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Abstract

Born’s Reciprocal Relativity Theory (BRRT) based on a maximal
proper-force, maximal speed of light velocity, inertial and non-inertial
observers is re-examined in full detail. Relativity of locality and chronol-
ogy are natural consequences of this theory, even in flat phase space. The
advantage of BRRT is that Lorentz invariance is preserved and there is no
need to introduce Hopf algebraic deformations of the Poincare algebra, de
Sitter algebra, nor noncommutative spacetimes. After a detailed study of
the notion of generalized force, momentum and mass in phase space, we
explain that what one may interpret as “dark matter” surrounding galax-
ies, for example, is just an effect of observing ordinary galactic matter in
different accelerating frames of reference than ours. Explicit calcula-
tions are provided that explain these novel relativistic effects due to the
accelerated expansion of the Universe, and which generate the present-
day density parameter value ΩDM ∼ 0.25 of dark matter. The physical
origins behind the numerical coincidences in Black-Hole Cosmology are
also explored. We finalize with a rigorous study of the curved geome-
try of (co) tangent bundles (phase space) within the formalism of Finsler
geometry, and provide a short discussion on Hamilton spaces.

Keywords : Born Reciprocity; Phase Spaces; Maximal Acceleration; Gravity;
Dark Matter; Finsler Geometry.

1 Born’s Reciprocal Relativity in Phase Space
and Maximal Proper Force

Most of the work devoted to Quantum Gravity has been focused on the ge-
ometry of spacetime rather than phase space per se. The first indication that
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phase space should play a role in Quantum Gravity was raised by [1]. The
principle of Born’s reciprocal relativity [1] was proposed long ago based on the
idea that coordinates and momenta should be unified on the same footing, and
consequently, if there is a limiting speed (temporal derivative of the position co-
ordinates) in Nature there should be a maximal force as well, since force is the
temporal derivative of the momentum. A maximal speed limit (speed of light)
must be accompanied with a maximal proper force (which is also compatible
with a maximal and minimal length duality).

We explored in [4] some novel consequences of Born’s reciprocal Relativity
theory in flat phase-space and generalized the theory to the curved spacetime
scenario. We provided, in particular, six specific results resulting from Born’s
reciprocal Relativity and which are not present in Special Relativity. These are
: momentum-dependent time delay in the emission and detection of photons;
energy-dependent notion of locality; superluminal behavior; relative rotation of
photon trajectories due to the aberration of light; invariance of areas-cells in
phase-space and modified dispersion relations.

The generalized velocity and acceleration boosts (rotations) transformations
of the flat 8D Phase space, where Xi, T, E, P i; i = 1, 2, 3 are all boosted (ro-
tated) into each-other, were given by [2] based on the group U(1, 3) and which is
the Born version of the Lorentz group SO(1, 3). The U(1, 3) = SU(1, 3)×U(1)
group transformations leave invariant the symplectic 2-form Ω = − dt ∧ dp0 +
δijdx

i ∧ dpj ; i, j = 1, 2, 3 and also the following Born-Green line interval in the
flat 8D phase-space (in natural units h̄ = c = 1)

(dω)2 = (dt)2 − (dx)2 − (dy)2 − (dz)2 +
1

b2
(
(dE)2 − (dpx)2 − (dpy)2 − (dpz)

2
)

(1.1)
the rotations, velocity and force (acceleration) boosts leaving invariant the sym-
plectic 2-form and the line interval in the 8D phase-space are rather elaborate,
see [2] for details. Born’s reciprocity within the context of the conformal group
SU(2, 2) ⊂ U(2, 2) in 4D was explored by [3].

These transformations can be simplified drastically when the velocity and
force (acceleration) boosts are both parallel to the x-direction and leave the
transverse directions y, z, py, pz intact. There is now a subgroup U(1, 1) =
SU(1, 1)× U(1) ⊂ U(1, 3) which leaves invariant the following line interval

(dω)2 = (dT )2 − (dX)2 +
(dE)2 − (dP )2

b2
=

(dτ)2

(
1 +

(dE/dτ)2 − (dP/dτ)2

b2

)
= (dτ)2

(
1 − F 2

F 2
max

)
(1.2)

where one has factored out the proper time infinitesimal (dτ)2 = dT 2 − dX2 in
(2.2). The proper force interval (dE/dτ)2− (dP/dτ)2 = −F 2 < 0 is ”spacelike”
when the proper velocity interval (dT/dτ)2 − (dX/dτ)2 > 0 is timelike. The
analog of the Lorentz relativistic factor in eq-(1.2) involves the ratios of two
proper forces.
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If (in natural units h̄ = c = 1) one sets the maximal proper-force to be given
by b ≡ mPAmax, where mP = (1/LP ) is the Planck mass and Amax = (1/Lp),
then b = (1/LP )2 may also be interpreted as the maximal string tension. The
units of b would be of (mass)2. In the most general case there are four scales
of time, energy, momentum and length that can be constructed from the three
constants b, c, h̄ as follows

λt =

√
h̄

bc
; λl =

√
h̄ c

b
; λp =

√
h̄ b

c
; λe =

√
h̄ b c (1.3)

The gravitational constant can be written as G = αG c4/b where αG is a di-
mensionless parameter to be determined experimentally. If αG = 1, then the
four scales in eq-(1.3) coincide with the Planck time, length, momentum and
energy, respectively.

The U(1, 1) group transformation laws of the phase-space coordinatesX,T, P,E
which leave the interval (1.2) invariant are [2]

T ′ = T coshξ + (
ξv X

c2
+

ξa P

b2
)
sinhξ

ξ
(1.4a)

E′ = E coshξ + (−ξa X + ξvP )
sinhξ

ξ
(1.4b)

X ′ = X coshξ + (ξv T −
ξa E

b2
)
sinhξ

ξ
(1.4c)

P ′ = P coshξ + (
ξv E

c2
+ ξa T )

sinhξ

ξ
(1.4d)

ξv is the velocity-boost rapidity parameter and the ξa is the force (accelera-
tion) boost rapidity parameter of the primed-reference frame. These parameters
ξa, ξv, ξ are defined respectively in terms of the velocity v = dX/dT and force
f = dP/dT (related to acceleration) as

tanh(
ξv
c

) =
v

c
; tanh(

ξa
b

) =
F

Fmax
, ξ =

√
(
ξv
c

)2 + (
ξa
b

)2 (1.5)

It is straightforwad to verify that the transformations (1.4) leave invariant
the phase space interval c2(dT )2 − (dX)2 + ((dE)2 − c2(dP )2)/b2 but do not
leave separately invariant the proper time interval (dτ)2 = dT 2 − dX2, nor the
interval in energy-momentum space 1

b2 [(dE)2− c2(dP )2]. Only the combination

(dω)2 = (dτ)2

(
1 − F 2

F 2
max

)
(1.6)

is truly left invariant under force (acceleration) boosts (1.4). They also leave
invariant the symplectic 2-form (phase space areas) Ω = − dT ∧ E + dX ∧ dP .
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One can verify that the transformations eqs-(1.4) are invariant under the discrete
transformations

(T,X)→ (E,P ); (E,P )→ (−T,−X), b→ 1

b
(1.7)

we argued [18] that the latter transformation b → 1
b is a manifestation of the

large/small tension T -duality symmetry in string theory. In natural units of
h̄ = c = 1, the maximal proper force b has the same dimensions as a string
tension (energy per unit length) (mass)2.

1.1 Relativity of Locality and Chronology in Flat Phase
Space

An immediate consequence of the transformations (1.4) is the relativity of locality.
For example, for pure force/acceleration boosts ξ = ξa/b, ξv = 0, eqs-(1.4) re-
duce to

T ′ = T coshξ +
P

b
sinhξ (1.8a)

E′ = E coshξ − b X sinhξ (1.8b)

X ′ = X coshξ − E

b
sinhξ (1.8c)

P ′ = P coshξ + b T sinhξ (1.8d)

Consequently, given a local event in a given reference frame represented by the
intersection of two worldlines, associated with two particles of equal mass, but
different energies and momenta at the the point M , such that

X1 = X2, T1 = T2, ⇒ ∆X = ∆T = 0 (1.9)

In the primed reference frame as seen by an accelerated observer, we will have

∆T ′ = T ′1 − T ′2 =
(P1 − P2)

b
sinhξ 6= 0, P1 6= P1 (1.10a)

∆X ′ = X ′1 − X ′2 = − (E1 − E2)

b
sinhξ 6= 0, E1 6= E2 (1.10a)

Therefore, what was a local event in a given reference frame is not local in the
accelerated frame of reference when the two particles have different energy
and momenta. This is what is meant by relativity of locality. In order to
have ∆T ′ = ∆X ′ = 0 it would require to have in addition the conditions
E1 = E2, P1 = P2; i.e. intersection of the worldlines in phase space.
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Another way of viewing this phenomenon is by showing explicitly that given
two intersecting world lines in one frame one can find an accelerated frame where
they do not intersect.

Take particle 1 located at X1 = 0, and particle 2 at X2 = L > 0 at time
T = 0, with different masses, moving with constant but different (positive)
speeds, and such that

v1 > v2 > 0, m1 < m2, E1 < E2, P1 < P2 (1.11)

Due to the fact that particle 1 (with lower mass) is faster than particle 2 it
will catch up with particle 2 at the time T∗ = L/(v1 − v2), and at the location
X∗ = v1L/(v1−v2) > L. Therefore, the two worldlines will intersect at (X∗, T∗).
The intersection of worldlines occurs because the faster particle is located to the
left of the slower particle.

Let us evaluate the velocities in the accelerated frame when ξ > 0. From
eqs-(1.8) one learns that

dX ′ = dX coshξ − dE

b
sinhξ (1.12a)

and

dT ′ = dT coshξ +
dP

b
sinhξ (1.12b)

when E,P are constant, eqs-(1.12) yield

dX ′ = dX coshξ, dT ′ = dT coshξ ⇒ v′ =
dX ′

dT ′
=
dX

dT
= v (1.13)

thus v′1 = v1 > v′2 = v2 > 0, and particle 1 remains faster than particle 2 in the
accelerated frame. A careful inspection reveals then that no intersection of the
two worldlines occurs in the accelerated frame of reference when the acceleration
boost parameter ξ > 0 is sufficiently large to obey the condition

X ′2 = L coshξ − E2

b
sinhξ < X ′1 = − E1

b
sinhξ ⇒

tanhξ >
L b

E2 − E1
> 0, E2 > E1, ξ > 0 (1.14)

This latter condition just states that in the accelerated frame of reference, for
times T ′ ≥ 0, the slower moving particle 2 will always remain to the left of the
faster moving particle 1, X ′2 < X ′1. Since both particles have positive velocities,
particle 2 will never catch up with particle 1, and consequently, their worldlines
will never intersect in the accelerated frame of reference for T ′ > 0.

The worldlines actually intersect in the past T ′∗ < 0, in the moment when
particle 1 crosses over particle 2 at X ′∗ < 0. Consequently, besides relativity of
locality, we have also relativity of chronology. One observer will describe as a
physical event to be one defined by the intersection of two worldlines taken place
in his (her) future, an accelerated observer will describe it as an intersection of
two worldlines taken place in his (her) past.
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1.2 Other Geometric Models of Relative Locality

We finalize this section by following very closely a concise discussion of the
relative locality geometry found recently in the introduction by [6]. Relative
locality [7] is a framework originated from some interpretational issues connected
to the possibility that energy-momentum space be curved, arisen in several
contexts, as for example doubly special relativity (DSR) [8] , some models of
noncommutative geometry [9] and 3D quantum gravity [10].

It is better understood now that the Planck-scale modifications of the parti-
cle dispersion relations can be encoded in the nontrivial geometrical properties
of momentum space [7]. When both spacetime curvature and Planck-scale de-
formations of momentum space are present, it is expected that the nontrivial
geometry of momentum space and spacetime get intertwined. The interplay
between spacetime curvature and non-trivial momentum space effects was es-
sential in the notion of “relative locality” and in the deepening of the relativity
principle [7].

The theory is based on the assumption that physics takes place in phase space
and there is no invariant global projection that gives a description of physical
processes in spacetime. Therefore, local observers can construct descriptions
of particles interacting in spacetime, but different observers construct different
spacetimes, which correspond to different foliations of phase space. So, the
notion of locality becomes observer dependent, whence the name of the theory.

This formulation of relative locality is very different than ours despite the
fact that both rely on the geometry of phase-spaces. Our results above are
based on the nontrivial transformation properties of the coordinates X,T,E, P
of flat phase-spaces under force/acceleration boost transformations which mix
spacetime coordinates with energy-momentum coordinates. Whereas the for-
mulations [7], [8], [9], [10] rely on the geometry of curved phase-spaces, and the
use of Hopf algebras leading to a deformed Poincare algebra, modified dispersion
relations, a coproduct of momenta, and a coproduct of Lorentz generators.

We recall that DSR introduces in special relativity a new fundamental scale
with the dimension of mass (usually identified with the Planck mass) in ad-
dition to the speed of light. The new scale gives rise to deformations of the
action of the Lorentz group on phase space, and consequently of the dispersion
law of particles, of the addition law of momenta, and so on. Although doubly
special relativity is mainly concerned with energy-momentum space, it is often
realized in terms of noncommutative geometries that postulate a noncommuta-
tive structure of spacetime with a fundamental length scale of the order of the
Planck length, and are in some sense dual to the DSR approach.

The energy-momentum space geometry defined in [7] has been investigated
in a specific instance in [14], where it has been applied to the case of the κ-
Poincare model [9], one of the favorite realization of DSR. This is a model of
noncommutative geometry displaying a deformed action of the Lorentz group
on spacetime, whose energy-momentum space can be identified with a curved
hyperboloid embedded in a 5-dimensional flat space [11].
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The theory of relative locality refines this picture, by introducing some ad-
ditional structures in the geometry of energy-momentum space, related to the
properties of the deformed addition law of momenta, due to the coproduct
of momenta associated with the Hopf algebraic structure, as for example, its
(lack of) commutativity or associativity. The authors [6] investigated a differ-
ent example of noncommutative geometry, namely the Snyder model [12] and
its generalizations [13]. The distinctive property of this class of models is the
preservation of the linear action of the Lorentz algebra on spacetime. This
implies that the leading-order corrections to the composition law of the mo-
menta must be cubic in the momenta, rather than quadratic. Moreover, the
composition law is not only noncommutative but also nonassocative.

A new proposal [15] for the notion of spacetime in a relativistic general-
ization of special relativity based on a modification of the composition law of
momenta has recently been presented. Locality of interactions is the principle
which defines the spacetime structure for a system of particles. The main result
[15] has been to show that it is possible to define a noncommutative spacetime
for particles participating in an interaction in such a way that the interaction is
seen as local for every observer. There exists then a large freedom to introduce
a noncommutative spacetime in a relativistic theory beyond Special Relativ-
ity (SR) in a way compatible with the locality of interactions. An interesting
particular case is the one in which the new spacetime of the two-particle sys-
tem is such that the coordinates of one of the particles depend only on its own
momentum.

To sum up, in the proposal [15], a noncommutative spacetime emerges in
fact from a locality condition in a classical model which generalizes SR instead
of from the implementation of a possible minimal length in a quantum space-
time. One may note that a maximal proper force does not necessarily imply a
minimum length. Given F = mc2/L = b maximal proper force, one could have
the scenario where m → 0, L → 0 such that (m/L)c2 = b, and consequently
there is no minimal length but there is a maximal proper force.

2 Generalized Mass, Momentum, Force and Dark
Matter/Energy

2.1 Casimirs of U(3, 1) and Modified Dispersion Relations

One can verify by inspection of eqs-(1.8) that E2 − P 2 is not invariant under
force/acceleration boost transformations. Therefore the dispersion relation E2−
P 2 = m2 6= (E′)2−(P ′)2 = (m′)2, and consequently the mass parameters m,m′,
are no longer invariant. This is not surprising since the quadratic Casimir of
the Poincare algebra PµP

µ = m2 is not the same as the quadratic Casimir of
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the pseudo-unitary algebra U(1, 3) [2]. In the case of a four-dim phase space,
one has the following U(1, 1) quadratic Casimir

C2 = (
T

λt
)2 − (

X

λl
)2 + (

E

λe
)2 − (

P

λp
)2 (3.1)

where we explicitly re-inserted the four scales of time, energy, momentum and
length of eq-(1.3) to make C2 dimensionless.

If the temporal and spatial displacements are represented by the energy and
momentum operators E → ∂

∂T , P →
∂
∂X , (in units of h̄ = c = 1), the Born reci-

procity principle dictates that the energy and momentum displacements should
be represented by the time and position operators T → ∂

∂E , X →
∂
∂P . Therefore

we shall choose to define our U(1, 1) quadratic Casimir to be the following

C2 = M2 = b2 (T 2 − X2) + E2 − P 2, h̄ = c = 1 (3.2)

and expressed in terms of the quantity M 6= m, which has the same physical
units of mass.

Given, dω = dτ
√

1− F 2

b2 , and M, the generalized momentum in flat phase

space is defined as

PM ≡ M
dZM

dω
= M

(
dT

dω
,
dX

dω
,
dE

dω
,
dP

dω

)
(3.3)

note that we have not explicitly inserted b−1 factors into the definition of PM ,
thus not all quantities in PM have the same units. We shall re-insert these
factors when we evaluate the norm

PM PM = M2

(
(
dT

dω
)2 − (

dX

dω
)2 +

(dEdω )2 − (dPdω )2

b2

)
= M2 (dω)2

(dω)2
= M2

(3.4)
recovering now the generalized dispersion relation in flat phase space and which
is invariant under velocity and force/acceleration boosts transformations (1.4).

As stated earlier, what is an invariant is the phase space interval

b2 (dω)2 = b2
(

(dT )2 − (dX)2
)

+ (dE)2 − (dP )2 = b2 (dτ)2 − (dM)2

(3.5)
where the (spacelike) mass infinitesimal displacement is defined by

−(dM)2 ≡ (dE)2 − (dP )2 ≤ 0 (3.6)

given E2 − P 2 = m2, eq-(3.6) can then be rewritten as

− (dM)2 = − m2

P 2 +m2
(dP )2 ≤ 0 (3.7)

When b 6= ∞, for massless particles m = 0 like the photon, eq- (3.7) leads to
the null intervals in phase space
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(dω)2 = 0, (dτ)2 = 0, (dM)2 = 0, (dX)2 = (dT )2, (dE)2 = (dP )2

(3.8)
as expected. When b = ∞, we recover the standard relativistic expression
dω = dτ . Integrating eq-(3.7) yields

M = m ln

(√
P 2 +m2 + P

m

)
(3.9)

Let us look at the case of uniform linear acceleration. The hyperbolic word-
line in Minkowski spacetime of a uniformly accelerated particle (observer) along
the X axis, with constant proper acceleration g, is given by

T =
1

g
sinh(gτ), X =

1

g
cosh(gτ) (3.10)

from which one infers that the (spacelike) proper acceleration is

(
d2T

dτ2
)2 − (

d2X

dτ2
)2 = − g2 (3.11)

when the signature is chosen to be (+,−). The maximal proper force condition
in this case simply amounts to mg ≤ b. An upper bound on g ≤ b

m implies
a minimum value of X lying inside the Rindler wedge X ≥ m

b . When b =
m2
Planck = (2G)−1 ⇒ X ≥ 2Gm = rh. The minimum X distance coincides

with the black hole horizon radius rh associated with a particle of mass m.
For a Planck mass particle the minimum X value would be the Planck scale.
Whereas in the uniform circular motion, we found the the radius of the circle
cannot exceed the value of the horizon radius [17].

The phase space interval is then

(dω)2 = (dT )2 − (dX)2 +
(dE)2 − (dP )2

b2
= (dτ)2 (1−F

2

b2
) = (dτ)2 (1− (mg)2

b2
) ⇒

(dM)2 = (mg)2 (dτ)2 ⇒ M = mgτ (3.12)

One can verify after some algebra that eq-(3.12) agrees with eq-(3.9) when

P ≡ m γ(v) v, v =
dX

dT
= tanh(gτ) ⇒

P = m (1− tanh2(gτ))−1/2 tanh(gτ) = m sinh(gτ) ⇒

M = m ln

(√
P 2 +m2 + P

m

)
= m ln(cosh(gτ) + sinh(gτ)) =

m ln(egτ ) = mgτ (3.13)

as expected.
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To su, up, from eqs-(3.3,3.4) one can explicitly confirm that PMPM = M2 is
the invariant generalized dispersion relation in phase-space, while the modified
dispersion relation in spacetime is given in this particular case by

PµPµ =
M2

1− F 2

b2

= M2

(
1 +

F 2

b2
+ (

F 2

b2
)2 + · · ·

)
=

M2 + M2 F 2

b2
+ M2 (

F 2

b2
)2 + . . . (3.14)

This is a clear example of how one can have modified dispersion relations in
spacetime due to the corrections based on the maximal force relativity prin-
ciple. A salient feature of the spacetime modified dispersion relations (3.14)
is that they are still Lorentz invariant. One has been able to write down
modified dispersion relations without destroying Lorentz invariance. The rea-
son is because the spacetime momentum components of PM are now given by
Pµ = M(dXµ/dω) 6= Pµ = m(dXµ/dτ). The old definition is based on the
mass parameter m and in taking derivatives with respect to the proper time
τ . As stated earlier the true invariant under velocity and force/acceleration
boosts is ω, and by inspection of eqs-(1.8) one can see that PµP

µ, and PµPµ
are not invariant under force/acceleration boosts transformations, despite being
Lorentz invariant. What is truly invariant is PMPM = M2 6= m2.

2.2 Generalized Force in Flat Phase Space

The components of the generalized proper force in (flat) phase space are now
given by

FM ≡ M
d2ZM

dω2
= M

(
d2T

dω2
,
d2X

dω2
,
d2E

dω2
,
d2P

dω2

)
(3.15)

In particular, the X,T -components of the generalized proper force FM are
given by

FX =
M

1− F 2

b2

d2X

dτ2
− M

b2
(dX/dτ) Fµ (dFµ/dτ)

(1− F 2

b2 )2
(3.16a)

FT =
M

1− F 2

b2

d2T

dτ2
− M

b2
(dT/dτ) Fµ (dFµ/dτ)

(1− F 2

b2 )2
(3.16b)

FX is related to actual physical forces (rate of change of momentum), while FT
is related to power (rate of change of energy).

When there is a uniform linear acceleration in spacetime, the proper force
in spacetime is constant and spacelike FµF

µ = −F 2 ⇒ Fµ(dFµ/dτ) = 0, thus
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FX becomes in this special case

FX =
M

1− F 2

b2

d2X

dτ2
(3.17)

when F 2/b2 < 1, a Taylor expansion of eq-(3.17) yields

FX = M

(
1 +

F 2

b2
+ (

F 2

b2
)2 + · · ·

)
d2X

dτ2
(3.18)

Consequently, the first order corrections ∆FX to the standard spacetime rel-
ativistic proper force M(d2X/dτ2), due to the maximal proper force principle,
are given by

∆FX = M
F 2

b2
d2X

dτ2
= Mg (

mg

b
)2 cosh(gτ) = ∆F cosh(gτ) > 0 (3.19)

where ∆F = Mg (mgb )2. What is numerically relevant is the relative fractional
correction of the force (to first order)

∆FX
FX

=
F 2

b2
= (

mg

b
)2 < 1 (3.20)

In the limiting case F 2/b2 = 1 the generalized force components in eqs-(3.16)
blow up FX = FT =∞. A similar scenario occurs in ordinary Special Relativity,
it takes an infinite energy to accelerate a massive particle to the speed of light. A
salient feature of eq-(3.18) is that the first order (and higher order) corrections
∆FX > 0 are repulsive for all values of τ . This is is reminiscent of the presently
observed repulsive force involved in the accelerated expansion of the universe.

Let us evaluate the components of the generalized proper force in phase
space (3.15), in the special case when F = mg = constant, and associated to a
massive particle with a uniform linear acceleration (Rindler observer). In this
case, eq-(3.10) (in c = 1 units) yield

v = tanh(gτ), γ(v) = (1− v2)−1/2 = cosh(gτ),

E = mγ(v) = m cosh(gτ), P = m γ(v) v = m sinh(gτ) (3.21)

FX =
M

1− F 2

b2

d2X

dτ2
=

Mg cosh(gτ)

1− F 2

b2

(3.22a)

FT =
M

1− F 2

b2

d2T

dτ2
=

Mg sinh(gτ)

1− F 2

b2

(3.22b)

FP =
M

1− F 2

b2

d2P

dτ2
=

Mmg2 sinh(gτ)

1− F 2

b2

(3.22c)

FE =
M

1− F 2

b2

d2E

dτ2
=

Mmg2 cosh(gτ)

1− F 2

b2

(3.22d)
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The norm squared of the generalized proper force in phase space when F = mg
is then given by

Ω2 ≡ FM FM = (FT )2 − (FX)2 +
(FE)2 − (FP )2

b2
=

− M2 g2

1− F 2

b2

= − (MA)2, A ≡ g√
1− F 2

b2

(3.23)

When F = mg = b reaches the maximal proper force value in spacetime, we
find that the norm squared of the generalized proper force in phase space is
Ω2 = −∞.

One could write eq-(3.23) in the form

M(F ) =
M√

1− F 2

b2

↔ m(v) =
m√

1− v2

c2

(3.24)

and Ω2 ≡ −(F)2, with

F = M(F ) g =
Mg√
1− F 2

b2

↔ P = m(v) v =
mv√
1− v2

c2

(3.25)

because it implements Born’s Reciprocal Relativity Principle in a natural fash-
ion. On the right hand side we have the velocity dependence of the mass m(v),
and the momentum, in terms of the rest mass m and the velocity v. In the
left hand side we have the force-dependent mass M(F ) which is given in terms
of the force F = mg, and the inertial mass M associated to a non-accelerated
frame (either at rest or moving with a constant velocity).

Furthermore, given F = mg ≤ b, one could write b = mA, where A = b/m
is the maximal acceleration that a particle of mass m can sustain. The more
massive the particle is the lower A is, and vice versa. Hence the left hand side
eq-(3.25) can be rewritten in terms of A as

F = M(g) g =
Mg√
1− g2

A2

↔ P = m(v) v =
mv√
1− v2

c2

(3.26)

such that the correspondence with the right hand side is more evident.
In the case of a (M = 0) massless particle (photon), the trajectory in phase-

space defined by T = X; E = P, dω = dτ = 0, and described in terms of an
affine parameter λ = ω/M, yields identically zero FMFM = Ω2 = 0, FµF

µ =
F 2 = 0 values. Hence, a photon describes a null path, and it experiences a zero
proper force magnitude, both in spacetime and in phase-space.

Whereas a massive particle subjected to the maximal proper force b in
spacetime will experience an infinite generalized proper force squared in phase-
space Ω2 = −∞, while having a null interval in phase-space (dω)2 = (dτ)2(1−
F 2/b2) = 0, but a timelike interval in spacetime (dτ)2 > 0.
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To conclude this section, we must emphasize that in the most general case,
when FµF

µ = −F 2(τ) 6= constant, eqs-(3.16) would lead to a system of coupled
nonlinear third order differential equations forX = X(τ), T (τ) once FX(τ),FT (τ)
are known. To solve them in the most general case would be a very difficult
task.

2.3 Cosmological Applications : Dark Matter

From these equations (3.24-3.26) one can conclude that the generalized mass
M corresponding to the motion in flat phase-space (the cotangent bundle of
spacetime) is an increasing function of the force (acceleration) experienced by
the particle in the underlying spacetime base manifold, and it becomes infinite
at the maximal proper force F = mg = b. This is similar with what happens in
Special Relativity (SR). The mass m(v) = mγ(v) = m(1− v2/c2)−1/2 blows up
when the particle reaches the speed of light.

This might have profound consequences in Cosmology. The dark matter,
dark energy puzzle might be related to this effect if we embed the 4D spacetime
dynamics of the matter in our Universe into its 8D cotangent bundle dynamics.
In doing so, the matter in the accelerated expanding Universe will experience a
(generalized) mass increase described by eq-(3.24), which in turn, will have an
increased gravitational effect on the surrounding matter, and mimicking the
effects of dark matter.

A simplified calculation can be obtained by studying the transformation
properties of the line energy densities λ = energy/length, rather than volume
energy densities ρ, under force/acceleration boosts. From eqs-(1.8) one has

dE′ = coshξ dE − b sinhξ dX, dX ′ = coshξ dX − sinhξ
dE

b
⇒

λ′ =
dE′

dX ′
=

dE
dX − b tanhξ

1− λ tanhξ
b

=
λ − b tanhξ

1− λ tanhξ
b

=
λ − F

1− λ F
b2

(3.27)

after using the definition for the force/acceleration boost parameter tanhξ =
F/b. One can polish further eq-(3.27) by noticing that λ has units of mass/length,
which are the same units as those of a force when c = 1. Since b is the maximal
proper force, it is also the maximal line density. Hence, we may divide both
sides of eq-(3.27) by b and arrive at

λ′

b
=

λ
b −

F
b

1− λ
b
F
b

(3.28)

which is very reminiscent of the subtraction law for velocties in Special Relativity
if one writes F

b = λ′′. Changing the sign of F will lead to an addition law.

The maximum values that λ
b , and F

b = λ′′

b can take are 1, and such that the

composition rule reveals that the maximum values that λ′

b can take is also 1.
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Now we may recall that in the standard model of Cosmology the present-
day dark matter plus dark energy amounts roughly to 95 percent, and the
ordinary matter (plus radiation) amounts to 5 percent. These numbers actually
refer to present-day values of the density parameters Ω’s which are defined by
the ratios of the corresponding matter/energy densities with respect to the
present-day critical energy density ρcrit ≡ 3

8πGR2
H

that is defined in terms of

the present-day value of the Hubble scale RH . Thus Ω ≡ (ρ/ρcrit),
1 and

the total value ΩT of the sum of the Ω’s is 1 by definition. If one includes
the spatial curvature density parameter Ωk associated a Friedman-Lemaitre-
Robertson-Walker (FLRW) model, k = 1, 0,−1, the total value for ΩT may
differ from unity.

Following the same procedure, we shall define our line density parameters
σ = λ/b as the ratios of the corresponding line energy densities λ with respect
to the maximal line energy density b. In doing so we can recognize that the
composition law (3.28) is nothing but the law corresponding to the composition
of line density parameters

σ′ =
σ ± σ′′

1± σ σ′′
, σ ≡ λ

b
, σ′′ ≡ F

b
, σ′ ≡ λ′

b
(3.29)

In passing, we should mention that the maximal proper force b (maximal line
energy density) is in fact related to the observed mass MU of the Universe within
the present-day Hubble scale RH , and which in turn, leads to the derivation of
the critical energy density ρcrit ≡ 3

8πGR2
H

. We shall show this below.

Finally, we can infer the crucial physical significance of the composition law
of the line density parameters in eq-(3.29). If the value of the baryonic matter
density parameter is σ = 5/100, for example, its value in an accelerated frame of
reference σ′ will be higher under the addition law (lower under the subtraction
law). In particular, under the addition law in eq-(3.29), in the frame of reference
when F reaches its maximal value, σ′′ = F

b = 1⇒ σ′ = λ′/b = 1, thus the line
density parameter reaches its maximum value of 1. Choosing a lower value
for F will yield σ′ < 1, like 95/100, and so forth. Consequently, what we
may interpret as dark matter surrounding galaxies, could be just an effect of
observing ordinary galactic matter in different accelerating frames of reference
than ours. Since the universe’s expansion is accelerating, galaxies are clearly
accelerating with respect to us as observed by Hubble long ago. In the next
section we shall provide numerical examples.

2.4 Maximal Force, Vacuum Energy and Black-Hole Cos-
mology

It was shown in [18] how one can implement the Maximal Force Relativity
principle within the context of Mach’s principle and Black-Hole Cosmology [19]

1Not to be confused with Ω in eq-(3.23)
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by setting the following proper forces to be equal to the maximal proper force
value b

MU (
c2

RH
) = mP (

c2

LP
) = b (3.30)

where MU is the Universe’s total mass inside the present-day Hubble radius RH ;
mP , LP are the Planck mass, and length, respectively. The Planck length is de-
fined by equating the Schwarzschild radius 2Gm/c2 to the Compton wavelength

h̄/mc. In doing so one obtains h̄/mc = LP =
√

2h̄G
c3 . In units of h̄ = c = 1,

eq-(3.30) gives

b =
MU

RH
= (mP )2 = (LP )−2 =

1

2G
(3.31)

if the mass MU is distributed uniformly over the volume of a sphere of radius
RH , the energy density is

ρ =
MU

(4π/3)R3
H

=
3

4π

MU

RH

1

R2
H

=
3

8πGR2
H

= ρcrit (3.32)

which coincides with the present-day critical energy density, the observed vac-
uum energy density ρvac driving the exponential expansion of the universe in a
late time de Sitter phase. There is yet another interpretation of this result. From
eqs-(3.30, 3.31) one learns that the work (energy) performed by the maximal
proper force b over a distance RH is

E = b RH =
RH
2G

= MU ⇒ RH = 2GMU (3.33)

What these results (3.33) indicate is that the observed Universe’s total mass
MU coincides with the product of the maximal proper force times the Hubble
horizon scale (an infrared cutoff), and which in turn, is the black hole horizon
radius corresponding to a Universe-mass black hole. The Planck mass is the
product of the maximal proper force times the Planck scale (ultraviolet cutoff),
and which in turn, is the black hole horizon radius corresponding to a Planck-
mass black hole. And so forth, namely a black hole’s mass M coincides with
the product of the maximal proper force b with its black hole horizon radius R.

Let us now provide some results when one looks at the distribution of or-
dinary matter. To simplify matters considerably in our calculations we may
assume a spherical (volume) mass density distribution ρ(r) such that the line
matter density is λ(r) = 4πρ(r)r2, and is obtained simply by equating the mass
stored inside a spherical shell at radius r, r + dr : dm = λ(r)dr = 4πρ(r)r2dr.
Adopting Hubble’s expansion law that velocity is proportional to distance v(r) =
Hor, where Ho = 1/RH is the Hubble parameter present-day value, the accel-
eration is a(r) = Ho(dr/dt) = Hov(r) = H2

or. Hence the force experienced
by an infinitesimal mass element dm (inside each expanding spherical shell) is
dF = a(r)(dm) = (H2

or) (4πρ(r)r2dr). A word of caution : note that rigor-
ously speaking this force dF is not a proper-force mg as the one described by
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eqs-(3.10, 3.11) for the uniform linear accelerated motion (Rindler observers).
Nevertheless for the sake of the argument, and to simplify matters, we shall
use dF , otherwise we should provide an ensemble of Rindler observers, each
attached to every expanding spherical shell.

Summarizing one has

λ(r) = 4πρ(r)r2 ⇒ dλ = 8π ρ(r) r dr + 4π r2 dρ(r)

dr
dr (3.34a)

dF = 4π H2
o ρ(r) r3 dr ⇒ F (r)−F (r = 0) = 4π H2

o

∫ r

0

ρ(r) r3 dr (3.34b)

Having at our disposal these equations (3.34) one can then differentiate the
line-density addition law (3.28)

λ2 =
λ1 + λ2

1 + λ1 λ2

b2

⇒

dλ2 =
(1 + λ1 λ2

b2 ) (dλ1 + dλ2) − (λ1 + λ2) b−2d(λ1λ2)

(1 + λ1 λ2

b2 )2
⇒ (3.35)

λ2(RH) =

∫ RH

0

(1 + λ1 λ2

b2 ) (dλ1 + dλ2) − (λ1 + λ2) b−2d(λ1λ2)

(1 + λ1 λ2

b2 )2

(3.36)
where we chose the boundary condition λ2(r = 0) = 0. Inserting the following
expressions

λ1(r) = 4πρ(r)r2, λ2(r) = F (r)− F (r = 0) = 4π H2
o

∫ r

0

ρ(r) r3 dr,

dλ1 = 8π ρ(r) r dr + 4π r2 dρ(r)

dr
dr, dλ2 = dF = 4π H2

o ρ(r) r3 dr (3.37)

into the integral (3.36) it will give us the sought-after expression for the cumulative
and inflated line matter density inside the Hubble radius λ2(r = RH), and
given in terms of the spherical volume mass density ρ(r) distribution. In order
to evaluate the integral one needs to know the expression for ρ = ρ(r) which
must be compatible with the addition composition law (3.28) that imposes that
λ2(r) cannot exceed the maximal value of b.

The integral in (3.36) can be seen as a functional of ρ(r) : I[ρ(r)] = real
number. Hence one can obtain a wide range of numerical values depending on
ρ(r). But it cannot be an arbitrary function because given that λ(r) = 4πρ(r)r2,
and that λ(r) ≤ b cannot exceed the maximal density b, one can infer from eqs-
(3.30-3.32) that the volume mass density ρ(r) must be constrained to obey the
following conditions
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ρ(r) < ρvac (
RH
r

)2 = ρPlanck (
LPlanck

r
)2 (3.37)

ρvac =
3

8πGR2
H

, ρPlanck =
3mPlanck

4πL3
Planck

(3.38)

If ρ(r) = ρo = constant, the condition (3.37) would require us to introduce
an infrared-cutoff r2 = RH − ε to force ρo < ρvac. This is a reasonable choice
because in this case the value of ρo would be very close to the ρvac when ε is
very small.

The boundary condition λ(r = 0) = 0 requires that in the regions very
near the origin r = 0 the density behaves ρ(r) ' rδ−2, for δ > 0. If 2 > δ >
0 ⇒ ρ(r = 0) = ∞ which is unphysical and would force us to introduce an
ultraviolet cut-off, say the Planck scale, to avoid this singularity. If δ > 2 > 0,
then ρ(r = 0) = 0 which is well behaved. Having a zero density at r = 0 is not
farfetched since there are vast empty regions devoid of matter in the Universe.

Concluding, in this very specific and simplified model, after obtaining a nu-
merical value for the integral I[ρ(r)] defining λ2, and upon dividing it by b,
one will then find the cumulative inflated percentage ratio of the matter con-
tent of the Universe due to the maximal-force relativistic corrections based on
Born’s reciprocity principle, and originating from the accelerated expansion of
the Universe. Let us imagine that for a judicious choice of ρ(r) one finds, af-
ter evaluating the integral (3.36) that the ratio becomes λ2/b = 30/100, when
λ1/b = 5/100. This would entail that the inflated ratio, due to the accelerated
expansion of the Universe, would amount to an increase of 25/100 and, conse-
quently, one might be inclined to conclude that there is “dark matter” out there
in the Universe which should account for this 25/100 increase.

Some readers may argue that these results are just mere numerical coinci-
dences arising in Black-Hole Cosmology [19], [22]. We beg to differ and pos-
tulate that the underlying physical origins behind these numerical coincidences
may stem from the maximal proper-force relativity theory based on Born’s reci-
procity principle. Another interpretation of eqs-(3.30-3.33) [24] is that involving
matter creation from the vacuum, as advocated by Hoyle long ago. Imagine one
pumps matter out of the vacuum in lumps/units of Planck masses. Let us as-
sume that the Universe expands in such a way that matter is being replenish
from the vacuum so that the mass at any moment is linearly proportional to
the size of the Universe. As the mass of the universe grows the vacuum energy
density decreases since the vacuum is being depleted. In this scenario, at the
Hubble scale RH , one has MU ∼ RH .

Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations
show that our Universe may be indeed closed, with the total density parameter
Ω = 1.0023 [20]. The critical density ρcrit is the total density of matter/energy
needed for the universe to be spatially flat. Measurements indicate that the
actual total density is very close if not equal to this value.

The author [21] has proposed that the closed Universe is the interior of a
black hole existing in another universe. Quantum particle production caused by
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an extremely high curvature near a bounce creates enormous amounts of matter,
produces entropy, and generates a period of exponential expansion (inflation) of
this universe. Depending on the particle production rate, such a universe may
undergo several nonsingular bounces until it has enough matter to reach a size
at which the cosmological constant starts cosmic acceleration. The last bounce
can be regarded as the big bang (or rather the big bounce) of this universe.

However, the nature of dark matter and dark energy still remains unsolved
in this scenario [21]. A more recent proposal that advocates the fall of dark
matter may be found in [23]. Scale invariance is assumed in the empty regions
of space. The Weyl gauge field Aµ contributes to modifications of the Christof-
fel connection leading then to repulsive corrections to the geodesic equations.
Another approach to solve these cosmological puzzles based on the scaling prop-
erties of fractals can be found in Nottale’s Scale Relativty Theory [25]. A more
recent approach to derive the value of ρvac based on the novel Bohm-Poisson-
Schroedinger equation, and which also explains the repulsive force of dark en-
ergy, can be found in [24]. For an extensive review of the successes and problems
of the Standard Models of Cosmology we refer to [26].

3 Finsler Geometry and Curved Phase Space

To study the geometry behind a maximal proper force and/or maximal acceler-
ation in more general curved phase spaces (cotangent bundles), we shall follow
next the description by the authors [16] where one may study in detail the ge-
ometry of Lagrange-Finsler and Hamilton-Cartan spaces and their higher order
(jet bundles) generalizations.

In the case of the cotangent space of a d-dim manifold T ∗Md the metric can
be equivalently rewritten in the block diagonal form as

(dω)2 = gij(x
k, pa) dxid xj + hab(xk, pc) δpa δpb =

gij(x
k, pa) dxid xj + hab(x

k, pc) δp
a δpb (4.1)

i, j, k = 1, 2, 3, .....d, a, b, c = 1, 2, 3, .....d, if instead of the standard coordinate
basis one introduces the following anholonomic frames (non-coordinate basis)

δi = δ/δxi = ∂xi + Nia ∂
a = ∂xi + Nia ∂pa ; ∂a ≡ ∂pa =

∂

∂pa
(4.2)

One should note the key position of the indices that allows us to distinguish
between derivatives with respect to xi and those with respect to pa. The dual
basis of (δi = δ/δxi; ∂a = ∂/∂pa) is

dxi, δpa = dpa − Nja dx
j , δpa = dpa − Na

j dx
j (4.3)

where the N–coefficients define a nonlinear connection, N–connection structure.
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An N-linear connection D on T ∗M can be uniquely represented in the
adapted basis in the following form

Dδj (δi) = Hk
ij δk; Dδj (∂a) = − Ha

bj ∂
b; (4.4a)

D∂a(δi) = Ckai δk; D∂a(∂b) = − Cbac ∂c (4.4b)

where Hk
ij(x, p), H

a
bj(x, p), C

ka
i (x, p), Cbac (x, p) are the connection coefficients.

Our notation for the derivatives is

∂a = ∂/∂pa, ∂i = ∂xi , δi = δ/δxi = ∂xi + Nia ∂
a (4.4c)

The N–connection structures can be naturally defined on (pseudo) Rieman-
nian spacetimes and one can relate them with some anholonomic frame fields
(vielbeins) satisfying the relations δαδβ − δβδα = W γ

αβδγ . The only nontrivial
(nonvanishing) nonholonomy coefficients are

Wija = Rija; W a
jb = ∂aNjb = − W a

j b (4.5a)

and
Rija = δjNia − δiNja (4.5b)

is the nonlinear connection curvature (N–curvature).
Imposing a zero nonmetricity condition of gij(x, p), h

ab(x, p) along the hori-
zontal and vertical directions, respectively, gives

Digjk = δi ggk −H l
ij glk −H l

ik gjl = 0, (4.6a)

Dahbc = ∂a hbc + Cabd hdc + Cacd hbd = 0 (4.6b)

Performig a cyclic permutation of the indices in eqs-(2.6), followed by linear
combination of the equations obtained yields the irreducible (horizontal, verti-
cal) h-v-components for the connection coefficients

Hi
jk =

1

2
gin (δkgnj + δjgnk − δngjk) (4.7)

Cabc = − 1

2
hcd

(
∂bhad + ∂ahbd − ∂dhab

)
(4.8)

The additional conditions Dih
ab = 0, Dagij = 0, yield the mixed compo-

nents of the connection coefficients

Ha
bj =

1

2

(
hac δjhbc − hac hbd ∂

dNjc + ∂aNjb
)

(4.9)

(after using hac δjhbc = −(δjh
ac) hbc)

Cjai =
1

2
gjk ∂agik (4.10)

For any N-linear connection D with the above coefficients the torsion 2-forms
are
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Ωi =
1

2
T ijk dx

j ∧ dxk + Ciaj dxj ∧ δpa (4.11a)

Ωa =
1

2
Rjka dx

j ∧ dxk + P baj dx
j ∧ δpb +

1

2
Sbca δpb ∧ δpc (4.11b)

and the curvature 2-forms are

Ωij =
1

2
Rijkm dxk ∧ dxm + P iajk dx

k ∧ δpa +
1

2
Siabj δpa ∧ δpb (4.12)

Ωab =
1

2
Rabkm dxk ∧ dxm + P acbk dxk ∧ δpc +

1

2
Sacdb δpc ∧ δpd (4.13)

where one must recall that the dual basis of δi = δ/δxi, ∂a = ∂/∂pa is given by
dxi, δpa = dpa −Njadxj .

The distinguished torsion tensors are

T ijk = Hi
jk − Hi

kj ; Sabc = Cabc − Cbac ; T iaj = Ciaj = − T ia j

P a
b j = Ha

bj − ∂aNjb, P a
b j = − P a

bj

Rija =
δNja
δxi

− δNia
δxj

(4.14)

The distinguished tensors of the curvature are

Rikjh = δhH
i
kj − δjH

i
kh + H l

kj H
i
lh − H l

kh H
i
lj − Ciak Rjha (4.15)

P abcj = ∂a Hb
cj + Cadc P bdj −

(
δj C

ab
c + Hb

dj C
da
c + Ha

dj C
bd
c − Hd

cj C
ab
d

)
(4.16)

P akij = ∂a Hk
ij + Cali T klj −

(
δj C

ak
i + Ha

bj C
bk
i + Hk

lj C
al
i − H l

ij C
ak
l

)
(4.17)

Sabcd = ∂c Cabd − ∂b Cacd + Cebd Cace − Cecd Cabe ; (4.18)

Sibcj = ∂cCbij − ∂bCcij + Cbhj Ccih − Cchj Cbih (4.19)

Rabjk = δkH
a
bj − δjH

a
bk + Hc

bj H
a
ck − Hc

bk H
a
cj − Ccab Rjkc (4.20)
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Let us go back and write down the 8D cotangent space (phase-space) in-
finitesimal interval

(dω)2 = gij(x, p) dx
i dxj + hab(x, p) (dpa − Na

i (x, p) dxi) (dpb − N b
j (x, p) dxj)

(4.21)
where Na

i is the nonlinear connection
Given a flat cotangent bundle with gij = ηij ;hab = ηab

b2 and Na
i = 0 the

interval (4.21) reduces to the Born-Green line interval (1.1).
In the very particular case when

gij(x, p) = gij(x), hab(x, p) =
gab(x)

b2
, Na

i (x, p) = Γaid(x)pd (4.22)

one can identify the spacetime proper time parameter τ with s =
∫

(gij(x)dxidxj)1/2,
and the 8D cotangent bundle infinitesimal interval (4.21) becomes

(dω)2 = gij(x) dxi dxj +
gab(x)

b2
(dpa − Γaci(x) pc dxi) (dpb − Γbcj(x) pc dxj)

(4.23)

After factoring out the term (ds)2 = gij(x) dxi dxj , and writing pi = mdxi

ds , it
gives for the right hand side of eq-(4.23)

(ds)2

(
1 +

gab
b2

(
dpa

ds
− 1

m
Γaci(x) pc pi) (

dpb

ds
− 1

m
Γbcj(x) pc pj)

)
(4.24a)

A relabeling of indices allows to rewrite Γaci(x) pc pi = Γacd(x) pc pd, giving for
the line interval the following expression

(dω)2 = (ds)2

(
1 +

F 2(s)

b2

)
= (ds)2

(
1 − m2g2(s)

b2

)
(4.24b)

and which has been rewritten in terms of the spacelike proper-force squared
F 2(s) = −m2g2(s) < 0, as follows

F 2(s) = gab(x) Fa Fb ≡ gab(x)
D2xa

Ds2

D2xb

Ds2
≡

gab(x)

(
m
d2xa

ds2
− 1

m
Γacd(x) m

dxc

ds
m
dxd

ds

) (
m
d2xb

ds2
− 1

m
Γbcd(x) m

dxc

ds
m
dxd

ds

)
(4.25)

To sum up 2, in this special case the 8D cotangent bundle infinitesimal interval

can be written in terms of the covariant proper force F a = mD2xa

Ds2 of a particle
moving in an underlying spacetime of metric gab(x) as displayed in eqs-(4.25)
as follows

2One could have relabeled the a, b, c, d · · · indices as i, j, k, l · · · instead.
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(dω)2 = (ds)2

(
1 − m2g2(s)

b2

)
≥ 0 (4.26)

and it yields a bound on the magnitude of the proper-force squared m2g2(s)
b2 ≤ 1

similar to the bound on the velocity in Special Relativity v ≤ c resulting from
the condition (ds)2 = (dt)2(1− v

c
2) ≥ 0 excluding tachyons.

3.1 Hamilton Spaces

A typical example of these Finsler geometrical structures is Hamilton spaces.
With the help of the spacetime metric, its inverse, and the four-momentum pa
of the particle, the dispersion relation can be written covariantly in terms of the
Hamiltonian H(x, p) = gab(x) pa pb = m2. One example of Hamiltonians are
homogeneous Hamiltonians of the form [27]

H(x, p) = Ga1a2···an(x) pa1 pa2 . . . pan (4.27)

The Hamiltonian encodes the dynamics of point particles via the Hamilton equa-
tions of motion. These equations determine the trajectory of a point particle in
phase space, i.e. in the cotangent bundle T ∗M of the spacetime manifold M .

The Hamilton metric g of H is non-degenerate, nearly everywhere on T ∗M
(excluding the origin) and defined by

gab(x, p) ≡
1

2

∂

∂pa

∂

∂pb
H(x, p) (4.28)

The connection coefficients Nab(x, p) of the Hamilton nonlinear connection
are given by

Nab(x, p) =
1

4

(
{gab, H} + gai

∂

∂xb
∂

∂pi
H + gbi

∂

∂xa
∂

∂pi
H

)
(4.29)

where {A(x, p), B(x, p)} are the Poisson brackets of two functionsA(x, p), B(x, p)
on T ∗M

{A(x, p), B(x, p)} =
∂A

∂xa
∂B

∂pa
− ∂B

∂xa
∂A

∂pa
(4.30)

This connection is called non-linear since it may depend non-linearly on the
momenta. In terms of these connection coefficients we can define a covariant
derivative on the cotangent bundle for so-called d-tensors (distinguished ten-
sors). The components of the d-tensor field depend on positions and momenta,
not only on positions. The Hamilton non-linear connection coefficients are the
unique connection coefficients which satisfy Nab = Nba and ∇gab = 0.

The Hamilton geometry of the phase space of particles is the one whose mo-
tion is characterised by general dispersion relations. In this framework spacetime
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and momentum space are naturally curved and intertwined, allowing for a si-
multaneous description of both spacetime curvature and non-trivial momentum
space geometry. The authors [27] considered as explicit examples two models
for Planck-scale modified dispersion relations, inspired from the q-de Sitter and
κ-Poincare quantum groups. In the first case they found the expressions for
the momentum and position dependent curvature of spacetime and momentum
space, while for the second case the manifold is flat and only the momentum
space possesses a nonzero, momentum dependent curvature. In contrast, for a
dispersion relation that is induced by a spacetime metric, as in General Relativ-
ity, the Hamilton geometry yields a flat momentum space and the usual curved
spacetime geometry with only position dependent geometric objects.

Therefore, this picture based on Hamilton geometry is closer to our work
presented here, and should be contrasted with the one based on Hopf algebras
and noncommutative geometry of the underlying spacetime discussed earlier.
We finalize by saying that the generalized vacuum gravitational field equations
in curved (co) tangent spaces have been studied by Vacaru [16]. They have the
form

Rij(x, p) −
1

2
gij(x, p) (R+ S)(x, p) = 0,

Sab(x, p) −
1

2
hab(x, p) (R+ S)(x, p) = 0 (4.30)

we argued in [17] that the term gijS due to the curvature scalar S in momentum
space can be interpreted as an effective stress energy tensor in the base spacetime
manifold when gijS only depend on x. While by Born’s reciprocity, the term
habR due to the scalar curvature in spacetime can be interpreted as an effective
stress energy tensor in the momentum space when habR only depend on p.
Solutions, in very special cases, were found by [16]. To find solutions in more
general cases is a daunting task.
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