the Planck length plays an important role in relation to certain aspects of all matter.

• The Planck length is the shortest reduced Compton wavelength any elementary particle can have.

• Any elementary particle traveling at its maximum Haug velocity, see [4, 27], will in the limit get a reduced
Compton wavelength equal to the Planck length. Actually Lorentz symmetry is broken at the Planck scale.
Something that also possibly explains why gravity not is symmetrical. If two people measure time dilation,
the first person from the highest peak of a mountain and the second person from the deepest trough in a
valley, both will agree that the clock at the top of the mountain is going faster. Gravity is, at the depth of
reality, high energy physics, but over incredibly short time intervals, e.g. one Planck second.

• At the very depth of reality there is actually only one type of mass: the Planck mass particle. This is
the building block of all other elementary particles. The Planck mass particle only lasts for one Planck
second; it is more correct to call it 1.17337 ⇥ 10�51kg. The Planck mass particle is the only mass that is
observationally time dependent when we operate with our definition of mass. The Planck mass particle
is one Planck mass when the observational time window is one Planck second; see [28]. The Planck mass
particle is surprisingly the mass-gap.

The Planck length is reduced Compton wavelength of all fundamental particles when traveling at their
maximum velocity. The Planck length is also what we can call the contracted “wavelength” of all elementary
particles, such as the electron. In our theory there is only one pure mass, which is the Planck mass particle
that only lasts for one Planck second. All non-Planck mass particles are, in this model, rapidly fluctuating
between being energy and being mass. All things that “normally” have rest-mass therefore have a contracted
“wavelength” equal to the Planck length. This could pay a central role in building a new theory of quantum
gravity.

There is only one exception here, which concerns individual indivisible particles (light is a series of these
traveling after each other). These particles have an equivalent reduced Compton wavelength of 2lp. Be aware
that this must hold for any photon, despite di↵erent wavelengths of light. The reduced Compton wavelength of
light is actually 2lp and is independent of the wavelength of light. This plays an important role in understanding
our quantum gravity theory. For example, light with di↵erent wavelengths doesn’t bend di↵erently. Light under
atomism corresponds to the old Newton view, that light is composed of indivisible particles traveling one after
another at the speed of light. A photon with a wavelength must be at a minimum two indivisible particles
traveling after each other. No matter if the distance between the two indivisible particles, for example, where
500 nanometers or one femtometer, the reduced Compton wavelength of light is always twice the Planck length.
We could also call it the light particle’s mass length to distinguish it from the wavelength of light (the distance
between indivisible particles traveling in the same direction after each other).

What is most important to keep in mind from this section is simply that all masses are somehow related to
the Planck length, while light is linked to twice the Planck length.

4 Modifying Newton’s Composite Constant Based on Atomism

So our hypothesis is simply that Newton’s gravitational constant is a composite constant. And when we under-
stand this we can look at the di↵erent parts of this composite constant and see if any of them need adjustments for
“special situations.” These adjustments should not be based on merely fudging the parameters. In other words,
we should not simply manipulate the di↵erent parts of the composite constant without having a fundamental
reason for doing so.

In 1979, Motz and Epstein [19] suggested that there could be a discontinuity in Newton’s gravitational
constant when crossing the boundary of a subatomic particle, and they hypothesized that this could lead to a
strong gravitational force. This is exactly what we will suggest here, but the analysis is rooted in our composite
gravitational constant. Our approach is still speculative, but adds a di↵erent perspective from the Motz and

3The relationship is simply mc2r
1� v2

c2

=
h̄
�̄

1
c c2

r
1� v2

c2

= h̄c

�̄

r
1� v2

c2
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Epstein suggestion, as they had not decomposed the gravitational constant. Motz and Epstein correctly point
out that even an ad-hoc hypothesis can lead to profound and revolutionary consequences. As an example, they
mention length contraction, which was initially suggested by Fitzgerald [20] and Lorentz [21] to explain the
Michelson–Morley experiment. The ad-hoc hypothesis of Lorentz contraction later became a central part of
Einstein’s special relativity theory. Based on such reasoning, Motz and Epstein claim

We believe that introducing a discontinuity in G is such an ad hoc hypothesis and that a full
understanding can only come from an analysis of the physical operational meaning of the constant.

This is exactly what this paper is about; we have found strong evidence that Newton’s gravitational constant
is a composite constant. By decomposing it and knowing its parts, it is much easier to suggest which parts
should be changed for special situations. In our theory of quantum gravity, we suggest that there is indeed such
a discontinuity in the gravitational constant when working with matter versus light instead of matter against
matter.

Based on this we suggest that when working with matter against matter the gravitational constant should
be the normal one, but still a composite

Gm =
l2c3

h̄
= G ⇡ 6.67384⇥ 10�11m3 · kg�1 · s�2 (6)

As we have seen in the section above, the reduced Compton wavelength of individual indivisible particles
(light) is always twice the Planck length. This because its rest-mass or its potential rest-mass when it is moving
is half the Planck mass. So we will claim this leads to a gravitational constant of

Gm =
2lplpc

3

h̄
= 2G ⇡ 1.33477⇥ 10�10m3 · kg�1 · s�2 (7)

Again the reason for the modification when working with matter against light is that we claim gravity has
to do with the collision point between indivisible particles that are, in our view, the ultimate building blocks of
subatomic particles.

5 Bending of Light

In 1881 and 1884, Soldner predicted the following deflection of light, based on Newton’s classical mechanics (see
[29, 30])

�S =
2Gm
c2r

(8)

In 1911, Einstein obtained the same formula for the bending of light when he derived it from Newtonian
gravitation, see [31]. The angle of deflection in Einstein’s general relativity theory [32] is twice what one gets
from Newtonian gravity

�GR =
4Gm
c2r

(9)

The solar eclipse experiment of Dyson, Eddington, and Davidson performed in 1919 confirmed [33] the idea
that the deflection of light was very close to that predicted by Einstein’s general relativity theory. That is 1.75
arc-seconds compared to the 0.875 as predicted by Soldner’s 1884 formula.4 This was one of the main reasons
general relativity took o↵ and partly replaced or rather extended Newtonian gravitation. A drawback with
general relativity theory is that it is very complex to understand and it does not seem to be consistent with the
quantum world.

Sato and Sato [34] have suggested that it looks like the 2 factor (double of Newton) in observed light deflection
likely would be due to an unknown property of the photon rather than the bending of space-time. This is exactly
what we get from atomism and leads to our Newtonian quantum gravity theory.

The relationship between the angle of the asymptote to the hyperbole of eccentricity ✏ is given by

cos(�) =
1
✏

(10)

and the angle of deflection of light in Newton’s theory must be given by (see Figure 1.)

� = ⇡ � 2� = ⇡ � 2

✓
1
✏

◆
(11)

4In 1881, Soldner calculated the light deflection to be 0.84 arc-seconds based on less accurate knowledge of the mass of the Sun and
speed of light than we have today.
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Figure 1: This figure illustrate the bending of light around the Sun. The figure is strongly exaggerated for
illustration purpose.

In other words, we need to find the orbital eccentricity. The orbital eccentricity in some of Newton’s deflection
of light calculations [35] is given by

✏ =

s

1 +
2EL2

G2
mM2

Sm
3

(12)

but we have to understand how this particular form of eccentricity comes into being. Pay particular attention
to the 2 factor in the formula. This type of orbital eccentricity can be found from

h2 = GMa(1� ✏2) (13)

where h is the specific angular momentum, h = L
m , and a is the is the length of the semi-major axis, and G

is the gravitational constant. Solved with respect to the eccentricity ✏ we get

✏ =

r
1� h2

GMa
(14)

Next we will use the argument that the gravitational energy can be described as5

E = �GMm
2a

(15)

Again we see the 2 factor, which basically corresponds to the energy for low velocity orbital objects (somehow
similar to the kinetic energy approximation of E ⇡ 1

2mv2). Putting this energy formula into formula 14 we get
the known formula 12.

✏ =

r
1� h2E

GMaE

✏ =

s
1 +

h2E

GMaGMm
2a

✏ =

r
1 +

2h2E
G2M2m

=

r
1 +

2EL2

G2M2m3
(16)

However, for a photon we claim that it must be wrong to use the gravitational energy formula above and
thereby the eccentricity formula above, because it is rooted in low velocity objects. Instead, we should use the
following version when dealing with “orbital” velocity objects moving at significant speed compared to that of
light. A photon is clearly doing so, as it moves at the speed of light, so in this case we must have

E = �GMm
a

(17)

5See for example http://scienceworld.wolfram.com/physics/Eccentricity.html
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This gives an eccentricity formula of

✏ =

r
1 +

Eh2

G2M2m
=

r
1 +

EL2

G2M2m3
(18)

and with respect to our composite gravitational constant we must have

✏ =

s

1 +
EL2

G2
mM2m3

(19)

Thus, in our view, the energy to be used in the formula when dealing with bending of light must be the
photon rest-mass energy minus the gravitational energy.

E = mc2 �Gm
Mm
R

(20)

This lies in contrast to the kinetic energy approximation that only holds for low velocities, which is used in
an otherwise very interesting paper 6 by Soares [35]:

E =
1
2
mc2 �Gm

Mm
R

(21)

Since 1
2mc2 is a kinetic energy formula approximation for very low velocity, it should not be used in this

context where we deal with photons. Further, we claim that the (full) exact kinetic energy formula cannot be
used for photons either.

E =
mc2q
1� v2

c2

�mc2 �Gm
Mm
R

(22)

setting v = c we would get an infinite kinetic energy. So both the kinetic energy approximation (that only
holds for low velocities) and the full kinetic energy formula do not seem to make sense when we work with
photons. The kinetic energy formula is made for something that has rest-mass in its normal constitution, and
not for light. Here we are considering a photon that is traveling at the speed of light, but we will claim it is
actually the rest-mass energy of the photon that is relevant here, which is E = mc2. This is simply because,
for a photon all the rest-mass energy is actually kinetic energy. The kinetic energy for a photon is, according
to atomism, the very collision point between indivisible (light) particles, where the collision lasts for one Planck
second. The collision is only changing the direction of the light particle, that is to say, the kinetic energy of light
is a somewhat special case. Why is this? This is because all the rest-mass energy in a light particle is its kinetic
energy as well.

Further, we have the angular momentum of the photon, which is

L = mcR (23)

We will claim that only a light particle can have momentum equal to mc, and this is actually directly linked
to the Planck momentum, as the Planck mass momentum is always mpc.

A single light particle has an angular momentum of

L = mcR =
h̄
2lp

1
c
cR =

1
2
mpcR (24)

this gives

✏ =

s

1 +
EL2

G2
mM2mm2

✏ =

s

1 +

�
mc2 �Gm

Mm
R

�
m2c2R2

G2
mM2m3

✏ =

s

1 +

�
c2 �Gm

M
R

�
c2R2

G2
mM2

(25)

Bear in mind that all the small m above actually are = h̄
2lp

1
c , but we see they cancel each other out; this

has an impact on our Gm, which is something we will get back to later on. Since for the Sun we must have
Gm

Ms
R << c2, we have

6To a large degree we have based our calculations on this paper by Soares.
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✏ ⇡

s

1 +
c4R2

G2
mM2

S

(26)

and since c4R2

G2
mM2

S
>> 1, we can approximate this very well as

✏ ⇡ c2R
GmMS

(27)

The bending of light is given by

� = ⇡ � 2 arccos

✓
GmMS

c2R

◆
= ⇡ � 2 arccos

 
lp2lpc3

h̄ MS

c2R

!
(28)

and the reason we have Gm =
2lplpc

3

h̄ = 2G instead of Gm =
lplpc

3

h̄ = G is because here we are working
with a standard mass (the Sun) versus light (the light beam). The light particles making up a photon each have
half a Planck mass in rest-mass and therefore even if it doesn’t have a reduced Compton wavelength per se we
think it is relevant to claim it must have an equivalent reduced Compton wavelength of 2lp. Remember that
this rest-mass only lasts for one Planck second at collision, so it is more ”correct” to think of this mass as only
5.86⇥ 10�52 kg.

Further, we can expand arccos(x) since x = GmMS
c2R

<< 1 using a Taylor series expansion, this gives

arccos(x) =
⇡
2
� arcsin(x) =

⇡
2
�
✓
x� x3

6
+

3x5

40
+ · · ·

◆
(29)

Using only the first part of the Taylor series expansion we get

� ⇡ ⇡ � 2

0

@⇡
2
�

2l2pc
3

h̄ MS

c2R

1

A =
4
l2pc

3

h̄ MS

c2R
=

4GMS

c2R
⇡ 1.75 arc seconds (30)

This in strong contrast to Soares [35] who uses the same approach in deriving Newton deflection, but his
work is based on the non-modified G. He correctly gets the traditional Newton bending of light, which is half
of the above. Still, we will claim that Soares made a technical mistake in his derivation using the kinetic energy
approximation that clearly should not be used for light, as it is an approximation that only holds when v << c.
This is partly understandable, as the full kinetic energy formula cannot be used either, since it returns infinity
for light. The light particle is special and we must return to atomism to get the proper insight to understand the
rest-mass of light particles. However, even when he is using the wrong kinetic energy formula, Soares has obtained
the right answer for Newtonian bending of light, as he also indirectly has used the low energy approximation for
the orbital eccentricity (the 2 factor in his eccentricity formula seems to come from this). It would appear that
the two errors cancel each other out.

Soares’ approach is indirectly hinting that there is something special about the photon, since the normal
kinetic energy framework cannot be used, nor the slow velocity approximation, nor the exact relativistic kinetic
energy formula. It is clear that the kinetic energy approximation formula and the full exact kinetic energy
formula for standard rest-mass cannot be used for pure energy (light).

For a photon neither can the kinetic energy approximation formula be used, nor the full kinetic energy
formula. The rest-mass energy must be used. Light is special, it has rest-mass when colliding for one Planck
second, in other words, all of its rest-mass is actually kinetic energy.

It seems like the atomism understanding of energy and matter combined with understanding that the Newton
gravitational constant is a composite gives the correct bending of light prediction. From our derivation above,
our theory also seems to predict that the bending of light in a highly accelerated electron beam would be only
the Newtonian bending of light. Has this been tested? If not, then it should be: a high energy beam of electrons
could be sent from Earth, and a spaceship with a measurement device could try to measure this. In short, our
theory predicts something di↵erent than GR that likely could be tested.

6 Bending of Light from the Linear Equivalent Speed in Grav-
itational Fields and a Snell’s-Type Law

There also exists an alternative way to calculate and study the bending of light that gives the same result as
above. The idea of trying to combine Snell’s law with gravity goes back to at least 1968, see [36], but has not led
to any dramatic conclusions. This is not so strange, because light is actually not slowed down in a gravitational
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field; it simply has to take a longer path between two points since it is bent by gravity. When we understand
this and combine it with key ideas from atomism concerning rest-mass, half Planck mass, and Planck-second
durations, we can take a step forward. Here, we will introduce a quantized Snell’s-type law that relies on what
we will call the linear equivalent speed of light in a gravitational field.

In a gravitational field, light is bent. If we take the time in which light travels along this bent path and divide
the shortest distance between two points on the path by this time, we will obtain what we can call the linear
equivalent speed of the light. To be clear, the light beam is still moving at the speed of light c, as measured with
Einstein-Poincaré synchronized clocks. However, we are calculating a virtual straight path for the light beam
that is very useful for evaluating the bending of light in a new and interesting way. The linear equivalent speed
of light in a gravitational field must be

v̄ = c

s
2

1 + GmM
c2r

� 1
�
1 + GmM

c2r

�2

v̄ = c

vuuut
2

1 +
lp2lpc3

h̄ Nmp

c2r

� 1
✓
1 +

lp2lpc3

h̄ Nmp

c2r

◆2

v̄ = c

vuuuut

2

1 +
2
l2pc3

h̄ N h̄
lp

1
c

c2r

� 1
 
1 +

2
l2pc3

h̄ N h̄
lp

1
c

c2r

!2

v̄ = c

vuut
2

1 + 2N
lp
r

� 1
⇣
1 + 2N

lp
r

⌘2 (31)

where lp is the Planck length, c is the speed of light in vacuum, r is the radius from the center of a spherical
mass where the light beam is passing, and N is the number of Planck masses in the gravitational mass.

Next we will introduce what can be called the gravitational refraction index, which we define as

n =
c
v̄
� 1 (32)

To calculate the bending of light, we can use something similar to Snell’s law for this quantized linear
equivalent speed of light

� = arccos

✓
n1

n2

◆
(33)

Since we normally talk about going from a zero gravity field to passing in and out of a gravity field, n1 will
typically be equal to 1. This is because in a zero gravitational field there is no bending of light.

For example, the mass of the Sun is approximately 1.989 ⇥ 1030, which is equivalent to approximately
9.13848⇥ 1037 Planck masses. The radius of the Sun is about 696,342,000 meters. This means the straight line
equivalent speed of light passing the Sun at the radius of the Sun is

v̄ = c

vuut
2

1 + 2⇥ 9.13848⇥ 1037 ⇥ lp
696,342,000

� 1
⇣
1 + 2⇥ 9.13848⇥ 1037 ⇥ lp

696,342,000

⌘2 ⇡ 299792457.9892 m/s

This leads to a gravitational refraction index of the Sun of

n =
299792458

299792457.9892
⇡ 1.00000000003599

Next we take the arccosine of that and get the deflection angle of light around the Sun in radians

� = arccos

✓
1

1.00000000003599

◆
⇡ 8.48404⇥ 10�6

This must be multiplied by 648000
⇡ to get the answer in arcseconds, as is most normally reported in relation

to the bending of light; this gives

� = 8.48404⇥ 10�6 ⇥ 648000
⇡

⇡ 1.75 arc seconds

That is about 1.75 arc seconds, which is basically the same prediction as given by Einstein’s general relativity
theory and lies well within the range of what has been observed. Here it is simply calculated from a di↵erent
quantized perspective.
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On the surface of Earth, when we talk about light speed experiments, we must be aware that the path taken
is not linear. So here we also have a linear equivalent speed, which is the virtual speed light has attained on the
linear path. The mass of the Earth is approximately 5.972 ⇥ 1024 kg and about 2.74384 ⇥ 1032 Planck masses.
Further, the radius of the Earth is about 6,371,000 meters. This gives a linear equivalent speed of light of

v̄ = c

vuut
2

1 + 2⇥ 2.74384⇥ 1032 ⇥ lp
6,371,000

� 1
⇣
1 + 2⇥ 2.74384⇥ 1032 ⇥ lp

6,371,000

⌘2

⇡ 299792457.99999999970949 m/s

As expected, this “e↵ect” is mini-scule in the weak gravitational field of the Earth. The main consequences
are naturally that when one assumes light travels in a straight path in a gravity field: a) it is actually not
traveling in a straight path (well known), and b) the equivalent straight-line speed is slower than the speed of
light in vacuum.

To our knowledge, only Wålin [37] has tried to do something similar. First of all, his velocity formula is
di↵erent, and he mistakenly assumes that it is the real velocity of light in a gravitational field, rather than a
linear equivalent virtual light speed, as we understand here. The speed of light that Wålin assumes is a slowing
down from a gravitational field is also far too slow based on his formula. His prediction would easily have been
detected on Earth already in a series of experiments. Still, he is able to get the right amount of light bending.
We think that there is too much fudging to his approach, but it is still a great paper, as it inspired us to come
up with the idea of linear equivalent speed of light. His formula for the speed of light in gravitational field is
given by

v =
c

1 + 2GM
c2

(34)

At the surface of Earth, this would lead to a light speed of

v =
c

1 + 2GME
c2r

⇡ 299, 792, 457.583 (35)

This obviously cannot be correct, as it would have been detected long ago if the speed of light on the surface
of Earth was very di↵erent from the speed of light in outer space. We have simply calculated linear velocity from
the linear distance between two points divided by the time it takes for the bent light path to travel between
those points.

7 Gravitational Red-Shift and Gravitational Time Dilation

Gravitational red-shift and time dilation are basically just a function of the escape velocity. The escape velocity
from Newtonian gravity is typically always calculated by solving the equation below with respect to v

1
2
mv2 �G

Mm
R

= 0

v2 � 2G
M
R

= 0

v =

r
2
GM
R

(36)

This is also the same escape velocity one gets from Einstein’s general relativity using the Schwarzschild
metric; see [38]. Please notice that the equation above is solved from the kinetic energy approximation that only
holds when v << c. Light is moving at speed c, so this formula should clearly not hold for light. Also, the full
kinetic energy formula cannot be used, as it would lead to infinity when v = c, as it must be for light. We have
to understand that light is special; we claim it is the rest-mass formula that must be used for light, so in other
words we must have

mc2 �Gm
Mm
R

= 0

v2 �Gm
M
R

= 0

v =

r
GmM
R

(37)
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However, because we are working with light here, we have Gm =
2lplpc

3

h̄ = 2G rather than Gm =
lplpc

3

h̄ = G,
as we would have for any non-light moving object. Under our theory, we get the same escape velocity as before

v =

r
GmM
R

=

r
lp2lpc3

h̄
M
R

=

r
2
GM
R

(38)

Only the escape velocity is needed to calculate gravitational time dilation, red-shift, and gravitational accel-
eration. This means we get the same outcomes as Newton and general relativity here.

8 A probability interpretation of Gravity when below Planck
mass size

Haug [7] has suggested that when re-writing Newton and Einstein gravitational formulas based on the view that
the gravitational constant likely is a composite constant that we at the subatomic scale has to do with a type of
gravity probability. We are also presenting this view here. The classical Newtonian gravity is then given by

F = G
mPmP

r2
m3 · kg�1 · s�2 (39)

where mP is the proton mass, not to be confused with the Planck mass notation mp. This is about 1038

times weaker than the strong force. One of the most significant open questions in modern physics is why the
strong force is so much more powerful than the gravity force. However, we can rewrite the formula above based

on the view that the gravitational constant is a composite of the form G =
l2pc

3

h̄ , this gives

F = Gm
mPmP

r2
=

l2pc
3

h̄

h̄
�̄P

1
c

h̄
�̄P

1
c

r2
=

h̄c
r2

l2p
�̄2
P

(40)

We will here as Haug has suggested in several papers claim that
l2p
�̄2
P

can be seen as a quantum probability

factor linked to a one Planck second observational time window. This is in other words an expected gravity, and
should be written as

E[F ] = Gm
mPmP

r2
=

l2pc
3

h̄

h̄
�̄P

1
c

h̄
�̄P

1
c

r2
=

h̄c
r2

l2p
�̄2
P

(41)

Let us for a moment exclude the probability factor in the Proton gravity,
l2p
�̄2 , in the formula above. Then

we get a gravity force that is approximately 1.69 ⇥ 1038 times the force that would be predicted using the
conventional gravity formula today, still that is without taking into account the probability factor. When going
below Planck masses probability starts to kick in, and when down to the proton size, the probabilities are totally
dominating in relation to gravity. The gravity force is discrete at Planck time, either there is the full Planck
gravity force G

mpmp

l2p
lasting for only one Planck second or there is no gravity. For a proton, the gravity kicks

in and out c
�̄P

⇡ 1.4254 ⇥ 1024 times per second. However each gravity event only last for one Planck second,

so the very strong Planck gravity force is if we are observing at a time interval of longer than 7.0151 ⇥ 10�25

seconds observed as Planck gravity force that only lasted for one Planck second is smoothed (divided) out over
the reduced Compton time of the proton, an idea not so di↵erent than that have been suggested by Motz and
Epstein [19]. The very strong gravity force appears weak even if it is as strong as the strong force. This because
it only lasts for one Planck second for every reduced Compton time interval in the proton ( �̄c ). All of this is
consistent with a new probabilistic Heisenberg theory recently derived by Haug, [39] and also a gravity theory
derived from the Heisenberg principle, first for masses fully divisible by the Planck mass derived by McCulloch
in 2014 [8] and then extended to include masses below the Planck mass as well as not divisible by the Planck
mass by Haug in 2018 [40] (actually that last development happened after the first version of this paper).

9 Modified Gravitational Acceleration Field

The acceleration field is unrealistically low under classical Newtonian physics at the Schwarzschild radius. And
yet the escape velocity at the Schwarzschild radius is always the speed of light, as we think it should be. Assume
a super-massive object that is 1014 solar masses. The gravitational acceleration field at the Schwarzschild radius
is, under Newton’s universal gravitation, only

g =
GM
R2

=
GM

2GM
c2

⇡ 0.152 m/s2 (42)
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How can the escape velocity be c and at the same time is the surface gravity field much weaker than that
on Earth, where it is about 9.8 m/s2? According to Einstein’s General Relativity theory, the gravitational
acceleration field under the Schwarzschild metric is di↵erent than that of Newton. We will suggest that no
acceleration field can be stronger than the Planck acceleration field:

ap =
c2

lp
⇡ 5.56092⇥ 1051 m/s2 (43)

If the shortest possible time interval during which something can undergo acceleration is one Planck second,
then if an object undergoes Planck acceleration for this time interval, it will reach the speed of light:

aptp =
c2

lp

lp
c

= c (44)

As matter cannot travel at the speed of light, in our interpretation this means only a Planck mass particle
can undergo this acceleration. As shown by Haug in a series of papers, the Planck particle is likely at absolute
rest and is within one Planck second dissolving into pure energy. This also explains why the mass can accelerate
from rest-mass to speed c within a Planck second; it has to dissolve into pure energy in this time-frame. And
from mathematical atomism only the Planck mass particle can do this within a Planck second. Anyway we will
assume the Planck acceleration is what we have at the Schwarzschild radius. Further, we will assume the inverse
square rule basically holds for a radius going out from the Schwarzschild radius rather than from the very center
of the mass. Based on this our suggested somewhat ad-hoc modified formula for gravitational acceleration field
is

g ⇡ GM

r2 �
�
2GM
c2

�2
+
�
GM
c2

�
lp

g ⇡ c2Nlp
r2 � (2Nlp)2 +Nl2p

(45)

The acceleration field now for a 1014 solar mass object at the Schwarzschild radius, r = 2GM
c2

gives

g ⇡ GM

r2 �
�
2GM
c2

�2
+
�
GM
c2

�
lp

=
GM

�
2GM
c2

�2 �
�
2GM
c2

�2
+
�
GM
c2

�
lp

=
c2

lp
⇡ 5.56092⇥ 1051 m/s2 (46)

Next, the mass of the Earth is approximately 2.74388⇥ 1032 Planck masses. Further, the radius of the Earth
is 6,371,000; this gives an acceleration field of the Earth at the surface of Earth equal to

g ⇡ c2Nlp
r2 +Nl2p(1�N)

=
c2 ⇥ 2.74388⇥ 1032 ⇥ lp

63710002 + (2⇥ 2.74388⇥ 1032 ⇥ lp)2 � 2.74388⇥ 1032 ⇥ lp
⇡ 9.8194 m/s2

Still, this formula always gives the Planck acceleration at the modified Schwarzschild radius. We have not
investigated this adjustment in depth yet, and it should be investigated further for possible weaknesses.

10 Perihelion of Mercury

Supposedly one of the greatest achievements of general relativity was to predict the perihelion of Mercury
correctly. At least in its original form, the Newtonian theory does not seem to predict this. However, several
smaller modifications of Newton’s gravitational theory have been proposed that make it compatible with the
observed perihelion of Mercury. Friedman and Steiner [41], for example, have recently suggested a relativistic
correction for Newton that seems to work in this regard. Sato and Sato [34] have speculated that the perihelion
precession of Mercury is caused by an gravitationally-induced electromagnetic “Bremsstrahlung.” Abramowicz
et.al [42, 43] have suggested that an “enhanced” Newtonian theory is consistent with bending of space and
thereby with the perihelion of Mercury. Other researchers have pointed out that it is not completely clear that
Newton is truly incompatible with the observed perihelion of Mercury; see [44], for example.

How these theories and ideas may be compatible with the Newtonian quantum gravity theory suggested here
is a question we will hold for future research.

11 Summary

Here we will shortly summarize some of our findings.
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• In Newtonian quantum gravity theory, the gravitational “constant” takes the same value as it does today,
as long as we are working with two objects larger than or equal to the Planck mass.

• Newtonian quantum gravity theory surprisingly predicts the same gravitational bending as GR for light,
but it is based on a much simpler model with postulates on what the ultimate building blocks are. We

have � = 2GmM
c2R

= 4GM
c2R

when dealing with light. That is for photon beams we have Gm =
lp2lpc

3

h̄ = 2G.

• Newtonian quantum gravity theory seems to predict that the bending of non-photon beams will be � =
GmM
c2R

= 2GM
c2R

. This is a prediction not given by GR. This could possibly be tested out by electron beams

or proton beams. For non-photon beams we have Gm =
l2pc

3

h̄ = G.

• When working below Planck masses or with masses not fully divisible by the Planck mass we will claim
uncertainty kicks in for gravity and we have suggested that there is a probability factor that kicks in when
below the Planck mass size. There are also probabilities when working with Planck mass objects, but the
partial probabilities then add up to one, as recently shown by Haug [39].

• Newtonian quantum gravity theory seems to give the same predictions as GR for time dilation, gravitational
red-shift, and so forth.

• When it comes to the gravitational acceleration field, we have suggested a modification that makes the
field equal to the Planck acceleration at the Schwarzschild radius. For weak gravitational fields we still get
the same as predicted by Newton.

• In Newtonian quantum gravity, the speed of gravity moves at the speed of light. This is already hidden
inside Newton’s gravitational constant. We could say that Newton’s gravitational theory is consistent with
the speed of gravity being the speed of light, but this is made clear when we have modified it into a
Newtonian quantum gravity theory.

Newtonian quantum gravity is much simpler than general relativity theory and is rooted in a theory of
atomism. Table 1 illustrates the main di↵erences between this new gravity theory and Newtonian gravity and
general relativity theory.

Case: Prediction
Speed of gravity Speed of light
Time dilation Same as GR (and Newton).
Red-shift Same as GR (and Newton).

Gravitational acceleration field Di↵erent than GR and Newton.
Deflection light beam Same as GR, twice of Newton.

Deflection electron beam Same as Newton for light, half of GR.

Table 1: The table of a series of measurements that can be observed and measured in relation to gravity, and the
gravitational force that we cannot observe or measure.

Case: Result

When working with two rest-masses Gm = lplpc
3

h̄ = G.

When working with light Gm =
2l2pc

3

h̄ = 2G.

Table 2: The table of a series of measurements that can be observed and measured in relation to gravity, and the
gravitational force that we cannot observe or measure.

Table 2 illustrates how we think Newton’s composite gravitational constant should be used for di↵erent
“special” situations.

12 Conclusion

We have pointed out that Newton’s gravitational constant is most likely a composite constant. Based on new ideas
about energy and mass at the most fundamental level, we have also suggested how the composite gravitational
constant must be modified when we have to deal with light and other special situations.

Our Newtonian quantum gravity theory gives the same prediction of bending of light as Einstein’s theory of
general relativity. For non-light beams such as electrons, our theory seems to predict that they only would bend
half as much as light. That is to say, we get a Newton bending of light for electron beams, but a GR bending
when we deal with light.
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Further, we have suggested a modification of the gravitational acceleration field equation. Our modified
formula always gives Planck acceleration at the Schwarzschild radius, and at the same time it gives the same
values as Newton when we are in weak gravitational fields.

In addition, our theory suggests that the gravitational force becomes uncertain when working with masses
below the Planck mass size. The closer we get to the subatomic world the more uncertainty. The di↵erence
between the strong force and the gravity force can likely be explained by a quantum probability factor that we
have looked at briefly in this paper and in much more detail in other recent working papers.

We admit that our theory is somewhat speculative. However, as with any emerging scientific theory, we
strongly recommend studying recent developments in mathematical atomism closely before coming to any con-
clusions about this new theory of quantum gravity that can be derived from the Heisenberg uncertainty principle.
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