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INTRODUCTION

Let us start our paper with a quote from professor Friedmann’s last lecture [3]. (cit . . . ) Most [mathematicians]
intuitively feel that the great power and stability of some ”rule book for mathematics” is an important component of
their relationship with mathematics. The general feeling is that there is nothing substantial to be gained by revisiting
the commonly accepted rule book . . . .

In 1964, John Bell wrote a paper [1] about the possibility of hidden variables [2] causing the entanglement correlation
E(a, b) between two particles. In the present paper, an inconsistency similar to concrete mathematical incompleteness
[4], will be demonstrated from his theorem. The argument for mathematical incompleteness is to proof and refute
with known concrete mathematical axioms the mathematical statement of Bell’s theorem. The author is aware of the
scepsis this may raise with certain readers. However, scepsis is simply not enough to push our proof of inconsistency
aside and do ”business as usual” with Bell’s formula.

Bell, based his hidden variable description on particle pairs with entangled spin, originally formulated by Bohm [5].
Bell used hidden variables λ that are elements of a universal set Λ and are distributed with a density ρ(λ) ≥ 0. Suppose,
E(a, b) is the correlation between measurements with distant A and B that have unit-length, i.e. ||a|| = ||b|| = 1, real 3
dim parameter vectors a and b. The basic physics experiment is as follows: Suppose on the A side we have measurement
instrument A with parameter vector a. On the B-side we have measurement instrument B with parameter vector
b. There is a (Euclidean) distance d(A,B) > 0 between instruments A and B which can be large if necessary. In
between the two instruments there is a source Σ generating particle pairs. We have, d(Σ, A) = d(Σ, B) = 1

2d(A,B).
One particle of the pair is sent to A the other particle of the pair is sent to B. The physics of the two particles of the
pair is such that they are entangled, [5],[7].

Then with the use of the λ we can write down the classical probability correlation between the two simultaneously
measured particles. This is what we will call Bells formula.

E(a, b) =

∫
λ∈Λ

ρ(λ)A(a, λ)B(b, λ)dλ (1)

Note that if ` is the short-hand notation for the random variable(s), the E(a, b) simply is the expectation value of the
product of two {−1, 1} functions, A(a, λ) and B(b, λ). It can be written as E(a, b) = E` (A(a, `)B(b, `)). In fact we are
looking at a special case of covariance computation [6] with the use of functions A and B, depending on parameters
a and b and random variables captured with `, projecting in {−1, 1}.

In (1) we therefore must have
∫
λ∈Λ

ρ(λ)dλ = 1. The integration
∫
λ∈Λ

can be over, as many as we please, variables
and over ditto spaces Λ. The density ρ ≥ 0 also has a very general form.
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Proof

From (1) an inequality for four setting combinations, a, b, c and d can be derived as follows

E(a, b)− E(a, c) =

∫
λ∈Λ

dλρ(λ)A(a, λ)B(c, λ)A(d, λ)B(c, λ)−
∫
λ∈Λ

dλρ(λ)A(a, λ)B(b, λ)A(d, λ)B(b, λ) +∫
λ∈Λ

dλρ(λ)A(a, λ)B(b, λ)−
∫
λ∈Λ

dλρ(λ)A(a, λ)B(c, λ) (2)

because, {B(c, λ)}2 = {B(b, λ)}2 = 1. From this it follows

E(a, b)− E(a, c) =

∫
λ∈Λ

dλρ(λ)A(a, λ)B(b, λ) {1−A(d, λ)B(b, λ)}+∫
λ∈Λ

dλρ(λ) (−A(a, λ)B(c, λ)) {1−A(d, λ)B(c, λ)} (3)

Hence, because 1 − A(x, λ)B(y, λ) ≥ 0 for all x, y with ||x|| = ||y|| = 1 and A(a, λ)B(b, λ) ≤ 1 together with
−A(a, λ)B(c, λ) ≤ 1, it can be derived that

E(a, b)− E(a, c) ≤ 2− E(d, b)− E(d, c) (4)

Or,

S(a, b, c, d) = E(a, b) + E(d, b) + E(d, c)− E(a, c) ≤ 2. (5)

Note, no physics assumptions were employed in the derivation of (4). It is pure mathematics. Suppose, further, that
if we select for a, b, c and d

a =
1√
2

(1, 0, 1) , d =

(
1

2
,

1√
2
,−1

2

)
b = (1, 0, 0) , c = (0, 0,−1) (6)

then E(x, y) cannot be the inner product of the two vectors because, a · b = 1√
2
, d · b = 1

2 , d · c = 1
2 and a · c = − 1√

2
.

Hence,

S(a, b, c, d) = (a · b) + (d · b) + (d · c)− (a · c) =
1√
2

+
1

2
+

1

2
−
(
− 1√

2

)
= 1 +

√
2 > 2

In [7] Peres gives supporting argumentation to the form, S(a, b, c, d) ≤ 2 derived here. So we can be sure (4) and
S(a, b, c, d) ≤ 2, are a generally valid expression for all possible models under the umbrella of (1).

COUNTER PROOF

In this section we will demonstrate that E(x, y) can arbitrarily close approximate x · y. As a reminder, both x ∈ R3

and y ∈ R3 are unit length parameter vectors, hence, E(x, y) ∈ [−1, 1]. Although the physical details are unimportant,
they can be verified to be within the bounds of applicability of Bell’s formula (1).

Preliminaries

The model to be developed here follows the basic physical requirements of a local model. The requirements follow
from looking at the physics experiment. In instrument A a set of hidden variables is supposed. Similarly, a set of
hidden variables is supposed to reside in instrument B. The instruments are, as in the previous section, represented in
the formulae by functions A(x, λI , χ) and B(y, λII , χ). The (arrays of) hidden variables λI and λII are independent.
A third set of hidden variables, denoted here by χ, are carried by the particles. The χ have a Gaussian density.
The χ variables are independent of λI and λII . Moreover, λI and λII are independent. Looking at (1) we see that
λ = (λI , λII , χ). Hence, looking at (1), A(a, λ) = A(a, λI , χ), B(b, λ) = B(b, λII , χ) and ρ(λ) = ρ(λI , λII , χ). This is
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a local and physically possible situation. Although the proof we deliver here is about a flaw in Bells argumentation,
hence is purely mathematics, the necessary basic physical requirements are fulfilled in the model.

It must be stressed that, in anticipation of a more detailed definition below, the mathematical form of the probability
density ρ(λI , λII , χ) remains fixed all the time. This can be easily verified in the section below devoted to the
probability density. Clearly, the argumentation of that the inequality cannot be violated is then invalid. In the first
place we show that clinging on to the inequality is merely attaching believe to one branch of the incompleteness
which is demonstrated below. This believe is unfounded. The argumentation ”the model is unphysical” is also broken
because the basic requirements of a physical model are obeyed. Secondly, we already stated that the probability
density remains fixed. Therefore it is possible to rightfully claim a genuine case of rejection of the validity of Bells
argumentation. It can be verified that we use a model that perfectly fits the physics requirements behind Bells formula
(1).

To wrap it up. There is no violation of locality in our model. There is no breach in the constancy of probability
density form. The basic physics behind Bells formula are fulfilled. The breakdown of Bells argumentation is purely
mathematical.

The opponent has to deliver proof why λI in instrument A and λII in instrument B that are independent and
independently distributed variables and the independent and independently distributed χ variables, carried by the
particles, is not complying to physical realistic locality.

It will be shown that the argument of Bell is based on negation incompleteness. In other words, we will show
S(a, b, c, d) > 2 from the same formula that with the same physical requirements gives, along the branch of Bells
argumentation, S(a, b, c, d) ≤ 2. Hence, we will show that Bells formula supports negation incompleteness of the use
of statistics in physics experimentation. If readers think otherwise then proof is the route to go. Believe, whoever is
expressing it, should be -and actually is- worthless in scientific debate.

Probability density

Let us in the first place define a probability density ρ based upon two separate λ’s and on (χ1, χ2, χ3). Suppose,
α is a variable to indicate the two separate systems of hidden variables. Let us denote them with I and II, i.e.,
α ∈ {I, II}. Then,

λα = (xα, µ1,α, µ2,α, µ3,α, τα, nα) ∈ R6 (7)

For λI we define a density ρI = ρI(λI) and for λII a density ρII(λII).

The χ variables

For ~χ = (χ1, χ2, χ3) ∈ R3 let us define the Normal Gaussian density

ρNorm = ρNorm (χ1, χ2, χ3) =

(
1

2π

)3/2

exp

[
−1

2

3∑
k=1

χ2
k

]
(8)

The integration of the normal density is,
∫∞
−∞ dχ1

∫∞
−∞ dχ2

∫∞
−∞ dχ3 and is denoted with brackets, 〈·〉Norm such that

e.g. 〈ρNorm〉Norm = 1. This enables us to formally write the total density as

ρ(λI , λII , ~χ) = ρI(λI)ρII(λII)ρNorm(~χ) (9)

The density defined in (9) should fulfill the requirements alluded to in the previous section devoted to the requirements
of the physics behind the model. The χ are mutually independent and are independent of the ”instrument variables”
λI and λII . Subsequently, let us turn to the use of the χ variables in the model.

Let us, firstly, define the Heaviside function H(x) = 1⇔ x ≥ 0 and H(x) = 0⇔ x < 0. In the second place let us
define a sign function from the Heaviside, sign(x) = 2H(x)− 1. Because of the symmetry of the Gaussian in (8), we
have in the angular notation of integration for i, j = 1, 2, 3 that

〈sign(χi)sign(χj)ρNorm〉Norm =

(
1

2π

)3/2 ∫ ∞
−∞

dχ1

∫ ∞
−∞

dχ2

∫ ∞
−∞

dχ3 sign(χi)sign(χj) exp

[
−1

2

3∑
k=1

χ2
k

]
= δi,j (10)

with, δi,j = 1⇔ i = j and δi,j = 0⇔ i 6= j.
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Definition of ρα(λα), α ∈ {I, II}

Here we turn to the densities, ρα(λα), α ∈ {I, II}. The ρα(λα) is a product of five factors, ρrα, r = 0, 1, 2, 3, 4. We
have, for T ∈ N and T >> 16

ρ0
α =

1

16T
(
1− 4

T

) ,
ρ1
α = ρ1

α(xα) = H

(
1

4
+ xα

)
H

(
− 1

T
− xα

)
+H

(
1

4
− xα

)
H

(
− 1

T
+ xα

)
,

ρ2
α = ρ2

α(~µα) =

3∏
k=1

H (1 + µk,α)H (1− µk,α) ,

ρ3
α = ρ3

α(τα) = H (T + τα)H (T − τα) ,

ρ4
α = ρ4

α(nα) = 1⇔ nα ∈ {0, 1} & ρ4
α = ρ4

α(nα) = 0⇔ nα /∈ {0, 1}. (11)

Hence, using (11) we then define ρα =
∏4
r=0 ρ

r
α.

Subsequently, let us also introduce the angle notation for integration of α densities similar to what we wrote for
the Normal density. We have, T >> 16

〈ρα . . . 〉α =
1

24T
(
1− 4

T

) (∫ − 1
T

− 1
4

dxα +

∫ 1
4

1
T

dxα

)
3∏
k=1

∫ 1

−1

dµk,α

∫ T

−T
dτα

1∑
nα=0

. . . (12)

The previous leads us to 〈ρα〉α = 2

24T(1− 4
T )

(
23 × 2T

) (
1
2 −

2
T

)
= 1, and, T ∼ sufficiently large number. Looking at

the definition of the total density in (9), it can be derived that∫
λ∈Λ

dλρ(λ) = 〈〈ρI〉I 〈ρII〉II ρNorm〉Norm = 〈ρI〉I 〈ρII〉II 〈ρNorm〉Norm = 1 (13)

Hence, a valid probability density in (9) is obtained where use is made of (8) and (11). The density given in (9) is a
valid fixed form density that is completely local.

Auxiliary functions

The auxiliary function ∆T (y) : Let us in the first place define

∆T (y) =
2/π

1 + T 2y2
(14)

Then, because 1 + T 2y2 ≥ 1 for y ≥ 0, we find that −T ≤ T∆T (y) ≤ T is valid and so, sign (T∆T (y)− τα) can be
meaningfully employed in an integration.∫ T

−T
sign (T∆T (y)− τα) dτα =

∫ T∆T (y)

−T
dτα −

∫ T

T∆T (y)

dτα = (T∆T (y)− (−T ))− (T − T∆T (y)) = 2T∆T (y)(15)

This is true for arbitrary real y. Hence, also for y = x2
α − 1

T 2 the previous is true.
Elements of the measurement functions: In the second place let us define

σa =

3∑
k=1

aksign(χk)

σb =

3∑
k=1

bksign(χk) (16)

It is easily demonstrated that |σa| ≤
√

3 and |σb| ≤
√

3.
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Indicators: In the third place, let us define three disjoint partitions of the real interval [−
√

3,
√

3].

I1 = {x ∈ R | −
√

3 ≤ x < −1}
I2 = {x ∈ R | − 1 ≤ x ≤ 1}
I3 = {x ∈ R | 1 < x ≤

√
3}

(17)

Clearly, I1∩I2 = ∅ together with I2∩I3 = ∅ and I3∩I1 = ∅. With the use of the three disjoint intervals we may employ
the following auxiliary function ιk(x) = 1⇔ x ∈ Ik and ιk(x) = 0⇔ x /∈ Ik. If ι1(x) = 1, then, ι2(x) = ι3(x) = 0. If
ι2(x) = 1, then, ι1(x) = ι3(x) = 0. If ι3(x) = 1, then, ι2(x) = ι1(x) = 0.

Auxiliary functions in measurement functions: Let us fourthly also define functions that will be employed together
with the ιk(x), with, k = 1, 2, 3.

s1,α(zα, λα) = {nαsign (zα + 1− µ1,α)− δ0,nα} sign (T∆T (fα(xα))− τα)
s2,α(zα, λα) = sign (zα − µ2,α)
s3,α(zα, λα) = {nαsign (zα − 1− µ3,α) + δ0,nα} sign (T∆T (fα(xα))− τα)

(18)

The zα is a short-hand and follows, zI = σa and zII = σb, with α ∈ {I, II}. The σa and σb are defined in (16).
It is quite easily verifiable that sk,α(zα, λα) ∈ {−1, 1}, with k = 1, 2, 3. Note, nα ∈ {0, 1}. In (18) the short-hand,
fα(xα) ≡ x2

α − 1
T 2 is employed.

Measurement functions

With the use of the previous definitions we are now able to define the measurement functions A and B.

A(a, λI , ~χ) =

3∑
k=1

ιk(σa)sk,I(σa, λI),

B(b, λII , ~χ) =

3∑
k=1

ιk(σb)sk,II(σb, λII) (19)

Because the ιk(x), k = 1, 2, 3 only have one of them unequal to zero, i.e. the Ik of (17) are disjoint, and the s
of equation (18) are in {−1, 1}, we have that both A(a, λI , ~χ) ∈ {−1, 1} and B(b, λII , ~χ) ∈ {−1, 1}. Hence the
measurement functions in (19) are valid in a Bell correlation E(a, b) such as given in (1). No deeper physics assumption
hides behind this because one simply may select functions that project in {−1, 1}. Bell’s formula is general. The A
and B are called measurement functions but that is totally unimportant to the mathematics to be developed here.

Clearly, we can conclude that our definitions comply to the basic physical requirements of a local model. Hence,
the model is allowed in Bells formula. Note that the measurement representing functions, projecting in {−1, 1}, also
follow the basic physical requirements. The derivation of S(a, b, c, d) ≤ 2 in (5) is therefore possible in this case. We
will show that this is just one branch of the argument.

Evaluation

Looking at Bell’s correlation in (1) let us write

E(a, b) =
〈
〈〈ρIρIIρNormA(a, λI , ~χ)B(b, λII , ~χ)〉I〉II

〉
Norm

=

〈〈ρIA(a, λI , ~χ)〉I 〈ρIIB(b, λII , ~χ)〉II ρNorm〉Norm (20)

Note, λI is only found in ρI and A(a, λI , ~χ) while λII is only found in ρII and B(b, λII , ~χ). The ~χ, via the σa and σb
dependence is shared between functions A and B. Note for completeness that the function B does not depend on a
and A does not depend on b which is in accordance with Einstein’s locality condition [2].

In order to have a proper evaluation of the integrals in 〈ρIA(a, λI , ~χ)〉I , and 〈ρIIB(b, λII , ~χ)〉II it is sufficient to
look at the A side only. The B side evaluations obviously follows similar rules.

We can write explicitly for 〈ρIA(a, λI , ~χ)〉I

〈ρIA(a, λI , ~χ)〉I =
1

24T
(
1− 4

T

) (∫ − 1
T

− 1
4

dxI +

∫ 1
4

1
T

dxI

)
3∏
k=1

∫ 1

−1

dµk,I

∫ T

−T
dτI

1∑
nI=0

A(a, λI , ~χ) (21)
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As it follows from (19), we can have three cases for ιk(σa). Suppose, the selection a and the values of ~χ are such that
σa is in I1. Then A(a, λI , ~χ) = s1,I(σa, λI). Hence, with the use of (18)

〈ρIA(a, λI , ~χ)〉I =
1

24T
(
1− 4

T

) (∫ − 1
T

− 1
4

dxI +

∫ 1
4

1
T

dxI

)
3∏
k=1

∫ 1

−1

dµk,I ×

∫ T

−T
dτI

1∑
nI=0

{nIsign (σa + 1− µ1,I)− δ0,nI} sign (T∆T (fI(xI))− τI) (22)

From (15) it already follows that the τI integral in (22) equals 2T∆T (fI(xI)). So let us look at the µ integrals and
the nI sum. Before entering into more details let us note that (σa + 1) ∈ [−1, 1] and so∫ 1

−1

dµ sign (σa + 1− µ) =

∫ σa+1

−1

dµ−
∫ 1

σa+1

dµ = 2 (σa + 1) (23)

We subsequently see, because
∫ +1

−1
dµ2,I =

∫ +1

−1
dµ3,I = 2, together with

∫ +1

−1
dµ1,I = 2,

1∑
nI=0

(
3∏
k=1

∫ 1

−1

dµk,I

)
{nIsign (σa + 1− µ1,I)− δ0,nI} = 23

1∑
nI=0

[nI(σa + 1)− δ0,nI ] =

23[−1 + (σa + 1)] = 23σa (24)

Hence, if KT is defined by

KT ≡

(∫ − 1
T

− 1
4

dxI +

∫ 1
4

1
T

dxI

)
∆T (fI(xI)) (25)

then, 〈ρIA(a, λI , ~χ)〉I = σaKT
(1− 4

T )
when σa ∈ I1.

Let us now suppose, σa ∈ I3, i.e. σa − 1 ∈ [−1, 1]. Hence, only ι3(σa) = 1 and hence, A(a, λI , ~χ) = s3,I(σa, λI).
This implies,

〈ρIA(a, λI , ~χ)〉I =
1

24T (1− 4
T )

(∫ − 1
T

− 1
4

dxI +

∫ 1
4

1
T

dxI

)
3∏
k=1

∫ 1

−1

dµk,I ×

∫ T

−T
dτI

1∑
nI=0

{nIsign (σa − 1− µ3,I) + δ0,nI} sign (T∆T (fI(xI))− τI) (26)

In the case that σa ∈ I3, we also find 〈ρIA(a, λI , ~χ)〉I = σaKT
(1− 4

T )
. Finally let us look at the case where σa ∈ I2. Here

we have σa ∈ [−1, 1]. So,

〈ρIA(a, λI , ~χ)〉I =
1

24T (1− 4
T )

(∫ − 1
T

− 1
4

dxI +

∫ 1
4

1
T

dxI

)
3∏
k=1

∫ 1

−1

dµk,I

∫ T

−T
dτI

1∑
nI=0

sign (σa − µ2,I) (27)

The result of integration in (27) is that 〈ρIA(a, λI , ~χ)〉I =
σa(1− 4

T )
(1− 4

T )
= σa and T ∼ sufficiently large number.

The integral KT

In two cases of σa we have 〈ρIA(a, λI , ~χ)〉I = σaKT
1− 4

t

and KT is defined in (25). For the ease of notation let us write

T = n. Let us repeat the definition of the K integral

Kn =

(∫ − 1
n

− 1
4

dx+

∫ 1
4

1
n

dx

)
∆n

(
x2 − (1/n2)

)
(28)
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The integral we want to discuss here is then re-written, using ∆n

(
x2 − (1/n2)

)
defined in (14) as

Kn =
2

π

∫ − 1
n

− 1
4

dx

1 + n2(x2 − (1/n2))2
+

2

π

∫ 1
4

1
n

dx

1 + n2(x2 − (1/n2))2
(29)

Now let us take, y = x2 − (1/n2). The upper limit of y is, 1
42 − 1

n2 , n >> 16, while the lower limit is 0. Hence, for

negative x, we have x = −
√
y + 1

n2 . For positive x, we see, x =
√
y + 1

n2 . Hence, noting dx = ± dy/2√
y+ 1

n2

, in terms of

y we can write for the two terms in Kn

Kn = − 2

π

∫ 0

1
42
− 1
n2

dy

1 + n2y2

1/2√
y + 1

n2

+
2

π

∫ 1
42
− 1
n2

0

dy

1 + n2y2

1/2√
y + 1

n2

(30)

Hence,

Kn =

(
2

π

)
2

∫ 1
42
− 1
n2

0

dy

1 + n2y2

1/2√
y + 1

n2

(31)

Let us in the first place try to find the upper limit of Kn from the previous equation. Note, for n > 4 that y+ 1
n2 ≥ 1

n2 ,
hence, 1√

y+ 1
n2

≤ n, given 1
42 − 1

n2 ≥ y ≥ 0. This implies

Kn ≤
2

π

∫ 1
42
− 1
n2

0

ndy

1 + n2y2
≤ 2

π
arctan

[
n

42
− 1

n

]
≤ 1, (n ∼ large). (32)

The lower limt in Kn can be found, looking at, 1 + n2y2 ≤ 1 + ε2 + n2y2, hence,

1

1 + n2y2
≥
(

1

1 + ε2

) 1

1 + n2
(

y√
1+ε2

)2

 .

Let us, in the second place, take z = y/
√

1 + ε2, then, with dz = dy/
√

1 + ε2 we can rewrite the lower limit like

Kn ≥
2

π

1√
1 + ε2

∫ zmax

0

ndz

1 + n2z2

1√
1 + n2z

√
1 + ε2

(33)

together with, zmax =
(

1
42 − 1

n2

)
/
√

1 + ε2. Note, −1 ≤ 2
π arctan(x) ≤ 1 for all x ∈ R ∪ {−∞,∞}. With arctan the

inverse function of the function −∞ ≤ tan(x) ≤ ∞, with,−π2 ≤ x ≤
π
2 is intended. Using, d

dz arctan(nz) = n
1+n2z2 we

are able to write

Kn ≥
2

π

1√
1 + ε2

∫ zmax

0

dz

(
d

dz
arctan(nz)

)[
1 + n2z

√
1 + ε2

]−1/2

(34)

Because arctan(0) = 0 and we have 0×n2 = 0 when n ∼ sufficiently large number, it follows that the constant factor,
Cn in a partial integration treatment of the right hand of (34) looks like

Cn =
2/π√
1 + ε2

{
arctan

[(
n

42
− 1

n

)
/
√

1 + ε2
] [

1 + n2zmax
√

1 + ε2
]−1/2

− arctan(0)[1 + (n2 × 0)]−1/2

}
(35)

and 1 +n2zmax
√

1 + ε2 = 1 + n2

42 − 1. Hence,
[
1 + n2zmax

√
1 + ε2

]−1/2
= 1√

n2

42

= 4
n . This implies, the constant factor

Cn =
2/π√
1 + ε2

arctan

[(
n

42
− 1

n

)
/
√

1 + ε2
]

4

n
≈ 0+

for, n ∼ sufficiently large number.
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So, under a limit, n ∼ sufficiently large number, for z 6= 0, we see from −1 ≤ 2
π arctan(nz) ≤ 1 that the extremes

−1 and +1 are quickly approximated. In turn, the partial integration of the right hand of (34), finally looks like

Kn ≥ Cn −
1√

1 + ε2
2

π

∫ zmax

0

dz arctan(nz)

(
d

dz

[
1 + n2z

√
1 + ε2

]−1/2
)

(36)

Hence, when z > 0 from − 2
π arctan(nz) ≈ −1 and Cn ≈ 0+, for n ∼ large,

Kn ' − 1√
1 + ε2

∫ zmax

0

dz

(
d

dz

[
1 + n2z

√
1 + ε2

]−1/2
)

(37)

Note that the step from (36) to (37) is supported by the following section plus a result of numerical study represented
in figure-1.

FIG. 1. Plot of the integrand of the integral in (36). Parameters (n, h) are given in the plot. The result is Kn ' 0.9967. The
results are computed with the program referenced in the Appendix below.
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36

)

h=6.25e-08 , 
n=8.38e+10 ,

integral =0.9967

part A

First let us note that

d

dz

[
1 + n2z

√
1 + ε2

]−1/2

=

(
−1

2

)
n2
√

1 + ε2[
1 + n2z

√
1 + ε2

]3/2 (38)

Demonstrating the fact that Kn > 0 for large n, we can ignore constants in (36). We note that there is a ∆z > 0
beyond which, given n sufficiently large, that the expression in (38) vanishes quickly for zmax ≥ z > ∆z. In the
interval (0,∆z] we also may write

arctan(nz) ≈ nz (39)

For only essential terms we have for the integral in (36)∫ zmax

0

dz arctan(nz)

(
d

dz

[
1 + n2z

√
1 + ε2

]−1/2
)
∝
∫ ∆z

0

dz
n3z

[1 + n2z]
3/2

(40)

Because we may select n large such that for all z in the interval [0,∆z], we have 1 + n2z ≈ n2z. if n2z >> 1, then,
n3z >> 1 . Hence, we may approximate (40) with∫ zmax

0

dz arctan(nz)

(
d

dz

[
1 + n2z

√
1 + ε2

]−1/2
)
∝
∫ ∆z

0

dzz−1/2 ∝
√

∆z > 0 (41)

Because the suppressed constants in this argument, looking at (36) are positive and Cn is positive small, we may
conclude that Kn > 0 for large n. Interested readers can verify that numerical straightforward proof exists too which
shows that the right hand of (36) is positive nonzero.
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part B

The objection to substitution of 2
π arctan(nz) ≈ 1 in (36) is that the singularity n2

[1+n2z
√

1+ε2]
3/2 gets too much

weight in the integral. This can be countered by eliminating the singularity from the infinitesimal sum. We then may
look at e.g.

lim
n→∞

Kn ' − 2/π√
1 + ε2

lim
n→∞

∫ zmax

εn

dz arctan(nz)
d

dz

[
1 + n2z

√
1 + ε2

]−1/2

(42)

This reads as

lim
n→∞

Kn ' − 1√
1 + ε2

lim
n→∞

∫ zmax

εn

dz

{
d

dz

[
1 + n2z

√
1 + ε2

]−1/2
}

(43)

which gives,

lim
n→∞

Kn '
1√

1 + ε2
(44)

when n2 εn → 0+, i.e. εn ∝ 1
n2+r , with, r > 0, small, given n→∞.

part C

Returning to equation (37). This then gives, using zmax =
(

1
42 − 1

n2

)
/
√

1 + ε2,

Kn ' − 1√
1 + ε2

[
4

n
− 1

]
→ 1√

1 + ε2
, (45)

under the condition, n ∼ large number. Hence, we may conclude that:

1 ≥ lim
n→∞

Kn '
1√

1 + ε2
.

This leads us to, Kn ≈ 1, where ε2 can be arbitrary small positive real.

RESULT

Returning to σa ∈ I1 and σa ∈ I3, it is found that approximately we may write 〈ρIA(a, λI , ~χ)〉I ≈ σa, because
under T = n sufficiently large, KT ≈ 1. Moreover under T ∼ sufficiently large number we also see that for σa ∈ I2
that 〈ρIA(a, λI , ~χ)〉I ≈ σa. Hence, because a similar evaluation for B can take place

〈ρIA(a, λI , ~χ)〉I ≈ σa
〈ρIIB(b, λII , ~χ)〉II ≈ σb (46)

Because using (20) and our previous result, we are allowed to write

E(a, b) = 〈〈ρIA(a, λI , ~χ)〉I 〈ρIIB(b, λII , ~χ)〉II ρNorm〉Norm ≈
〈σa(~χ)σb(~χ)ρNorm〉Norm (47)

This implies, together with (10) that

E(a, b) ≈
3∑
i=1

3∑
j=1

aibjδi,j =

3∑
j=1

ajbj (48)

The latter equation concludes the refutation part of the present paper. In the appendix, to help the reader, an
algorithm in R is presented to demonstrate the numerical possibility of Kn ≈ 1.
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CONCLUSION

In our paper, under locality [1], [2], we have construed a model that must, by design, not be able in any way to
violate the S(a, b, c, d) ≤ 2. We note that the local hidden variables physical picture is that variables with the index
α = I reside in measurement instrument A and α = II reside in measurement instrument B. The χ Gaussian variables
can be seen as being carried by the particles to the respective measurement systems. This is a perfectly valid physical
possibility.

In the paper it was derived that a model with S(a, b, c, d) > 2 can be obtained observing all conditions for a local

model. I.e. E(a, b) ≈
∑3
j=1 ajbj . was derived using local modeling. In passing we note that, using the random variable

notation `, it follows from our model that E` (A(a, `)) = E` (B(b, `)) = 0. This easily derives from the symmetry of
the Gaussian.

Our result is unrelated to a quantum mechanical violation of the inequality. We can make this claim because, in
the first place, a local Bell formula model was used. All the requirements for a local physical model were fulfilled.
The probability density has a fixed form. The objection, ”the proposed model is unphysical” is clearly invalid. The
reader carefully notes that all the basic physical requirements for a local model were fulfilled. In the second place,
looking at the derived inequality from Bell’s formula, one must mathematically never be able, with what kind of a
model one cares to select under the umbrella of locality, to obtain S(a, b, c, d) > 2.

Subsequently, the reader is reminded that in the paper no hidden physics assumptions were used in any step of the
derivation. The derivation was completely mathematical. The basic physical requirements are merely there to show
that Bells formula is valid physics in both branches of the argument. If the reader thinks it’s otherwise he has to
demonstrate that the mathematics provided in the model cannot be realized in a physical situation. Bells formula is
general so in our conception, this form of opposition breaks down. To be more specific, there were no hidden physics
assumptions like non-locality in the derivation of E(a, b) ≈

∑3
j=1 ajbj , hence, S(a, b, c, d) > 2, in our model. The

reader can easily verify this.

In previous papers, the first author already pointed out that there are inconsistencies in the Bell argumentation
[8], [9] and [10]. The presented demonstration shows unequivocally that for fixed density and realizable physics, Bells
formula give rise to conflicting conclusions. The believe in a one-branched Bell formula, such as expressed in [11] is
unfounded because it neglects the possibility of the demonstrated negation incompleteness. Arguments quoted from
[11] in favor of CHSH or one branch interpretation of Bells formula, are therefore invalid. We note especially the
implicit claim about the necessity of a computer violation before due credit can be given to any, more theoretically
oriented, criticism. This is, according to us, an unfounded and malignant expression of keeping the faith in only one
preferred branch of the argument. The first author has also performed work in the field of computer violation study
[12].

To be complete, we note that the E(x, y) ≈ x · y for any setting x ∈ R3 unit length and y ∈ R3 unit length, where
the form of the density of the hidden variables remain fixed as given in equation (11) above.

We demonstrated that there exists a necessity to take a closer look at the rulebook of ZFC mathematics [3] and
arguments concerning the foundations of quantum mechanics.

REFERENCES

[1] J.S. Bell, ”On the Einstein Podolsky Rosen paradox,” Physics, 1, 195-200, 1964.
[2] A. Einstein, B., Podolsky, and N. Rosen, ”Can Quantum-Mechanical Description of Physical Reality Be Considered

Complete?,” Phys. Rev. 47, 777-780, 1935.
[3] H. Friedman, ”Concrete mathematical incompleteness”, Lecture at the Andrzej Mostowski Centenary, Warsaw, Poland

October 11, 2013
[4] H. Friedman, ”Boolean Relation Theory and Incompleteness,” Ohio state University, 2010.
[5] D. Bohm, ”Quantum Theory,” pp 611-634, Prentice-Hall, Englewood Cliffs, 1951.
[6] R.V. Hogg, A.T. Graig,”Introduction to Mathematical Statistics, Third edition” Prentice-Hall, Englewood Cliffs, 1995.
[7] A. Peres, ”Quantum Theory: Concepts and Methods,” Kluwer Academic, 2002.
[8] H. Geurdes, ”A Counter-Example to Bell’s Theorem with a Softened Singularity, ” Galilean Electrodynamics, 17, 16-20,

2006.



11

[9] H. Geurdes, ”A note on Bells’ expression for the QM correlation,” AIP Conf. Proc. 1508, 365-369 2012; doi:
10.1063/1.4773149

[10] H. Geurdes, ”A probability loophole in the CHSH,” Results in Physics, 4, 81-82, 2014.
[11] R.D. Gill, ”No loophole in the CHSH”, Results in Physics, 5, 156-157, 2015.
[12] H. Geurdes, ”A computational proof of locality in entanglement.”, submitted, 2017.



12

APPENDIX

With each computable selection of n, a matching h can be found (in computable boundaries of course) such that
1 ≥ Kn ' 1 results. We e.g. have h = 6.25× 10−6 and n = 4.31× 107 and h = 6.25× 10−7 and n = 1.38× 109. The
authors believe that the computer algorithm below shows that the integral is not zero and that the outcome Kn ' 1
can be found for different (n, h) combinations. A critic who maintains that the integral vanishes has to show the error
in the computer program below. This result can be found in figure-1 above With this particular parameters we get
1 ≥ Kn ' 0.9967.

#

#

n<-8.38e10

epsilon<-1e-3

sq<-sqrt(1+(epsilon**2))

nIter<-1e6

f<-array(0,nIter)

xA<-array(0,nIter)

gLob<-0

lUpb<-(1/16)-(1/n**2)

h<-(lUpb-gLob)/nIter

k<-0

x<--h

sum<-0

while(x < lUpb){

k<-k+1

x<-x+h

xA[k]<-x

f[k]<-(-2/pi)*atan(n*x)

chi<-(-1/2)*(n**2)*sq

y<-(1+(x*sq*(n**2)))**(-3/2)

chi<-chi*y

f[k]<-f[k]*chi

sum<-sum+f[k]

}

cn<-(2/pi)/sq

cn<-cn*atan(n*lUpb/sq)*4/n

sum<-sum+cn

print(paste0("1 >= Kn >= ",sum))

sumD<-round(sum,4)

#

strText<-paste0("h=",h," , \n","n=",n," ,\n" ,"integral =",sumD)

plot(xA[1:10],f[1:10],type=’l’,xlab="z",ylab="integrand eq (36)")

mtext(strText)

#
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