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ABSTRACT ___________________________________________________________ 

 
The algorithm presented here is to be applied to polynomials whose independent term has many divisors. 

This type of polynomials can be hostile to the search for their integer roots, either because they do not 

have them, or because the first tests performed have not been fortunate. 

 

This algorithm was first published in Revista Escolar de la Olimpíada Iberoamericana de Matemática, 

Number 19 (July - August 2005). ISSN – 1698-277X, in Spanish, with the title ALGORITMO DE 

DESCARTE DE RAÍCES ENTERAS DE POLINOMIOS. 
 

When making this English translation 12 years later, some erratum has been corrected and when 

observing from the perspective of time that some passages were somewhat obscure, they have been 

rewritten trying to make them more intelligible. 

 
The algorithm is based on three properties of divisibility of integer polynomials, which, astutely 

implemented, define a very compact systematic that can simplify significantly the exhaustive search of 

integer roots. 

 

Although there are many other methods for discarding roots, for example, those based on bounding rules, 

which sometimes drastically reduce the search interval, for the sake of simplicity, they will not be 

considered here. 

 

Despite it is a basic issue that supposedly has already been studied exhaustively, the truth is that the 

foundations of science are the most important, since everything else must be supported on them. 

 

Each year, hundreds of thousands of mathematical articles are published, most of them at a postgraduate 

level, so that it is already physically impossible to take into account all the information related to a certain 

subject of study. 

 

The study presented here could be useful to almost all the young people of the planet, since at some stage 

of their academic training they will have to solve polynomial equations with integer coefficients, looking 
for rational solutions, integer or fractional. 

 

All of us who have dedicated ourselves to the teaching of Mathematics can remember good students who, 

for example, have abandoned an exercise of simplification of algebraic fractions because they were 

unable to factorize some of the polynomials involved, more for lack of time than for knowledge. This has 

been precisely the motivation to undertake the study of DARRIP 

  

The author's dream, fully convinced of the advantages of the method presented here, is nothing more than 

to see that the DARRIP becomes incorporated into the curricula of all the elementary study centers in the 

world. 

 

-,  
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 1. Properties underlying the algorithm for integer roots of integer polynomials. 
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be an integer polynomial, that is, a polynomial with integer coefficients. 

 

 

 1.1. If 
0 0x   is an integer root of p(x), then 

0x  is a divisor of 
0a . 

 

Proof ___________________________________________________________ 
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 1.2. If 
0 { 1, 0, 1}x   is an integer root of ( )p x , then 

0 1x   is a divisor of ( 1)p  . 

 

Proof ___________________________________________________________ 
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By the remainder theorem, it is clear that the binomials 0 0( ) 1k

kp x x  , as 

polynomials in 0x , are divisible by 0 1x  , since (1) 0kp  . Let  
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  Then, 
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 and considering again the indeterminate 0x  as an integer constant, it follows that 
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 that is, 0 1x   divides ( 1)p  . 
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Note: Although the property is trivially verified for 
0 0x  , is not considered this 

value because it has no practical interest in implementing the algorithm. 

 

 

 1.3. If 
0 { 1, 0, 1}x   is a root of ( )p x , then 

0 1x   is a divisor of ( 1)p  . 

 

Proof ___________________________________________________________ 

 

  The proof of this property is analogous to the previous one. 

 

  The properties 1.2 and 1.3 can be stated in this more compact form: 

 

 

 1.2-3. If 
0 { 1, 0, 1}x   is a root of p(x), then 

0 1x   is a divisor of ( 1)p . 
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 2. DARRIP fundamentals _______ ______________________________________ 

 

By 1.1, integer roots must divide the independent term. So, we will take as initial 

candidates to integer roots the set of divisors of 
0a . 

 

The application of the DARRIP will only be profitable if 
0a  has many divisors, in 

which case it can reduce the number of divisions necessary to discover the integer roots. 

 

This algorithm, based on the three properties demonstrated in the previous section, is a 

much finer “sieve” than the one based only on property 1.1, since it involves two new 

criteria, determining a much more selective “filtering”; often, the integers that cross it 

are only the roots of the polynomial.  

 

The algorithm has been designed in a way that minimizes writing, and that its execution 

is intuitive and mnemonic. 

 

 

 2.1. Complexity ______________________________________________________ 

 

If 
0a  has d positive divisors greater than 1, also it has d negative divisors less than -1. 

 

To apply the properties 1.2-3, these 2d divisors must be incremented by ±1, which 

produces 4d other numbers to consider, and the number of divisors would be 6d.  

 

Thus, the direct application of 1.2-3 would have the following price: it would be 

necessary to make 4d "extra" tests of divisibility, and to write a threefold number of 

divisors of absolute value greater than one, in exchange for avoiding a certain number 

of divisions... 

 

In order to improve the implementation of the algorithm, let's note the following 

additional properties: 

 

If 
0x  is a positive integer root of p(x), then: 

 

 2.2. 
0 1x   divides ( 1)p  , and this implies that 0 0( 1) 1x x      divides ( 1)p  . 

 

 2.3. 0 1x   divides ( 1)p  , and this implies that 0 0( 1) 1x x      divides ( 1)p  . 

 

These last properties, although they may seem trivial, allow to reduce drastically the 

amount of writing, simply extending the divisibility tests of the positive divisors: 

 

 If 0 1x   doesn´t divide ( 1)p  , 0x  is discarded as root. 

 If 0 1x   doesn´t divide ( 1)p  , 0x  is discarded as root. 

 If 0 1x   doesn´t divide ( 1)p  , 0x  is discarded as root. 

 If 0 1x   doesn´t divide ( 1)p  , 0x  is discarded as root. 



 Discarding Algorithm for Rational Roots of Integer Polynomials  

5 
 Jesús Álvarez Lobo  

In a more compact form: 
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Obviously, for the purposes of divisibility, ( 1)p   can be replaced by ( 1)p  . 

 

 

 2.4. Algorithm configuration ___________________________________________ 

 

Let 
0 1 2 1{ , , , , }s sD d d d d  be the set of all positive divisors of 

0a , such that 

1 2 11 .s sd d d d      

 

Let´s set up the following schema:  
 

 

 

 

 

 

 

 

For 1, 2, ,k s , we must perform the following divisibility tests: 

 

 Is ( 1)p   divisible by 1kd  ? 

 

 Is ( 1)p   divisible by 1kd  ? 

 

 Is ( 1)p   divisible by 1kd  ? 

 

 Is ( 1)p   divisible by 1kd  ? 

 

 2.3. Rule of diagonals _________________________________________________ 

 

When we test the divisibility by 1kd   we work with ( 1)p   and ( 1)p   on the left; 

when we test the divisibility by 1kd  , we work with ( 1)p   and ( 1)p   on the right. 

 

Whenever one of these divisibility tests is negative, we plot in the cell containing the 

divisor tested, kd , the diagonal whose direction is determined by the relative position of 

( 1)p   or ( 1)p   with respect to kd . 

│p(+1)│ │p(+1)│ 

│p(-1)│ │p(-1)│ 

d1 d2 

 

··· ds-1 

 

ds 
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There are four cases: 

 

 If 1kd   doesn´t divide ( 1)p  , we must draw the main diagonal (ascending from 

right to the left), since ( 1)p   is considered to the left and above 
kd  when is tested 

1kd  . This means that 
kd  has been discarded. 

 

 If 1kd   doesn´t divide ( 1)p  , we must draw the secondary diagonal (down from 

right to the left), since ( 1)p   is considered to the left and below 
kd  when is tested 

1kd  . This means that 
kd  has been discarded. 

 

 If 1kd   doesn´t divide ( 1)p  , we must draw the secondary diagonal, since 

( 1)p   is considered to the right and above 
kd  when is tested 1kd  . This means 

that 
kd  has been discarded. 

 

 If 1kd   doesn´t divide ( 1)p  , we must draw the main diagonal, since ( 1)p   is 

considered to the right and below 
kd  when is tested 1kd  . This means that 

kd  has 

been discarded. 

 

 

 

 

 

 

 

 

 

  

 Obviously, the discarded divisors no longer need to be tested. 

 

 

 

 

 

 

-,  
 

Discard criteria  

 

 A main diagonal discards a positive divisor. 

 

 A secondary diagonal discards a negative divisor. 
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 3. DARRIP Implementation _________________________________ 

 

Steps for applying the Algorithm: 

  

 Find the polynomial ( )q x  resulting from eliminating all the roots 0, 1, -1 (with any 

degree of multiplicity) from ( )p x  and to reduce their coefficients to relatively 

prime (dividing, if necessary, by the GCD of these). The Discarding algorithm is 

applied to this reduced polynomial, ( )q x . 

 

 Calculate the values  ( 1)q   and ( 1)q  . 

 

Let 
1( )p x  be the polynomial resulting from eliminating in ( )p x  the roots 0 and 1 

and reduce their coefficients to relatively prime. 

 

If –1 isn´t a root of ( )p x , i.e., if ( 1) 0p   , then 
1( ) ( )q x p x  and 

1( 1) ( 1)q p    

is the first nonzero remainder obtained during the test of the root +1. 

 

But if –1 is a root of ( )p x , then 
1( ) ( )q x p x . In this case, we can get ( 1)q   

without having to divide ( )q x  by 1x , nor apply the remainder theorem. 

 

Indeed, if -1 is a root of 
1( )p x  with order of multiplicity , we have:  

 

1 1
1

( ) ( 1)
( ) ( 1) ( ) ( ) ( 1)

( 1) 2

p x p
p x x q x q x q

x



 


      


 

 

Thus, by this correction formula, ( 1)q   can be calculated from 
1( 1)p  , whose 

value is simply the first nonzero remainder obtained during the test of the root +1. 

 

( 1)q   is the first nonzero remainder obtained during the test of the root -1. 

 

 Write in the algorithmic schema the divisors of the independent term of ( )q x  

greater than unity, as well as ( 1)q   and ( 1)q  , duplicated in the form previously 

indicated. 

 

 Proof the divisibility of ( 1)q   and ( 1)q  , by each divisor decremented by 1, 

applying the rule of diagonals when the test is negative. 

 

 Proof the divisibility of ( 1)q   and ( 1)q  , by each divisor incremented by 1, 

applying the rule of diagonals when the test is negative. 
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Shortcuts. Before applying the discarding algorithm, it is advisable to observe if any of 

these conditions is met: 

 

 All the coefficients are of the same sign. In this case, positive real roots cannot 

exist; therefore, all the main diagonals would be drawn. 

 

 The coefficients of the terms with different parity in their degrees have a 

different sign. In this case, negative real roots cannot exist; therefore, all the 

secondary diagonals would be drawn. 

 

 The independent term is odd and the sum of the remaining coefficients is even. 

In this case integer roots cannot exist, so it is no longer necessary to apply the 

discarding algorithm. 

 

Proof of ____________________________________________________ 
 

It is obvious that if all the coefficients have the same sign (positive / negative), the 

polynomial cannot be null for any positive value.  

Let 
0
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Proof of ____________________________________________________ 
 

If 
0x   then the terms of even degree do not change sign but the odd degree terms do 

change; therefore, all terms have the same sign. So, the value of the polynomial it isn´t 

null. 

 

Proof of ____________________________________________________ 

 

Since 
0

( 1) ,
n

j

j

p a


    then 0

1

( 1) ,
n

j

j

p a a


    and if 0a  is odd and 
1

n

j

j

a


  is even, 

0( 1)p a   is even, so, ( 1)p   is odd. Let 0x  be an integer root of ( )p x ; then, 0x  should 

be a divisor of 0a , therefore, 0x  must be odd and then 0 1x   should be even. Thus, 

0 1x   it isn´t a divisor of ( 1)p   that is odd, in contradiction with property 1.2. So, 0x  it 

isn´t a root of ( )p x ,  
0 0 .x    

-,  
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 4. Example 1 _______________________________________________________ 

 

Let's look at the process through an example. 

 

Find all the integer roots of the polynomial, 

 

8 7 6 5 4 3 2( ) 2 50 48 2 52 96 2 48p x x x x x x x x x         

 

 
 

Extracting the greatest common factor, 

 
7 6 5 4 3 2( ) 2 ( 25 24 26 48 24)p x x x x x x x x x         

 

Applying now Ruffini´s algorithm to 7 6 5 4 3 225 24 26 48 24x x x x x x x        for the 

roots 1 : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The calculations made so far are the usual ones for the search of the roots 1. 

 

The first nonzero remainder got by iterating in the Ruffini´s algorithm for the root 1  is 

( 1)q  . If ( 1) 0p   , i.e., 1  isn´t a root of ( )p x , then 1( 1) ( 1)q p   ; but in this case 

1  is a root of ( )p x , with order of multiplicity  = 2; therefore, we will apply the 

above formula of correction: 

 

1

2

( 1) 100
( 1) 25

2 2

p
q




     

 

And the set of divisors of 24 greater than 1 is {2, 3, 4, 6, 8, 12, 24}. 

61232112321123211232112321y 

25)1( q

 1 25 24  -1 -26 -48    1  24 

+1    1 26 50 49 23 -25 -24 

 1 26 50 49   23 -25 -24 0 

+1   1 27 77 126 149 124  

 1 27 77 126 149 124 100  

 1 26 50 49   23 -25 -24  

-1  -1 -25 -25 -24    1 24  

 1 25 25 24  -1 -24 0  

-1  -1 -24  -1 -23 24   

 1 24    1 23 -24 0   

-1  -1 -23 22 -45    

 1 23 -22 45 -69    

 

242324)( 234  xxxxxq

100)1(1 p

69)1( q
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So, the schema for the discarding algorithm is the following: 

 

 

 

 

 

 

 

 

We test the divisibility of 25 and 69 by each of the divisors decreased by 1. Applying 

the rule of diagonals, the values inside the green triangles are discarded as roots: 

 

 

 

 

 

 

 

 

 

 

We test the divisibility of 25 and 69 by each of the divisors increased by 1. Applying 

the rule of diagonals, the values inside the orange triangles are discarded as roots: 

 

 

 

 

 

 

 

 

 

 

 

Up to now we have discarded 11 of the 14 candidates to integer root other than 0, 1  (7 

positive and 7 negative), with very little effort.  

 

In this case, by the application of the discarding algorithm have been avoided 11 

divisions by the Ruffini algorithm, in exchange for the simple scheme, 

 

 

 

 

 

 

 

whose construction only involves operations that are carried out quickly and without 

difficulty: subtract or add the unit and apply criteria of divisibility. 

25        25 

 2 3 4 6 8 12 24  

69        69 

 

25        25 

 2 3 4 6 8 12 24  

69        69 

 -3 -6 -8 -12 

+3 +4 +8 +12 +24 

25        25 

 2 3 4 6 8 12 24  

69        69 

 -3 -6 -8 -12 

+3 +4 +8 +12 +24 

-2 

+6 

25        25 

 2 3 4 6 8 12 24  

69        69 
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It only remains to prove by division or theorem of the rest whether 2, 4, 24    are 

roots of ( )q x : 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Hence, the only integer root of ( )q x is 24x   . 

 

Factoring ( )q x , 
4 3 2 3( ) 24 23 24 ( 24)( 1)q x x x x x x x x          

 

 

The other three roots of ( )q x  are the real one,  

 

3 3
93 1 93 1

18 2 18 2
x      

 

and the two complex conjugates, 

 

3 33 3
1 93 1 93 1 1 31 3 3 31 3 3

2 18 2 18 2 2 2 2
x i

     
         

    
    

 

 

and they have been calculated using symbolic computation software. 

 

 

 

 

 

 

-,  
 

 1 24   1   23  -24 

+2   2 52 106 258 

 1 26 53 129 234 

 

 

 

 

 

 

 

 

 

 
 

 

 

 1 24    1   23   -24 

-4  -4 -80 316   258 

 1 20 -79 339 -1380 

 

 

 

 

 

 

 

 

 

 
 

 

 

 1 24 1  23 -24 

-24  -24 0 -24 24 

 1   0 1  -1  0 
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 5. FRACTIONARY RATIONAL ROOTS _______________________________ 

 

Fortunately, the polynomials with which we use to work are usually not as hostile as the 

( )q x  of the previous example.  

 

However, the applications of the discard algorithm are not limited to the search for 

integer roots. In fact, since any polynomial can be transformed by a change of variable 

into another polynomial whose rational roots are all integers, the discarding algorithm is 

apt to be applied for the discarding of fractional rational roots.  

 

 5.1. Fractional rational roots: possibility of existence criterion. 

 

Let 
1

1 1 0( ) n n

n np x a x a x a x a

      be an integer polynomial of degree n. If the 

irreducible fraction 
a

b
 is a root of ( )p x ,  we have: 

1

1 1 0 0

n n

n n

a a a a
p a a a a

b b b b





       
            

       
, 

 

and from this equation, multiplying all its terms by 1nb  , 

  

 1 2 2 1
1 2 1 0 ,

n
n n n n

n n n b
a

a a a a a a ab a b
b

   
        

  

and being a and b co-prime, also 
na and b must be co-prime; therefore, we conclude that 

b must divide the coefficient 
na . 

 

Otherwise, 

 

1 2 1

1 1 0 0,
n n

n n n

n n

b a b
p a a a a b a b a

a b a

  



 
      

 
 

and 

 1 2 1

0 1 1 .
n

n n n

n n

b
a a a a a b a b

a

  

       

 

A reasoning analogous to the previous one, proves that a, that doesn´t divide 
nb , has to 

divide 0a . Therefore, is met this necessary condition for fractional rational roots: 

 

“An irreducible fraction a b  can be a root of an integer polynomial ( )p x  only if a 

divide the independent term of ( )p x  and b divide the coefficient of the term of greatest 

degree of ( )p x .” See the Rational Root Theorem [1]. 

 

Therefore, an integer polynomial can´t have fractional rational roots if the coefficient of 

the highest degree (leading coefficient) is 1, i.e., if the polynomial is monic. 

 

The result we have reached is the so-called Rational Root Theorem (RRT) [2]. 
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 5.2. Transformed to integer polynomial whose rational roots are all integers. 

 

Hence, we are interested in the transformation of a polynomial with coefficients in  

into a monic polynomial with coefficients in . Such transformation is carried out by 

the change of variable, 

n

y
x

a
  

 

and multiplying all the coefficients of ( )p x  by 1n

na  : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The polynomial ( )q y  can be written directly, simply multiplying each coefficient 
ka of 

( )p x  by 1n k

na   , for , 1, , 1, 0k n n  , as shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fractional roots of the primitive polynomial ( )p x  are obtained by dividing the 

integer roots of the transformed polynomial ( )q y  by the leading coefficient na : 

 

i
i

n

y
x

a
  

1

1 1 0

1

1 1 2 1

1 1 0

( )

       

   , ( )

       

( )

n n

n n

n

n

n n

n n n n n

n n n n

n

p x a x a x a x a

y y
x q y a p

a a

y
q y a p y a y a a y a a

a







   



    



 
   

 



 
      

 

 

1

0

1

2

2

1

1 1

2 2

2
1 2 1

3 3 1 1 0

2

1 1

1

0 0

   1

( ) ( )

  

  

n

n

n

n

n
n

n
n

a

n

a

n n

a

n n n

a
n n n n

n n n n n n

a n

n

a n

n

a

a a

a a a

a a ap x q y y a y a a x a a

a a a

a a a











 



 


  

  

 

 

 
 

 
 

 
        
 
 
 

 
 

 
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 6. Example 2 _______________________________________________________ 

 

Find all the rational roots of the polynomial, 

 

5 4 3( ) 3 2 12 8p x x x x x      

 

 
 

Monic transformed of ( )p x : 

 

4 5 4 33 ( ) 3 ( ) 6 324 648
3

y
y x q y p q y y y y y

 
         

 
 

 

Applying the traditional method of testing the divisors of 648 in increasing order with 

Horner´s algorithm, we would get: 

 

 

 

 

 

 

 

 

 

 

 

 

According to the RRT (5.1), if 
1

1 1 0( ) n n

n np x a x a x a x a

      is an integer 

polynomial, , GCD( , ) 1a b a b   and   0ap
b

 , then 
0 , .na a b a   

 

Taking into account the change of variable 3y x , if a
b

 is an irreducible rational root 

of ( )p x , a must be a divisor of 8, therefore, by the RRT, as candidates for rational roots 

of ( )p x  it is not necessary to take the huge* set of the divisors of 648, since it is 

sufficient to consider the subset      , 3 8 1 2, 3, 4, 6, 8, 12, 24       . 

 

 

 

 

  2     3      4        6           8 12    24 

 

 

 

 
(*)  648 = 23 · 24 = 2(3+1)(4+1) = 40 divisors!. 

61232112321123211232112321y 

320 320 

978 978 

 1 1 -6  0 -324  648 

+1  1  2 -4    -4 -328 

 1 2 -4 -4 -328 320 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1  1 -6 0 -324  648 

-1  -1  0 6    -6 330 

 1  0 -6 6 -330 978 
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And now it is enough to try using Horner's algorithm if any of the integers 2, -3 and -4 

are roots of the monic polynomial ( )q y : 

 

 

 

 

 

 

 

Hence, 2y   is an integer root of  ( )q y ; so, 
2

3
x   is a rational root of ( )p x . 

 

After removing the root y = 2 in ( )q y , we have the polynomial 4 3( ) 3 324r y y y   . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hence, in this case the discarding algorithm only filtered two false candidates to rational 

roots, which supposes an economy of 27 divisions. 

 

So, ( )p x  has only one rational root, 
2

3
x  . 

 

 

 

 

-, 

 1   3 0 0  -324 

-3   -3 0 0       0 

 1   0 0 0 -324 

 1   3 0 0  -324 

-4   -4  0     64 

 1 -1 4  -16 -260 

 1 1 -6 0 -324  648 

+2  2  6 0     0 -648 

 1 3  0 0 -324      0 
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  7. Alternative method for fractional rational roots ________________________  

 

By suggestion of Evan O'Dorney (a brilliant American Mathematics´student), I expose 

other way of seeking for fractional rational roots, without reducing the polynomial to a 

monic form. The procedure is based on the following divisibility properties: 

 

 7.1. If ( )p x  is an integer polynomial, , GCD( , ) 1a b a b   and   0ap
b

 , then 

( 1).a b p   

 

 7.2. Applying these properties to the polynomial of the previous example, we have: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

81 2 42 4 8
3 3 3 3

 

 

 

 

 

 

 

  

 

 

 

 

 

  

8 8 

20 20 

 

 3  1 -2 0 -12  8 

  -1  0  2
9     110

27  

 3  0 -2 2
3  110

9  326
27  

 

 

 

 

 

 

 

 

 

 
 

 

 

1
3  

 3  1 -2 0 -12  8 

2
3   2  2      -8 

 3  3 0 0 -12 0 

 

 

 

 

 

 

 

 

 

 3  1 -2 0 -12  8 

-1  -3  2 0    0 12 

 3  -2 0 0 -12 20 

 

 

 

 

 

 

 
 

 

 

 

 

 

 3 1 -2 0 -12 8 

+1  3 4 2 2 -10 

 3 4 2 2 -10 -8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3  1 -2 0 -12  8 

1
3    1         

 3  2     

 

 

 

 

 

 

 

 

 

 

 

 

 

2
3  

4
3  4

9  

4
27  328

81  

320
81  328

27  
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The properties 7.1. allows to apply the DARRIP directly to non-monic polynomials for 

the discarding of fractional roots; however, given that these properties are only 

necessary but not sufficient, the fractional candidates who have not been discarded must 

be subjected to the division test and this entails a cost in effort that goes against the 

spirit of the method, which is maximum simplicity. 

 

 

 

 

 

 

 

-, 
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 8. Example 3 _________________________________________________________ 

 

4 3 2 4 3 2( ) 3 4 3 4 ( ) 4 9 9 108p x x x x x q y y y y y            

 

 Set of values to be tested in the DARRIP: 

 

     , 3 4 1 2, 3, 4, 6, 12        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

So, ( )p x  has only one rational root, 
4

3
x   . 

 

 

-, 

 1  4    -9    -9         108 

+1   1 5    -4  -13 

 1  5   -4  -13 95 

 1  4     -9   -9         108 

-1     -1    -3  12    -3 

 1  3  -12    3 105 

 1  4    -9   -9         108 

   2       2   12    6     -6 

 1  6      3    -3 102 

 1  4    -9  -9         108 

   -4     --4     36 -108 

 1  0     -9  27 0 

 1  4    -9   -9           108 

   6     -  6   60 306 1782 

 1    10    51 297 1890 

95 95 

105 105 

2 3 4 6 12 
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 9. Example 4 _________________________________________________________ 

 

 

5 4 3 5 4 3( ) 9 8 9 8 ( ) 72 729 5832p x x x x x q y y y y y            

 

     , 9 8 1 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72        

 

 1 -1 -72    0 729 5832 

   +1   1    -72   657 

 1  0 -72 -72 657 6489 

 

 1 -1 -72    0  729 5832 

   -1  -1    2   -70   659 

 1 -2 -70  70 659 5173 

 

After applying the DARRIP,   

 

 

 

 

 

 

 

 

all the candidates for rational root numerator of ( )p x  are discarded except two, -2 & -8, 

which must be subjected to the synthetic division test: 

 

 1 -1 -72    0  729  5832 

   -2  -2    6  -264  -930 

 1 -3 -66 132  465  4902 

 

 1 -1 -72    0  729   5832 

   -8  -8  72    -5832 

 1 -9    0    0  729        0 

 

So, ( )p x  has only one rational root, 
8

9
x   . 

 
As can be seen, although the monic polynomial has an independent term with 56 divisors, initial candidates, under the RRT many of 

these are excluded. Comparing the effort we have made to find the rational roots of ( )p x  through the DARRIP with the exhaustive 

inspection by synthetic division (Horner-Ruffini´s algorithm), which would require 24 divisions, 16 of which involving fractions, 

the advantage of the DARRIP when we face integer polynomials with many rational root candidates is clear. 

2 3 4 6 8 9 12 18 24 36 72 

6489 6489 

5173 5173 
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