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Abstract

We look at the theory of closed strings in a novel way as well classically
as quantum mechanically and show how the usual Virasoro problem is
circumvented.

1 Introduction.

The Virasoro problem in string theory [2] arises most clearly in the covariant
quantization where one has hermitian generators Ln with n ∈ Z which have to
be regarded as constraints; that is physical states have to satisfy Ln|Ψ〉 = 0 for
n 6= 0 and L0|Ψ〉 = a|Ψ〉 with a 6= 0. The Virasoro algebra without central
anomalies c(n),

[Ln, Lm] = i(n−m)Ln+m + c(n−m)1

makes this impossible given that

0 = [Ln, L−n] |Ψ〉 = 2inL0|Ψ〉 = 2ina|Ψ〉

which contradicts a 6= 0. The “fix” of the problem is to keep the constraints
Ln|ψ〉 = 0 for n > 0 while dropping the others. This leads to physical opera-
tors changing particle species, spin and angular momentum causing all known
conservation laws of particle physics to fail (but not largely in practice). The
downside is that the geometrical description of the theory is totally lost at the
quantum level even in a Minkowski background and that everything becomes
therefore gauge dependent. This is not expected given that quantum theory
works perfectly fine for flat geometries and we shall trace back the problem
to the non-geometric character of quantum theory itself. In that context, the
worldsheet formulation evaporates and only reparametrisations of the type t′(t)
and s′(s) can be made such that the Virasoro problem dissapears giving rise to
two mutually commuting symmetry algebra’s as the full symmetry algebra.

2 Strings from the viewpoint of covariant quan-
tum theory.

In this section, we shall look for the correct clasical equations of motion for a
closed string on a generic curved spacetime background. Given a closed string
worldsheet γ(t, s), we define two vectorfields V = ∂tγ(t, s) and Z = ∂sγ(t, s)
where t ∈ [0, T ] and s ∈ [0, L] with periodic boundary conditions in s; obviously
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[V,Z] = 0.

The law one is looking for clearly is of the kind

∇VV = F(V,Z,∇ZZ, g(R(V,Z)V,Z)) = αV + βZ + δA

where A = ∇ZZ is the spatial acceleration and we only include nontrivial
gravitaional degrees of freedom which are tangential to the string worldsheet.
Because we want to emiminate reparametrizations of the string, we endow Z
with a physical significance. That is, we demand that it corresponds to an
arclength, that is

g(Z,Z) = c

where c is a constant. Since this property has to be preserved under time
evolution, we compute that

0 = ∇Vg(Z,Z) = 2g(∇ZV,Z) = 2∇Zg(V,Z)− 2g(V,A).

To make this equation generic, it is desirable to impose the constraints

g(V,Z) = d, g(V,A) = 0.

Taking the time evolution of the former gives

0 = ∇Vg(V,Z) = g(∇VV,Z)+g(V,∇VZ) = αg(V,Z)+βg(Z,Z)+
1

2
∇Zg(V,V)

which suggests that either α, β = 0 and g(V,V) = e or g(V,Z) = 0 or g(Z,Z) =
0. Taking the time derivative of our last constraint

0 = ∇Vg(V,A) = g(∇VV,A)+g(V,∇VA) = g(A,A)δ+g(V, R(V,Z)Z)+g(V,∇Z∇ZV)

which can be rewritten as

g(A,A)δ+g(V, R(V,Z)Z)+∇Zg(V,∇ZV)−g(∇ZV,∇ZV) = g(A,A)δ−g(R(V,Z)V,Z)−g(∇ZV,∇ZV).

Hence, for consisteny, we demand that g(A,A) 6= 0 and

δ =
g(R(V,Z)V,Z) + g(∇ZV,∇ZV)

g(A,A)
.

There is nothing further to deduce and all constraints are presrved under evo-
lution. This suggests one to put the unknown functions α, β to zero to arrive
at the theory

g(Z,Z) = c, g(V,V) = e, g(V,Z) = d, g(V,A) = 0

with as force law

∇VV =
g(R(V,Z)V,Z) + g(∇ZV,∇ZV)

g(A,A)
A.

In ordinary string theory on flat Minkowski F = A for a Lorentzian flat world-
sheet metric and F = −A for a Riemannian worldsheet metric supplemented
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by the conditions that d = e = c = 0. The reader immediately notices that in
this case δ reduces to

g(∇ZV,∇ZV)

g(A,A
.

and that our constraints then give the ususal Virasoro conditions

∂tγ.∂sγ = 0 = ∂tγ.∂tγ = ∂sγ.∂sγ.

The standard equations of motion

(∂t)
2γ − (∂x)2γ = 0

are somewhat more limited than ours, but they imply that δ = 1 as an easy
calculation shows. So, our theory is soewhat more general than the standard
one. A simple calculation reveals that

g(∇ZV,∇ZV) = 2g(∇ZV,V)g(∇ZV,K)+2g(∇ZV,Z)g(∇ZV,L)−
n−4∑
i=1

ηii(g(∇ZV,Ei))
2

where g(K,V) = 1 = g(L,Z) and g(L,L) = g(K,K) = g(V,L) = g(Z,K) = 0.
Moreover, ηij is an n−4 dimensional Euclidean vielbein in the remaining orthog-
onal space directions. The reader notices here that we changed the signature of
spacetime to (+ +−−−−) giving two time directions and at least four spatial
ones. This must be done for the theory to be nontrivial, indeed, string theory is
trivial as the constraint equations imply that ∂tγ is proportional to ∂sγ some-
thing which cannot be reconsiled with the Heisenberg commutation relations.
This is why they cannot impose the full constraints given that they assume the
Heisenberg relations to hold. As will be clear in the next section, we don’t quan-
tize in that way but follow an analogy with a procedure hich is fully equivalent
for point particles to the standard quantization procedure in flat Minkowxki.
From our contraints, it follows directly that this formula reduces to

g(∇ZV,∇ZV) = −
n−4∑
i=1

ηii(g(∇ZV,Ei))
2.

In order not to get into conflict with the usual causality conditions, wwe suggest
that the extra time and spacce directions are compactified and way beyond our
scale of observation. Hence, a fibre structure is needed for the spacetime man-
ifold with a four dimensional Lorentzian base manifold and a two dimensional
Lorentzian fibre. We proceed now to the quantum theory.

3 Quantization of the string.

In ordinary particle theory,ell known that th full quantum theory is provided by
the Wightman functions as well as the appropriate Lorentz intertwiners govrn-
ing the particle interactions. Th main insight from this author [1] was that the
Wigthman functions can be given an entirely geometrical and relational meaning
without recourse to any foliation of spacetime given by a class of obervers. The
observation is simple that free particles travel on godesics and that the corrct
Wightman function is constructed by means of dragging on shell momenta on
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those godesics which correspond to of shell particle lines. Furthermore, the in-
ternal degrees of freedom are associated to representations of the little group of
the momentum vector which for massive particles equals SO(3) and for massless
particles E2, the Euclidean group in two dimensions at least if the spacetime
dimension equals four. To have a similar thing in our theory, the remaining de-
grees of freedom constist of rotations in the space perpendicular to Z,V which
would need 7 = 2 + 5 dimensions in order to recuperate the SO(3) part. This
provides one with a richer particle spectrum and suggests that massive particles
can travel at the speed of light in case Z resides exclusively in the fibre. It
seems clear that the string veloity, which is null in the ultrahyperbolic sense,
needs to have a timelike component in the base manifold for massive particles
to arise there. The reson why string theorists find massive particles in their
spectrum is that the Virasoro algebra is not satisfied to begin with. Further-
more, mass quantization can only occur when the fibre momenta are quantized
which necessitates closed (timelike) curves in the fibre, hence our compactifica-
tion. Therefore, mass and in particular the mass gap, are dynamical quantities
closely related to the microscopic structure of the fibre.

We now proceed to formulate the correct off shell propagation for strings and
the proper dragging law for on shell momenta. To that purpose, let ζ(t, s) where
t ∈ R+ and ζ(0, s) ∼ S1 be our off shell string, meaning that for T = ∂tζ(t, s)
and Z = ∂sζ(t, s), the following constraints hold

g(T,Z) = g(T,A) = g(Z,Z) = 0, g(T,T) = λ

where λ is not ncessarily zero. We know already that the correct evolution law
for the T field is givn by

∇TT = F(T,R,A,g(R(T,Z)Z,T),g(∇ZT,∇ZT))

and that all these constraints are preserved under time evolution. Clearly, our
on shell momenta V have to obey

g(V,A) = g(V,Z) = g(V,V) = 0

and we look now for the appropriate dragging law

∇TV = G(T,V,Z,A,K, invariants)

where K is perpendicular to T,V,Z,A such that those constraints are preserved
under T evolution. As the reader will notice, it is mandatory to impose two
extra constraints on the V field relating it to T. Considering

0 = ∇Tg(V,V) = 2g(∇TV,V)

indicates one should simply drop the T dependency in G. Likewise,

0 = ∇Tg(V,Z) = g(V,∇TZ) = g(V,∇ZT) = ∇Zg(V,T)− g(∇ZV,T)

suggsts two supplementary constraints, that is

g(∇ZV,T) = 0, g(V,T) = c
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where c is a constant. Moreover

0 = ∇Tg(V,A) = δg(A,A)+g(V,∇TA) = δg(A,A)+g(R(T,Z)Z,V)+g(V,∇Z∇ZT)

which can be rewritten as

δg(A,A) + g(R(T,Z)Z,V) +∇Zg(V,∇ZT)− g(∇ZV,∇ZT).

Upon noticing that

∇Zg(V,∇ZT) = ∇Z∇Zg(V,T)−∇Zg(∇ZV,T) = 0

due to our constraints. Hence, our previous formula reduces to

δ =
g(R(T,Z)V,Z) + g(∇ZV,∇ZT)

g(A,A)
.

So, we have already determinded two of the five component functions of our
dragging field G. Remains to investigate the time evolution of our supplemen-
tary constraints

0 = ∇Tg(V,T) = g(∇TV,T)

suggests one to drop the V dependency in G. Finally,

0 = ∇Tg(∇ZV,T) = g(∇T∇ZV,T) + g(∇ZV,∇TT)

which can be further rewritten as

g(R(T,Z)V,T)+g(∇Z∇TV,T)+g(∇ZV,A)
g(R(T,Z)T,Z) + g(∇ZT,∇ZT)

g(A,A)
.

We further investigate

g(∇Z∇TV,T) = ∇Zg(∇TV,T)−g(∇TV,∇ZT) == −κg(Z,∇ZT))−δg(A,∇ZT)−γg(K,∇ZT)

where we know already δ but κ, γ have not been fixed yet. Further computation
yields that

g(Z,∇ZT)) = g(Z,∇TZ)) =
1

2
∇Tg(Z,Z)) = 0

so we have nothing to say about κ and therefore we put it to zero. So, we arrive
at the equation

0 = g(R(T,Z)V,T)g(∇ZV,A)
g(R(T,Z)T,Z) + g(∇ZT,∇ZT)

g(A,A)
−

g(R(T,Z)V,Z) + g(∇ZV,∇ZT)

g(A,A)
g(A,∇ZT)− γg(K,∇ZT).

This leaves only for the possibility that g(K,∇ZT) is nonzero otherwise our
theory would become inconsistent. Denoting by

(∇ZT)⊥

the component of ∇ZT perpendicular to T,V,Z,A which is usually only de-
termined, in case g(T,V) 6= 0 up to a multiple of Z, we conclude that we need
to add a force term

(∇ZT)⊥

g((∇ZT)⊥, (∇ZT)⊥)

(
g(R(T,Z)V,T) + g(∇ZV,A)

g(R(T,Z)T,Z) + g(∇ZT,∇ZT)

g(A,A)

)
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− (∇ZT)⊥

g((∇ZT)⊥, (∇ZT)⊥)

(
g(R(T,Z)V,Z) + g(∇ZV,∇ZT)

g(A,A)
g(A,∇ZT)

)
to our formula for G which fully dtermines it up to an ambiguity in the defini-
tion of (∇ZT)⊥. This is pretty bad given that this ambiguity propagates in a
nontrivial way and our theory would depend upon some convention we have to
take at any point of the string. Notice also that ideas where you decouple the
bulk from the fiber won’t help you; even if initially Z is in the fiber and T,V
in the bulk, then A will usually have some nontrivial component in the fiber
so that T,V propagate into the latter and therefore Z into the bulk. So, ∇ZT
does not remain into the bulk and therefore you cannot define an orthognal
complement with regards tp Z pertaining to the bulk alone. So, from this point
of view, standard string theory does not make any sense. However, it is easy
to save the day by allowing a liberty which we had before and that is to put
g(Z,Z) not equal to zero; in general, even if g(V,V) = 0 = g(V,Z) = g(T,Z)
the projection above will be uniquely defined as long as g(V,T) 6= 0. One can
even exclude this exceptional case by imposing g(V,Z) = g(T,Z) 6= 0 allowing
for g(Z,Z) to be zero and in this case g(V,T) can be anything you like. We shall
work from now on with the latter convention, that is g(V,Z) = g(T,Z) = d 6= 0
and g(V,V) = 0.

4 Fourier transform for strings in covariant quan-
tum theory.

In analogy with standard particle physics, we now proceed to construct the
Fourier transorm φ(S,VS , S

′), where S is a null string parametrized as before
and VS is a null vectorfield defined on the string and satisfying the previous
constraints. It is clear that the definition of φ(S,VS , S

′) should not depend upon
the reparametrization freedom hidden in Z and we define the string length L as
the range of this parameter domain. In analogy with particle physics, we start
out with the most naive ansatz for a differential equation for φ(S,VS , t); the
latter being given by

d

dt
φ(S,VS , t) = i

κ

L

(∫ L

0

dsg(V(t, s),T(t, s))

)
φ(S,VS ; t)

with φ(S,VS , 0) = 1 and φ(S,VS , 1) = φ(S,VS , S
′). Here, κ is a dimen-

sionless constant and L is the string length. As is the case in standard par-
ticle theory, this factor is a constant in time and simply given by κc where
c = g(VS(t, s),T(t, s)). Hence,

φ(S,VS , S
′) = eiκc

just as in ordinary particle physics, which we know is already a complete disaster
there and leads to distributional propagators. Here, we are going to perform a
functional integral over vectorfields instead of vectors and the volume associated
with a constant ca is just infinite. There is no other term depending on V,T
one could add since we have the constraint that g(∇ZV,T) = 0. Thereforee we
will employ the spatial variation of V contracted with itself g(∇ZV,∇ZV). To
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state it properly, we should add a term

γL

∫ L

0

g(∇ZV(t, s),∇ZV(t, s))ds

which is not time independent. This author has proposd similar avnues in
standard particle physics. It might be that other terms are required to make
a sensible theory but these issues are postponed for further investigation. We
now come to the definition of the propagator.

5 The free string propagator.

The particular feature about the string propagator is that it involves an in-
finite dimensional integration over momentum space VS and we limit in the
subsequent analysis ourselves to a product manifold M × N where M is a
3 + 1 dimensional Lorentzian base manifold endowed with a 2 + 1 dimensional
Lorentzian fibre which decouple in the sense that the metric does not mix direc-
tions in the fibre and base manifold. The T field is as such that after parameter
time one the string S specified above moves into a string S′ with nontrivial
projection into M due to s variations of the T field; that is, the projection of
∂sT on the base is different from zero. Hence we propose,

D(S, S′) =

∫
dc

∫
VS

dµ(VS)δ(g(VS ,VS))

δ(g(VS ,Z)− d)δ(g(VS ,T)− c)δ(g(∇ZVS ,Z)δ(g(VS ,A))θM(VS)φ(S,VS , S
′)

where we have chosen a time direction in the base manifold onM and θM(VS)
concerns positivity of the projection of VS on that time field. The problem
here regards the usual definition of the path integral as a limiting measure and
much care is required to give this expression a precise meaning. Let us mention
that in contrast to string theory on flat spacetime, mass and momentum string
states are not easily defined and the angular momentum and spin case are even
much more difficult as is the case for ordinary particles on a curved background.
We leave further investigations of these ideas to the future.
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