Using accumulation to optimize deep residual neural
nets

Yatin Saraiya
847 Moana Court, Palo Alto 94306, CA, USA

Abstract

Residual Neural Networks [1] won first place in all five main tracks of the
ImageNet and COCO 2015 competitions. This kind of network involves the
creation of pluggable modules such that the output contains a residual from
the input. The residual in that paper is the identity function. We propose
to include residuals from all lower layers, suitably normalized, to create the
residual. This way, all previous layers contribute equally to the output of a
layer. We show that our approach is an improvement on [1] for the CIFAR-10
dataset.

Keywords: Residual, neural, net, accumulate

1. Introduction

Deep convolutional neural networks [6, [7] form the basis for image recog-
nition. It has been shown [8] that depth is critical in classification accuracy.
The stacked layers of such nets provide features at different granularities
[9]. However, very deep neural nets suffer from degradation of training er-
ror as the networks start converging. Proposed solutions to this degradation
problem include shortcutting [11], of which the use of residuals as in |1] is
a modification. These networks consisted of stacked blocks with the same
input-output characteristic, with residuals from the input added to the
output via the identity function.

Figure [illustrates one such block. The results of |1] showed that this
modular design would mitigate degradation even in very deep networks. The

Email address: yatinsaraiyal12@gmail.com (Yatin Saraiya)
'modulo a small number of changes in the layer’s input and output sizes.

Preprint submitted to CoRR January 14, 2018

Figure 1: Residual block

Figure 2: Accumulated residual block

fundamental improvement was the addition of residuals using the identity
function. That is, if F' is the function computed by a block, z is the input
and y is the output,

y=o(F(r)+) (1)

where o is the rectified linear unit. The intuition is that later layers perform
fine tuning on the results of the earlier layers.

We replace the identity residual with the sum of the normalizations of
the inputs to each block, which necessitates just one extra variable that
accumulates the residue, and one extra addition per blockd. If the model
consists of blocks By, Bs, ..., B, F; is the function computed by block B;,
x; is the input to block B; and y; is the output of this block, we have

yi = o(Fy(:) + 252, BN(x;)) (2)

where BN(z;) is the batch normalization of x;. The intuition is that each
block computes feature sets at a different granularity, so each block’s output
should weigh equally in the result. Figure [2] presents the architecture. We
call such neural nets accumulated residual neural nets.

2. Experiments

We used cifar10_resnet.py, obtained from
https://github.com/fchollet/keras/blob/master/examples/, which bears
the MIT license, as a representation of the network described in [1]. We mod-
ified it to define the network of this paper.

We ran both against the CIFAR-10 dataset [4] with the depth at 32. The
experimental setup was that of Section 4.2 of [1]. Note that the same setup
was used for both the residual network and our network.

Results. Our results are contained in Table @2 and Figures [[, [and [B]
Table 2] presents the minimum and average validation errors per epoch
over 50 epochs. In each case, the net with history was at leasts 1% better
than the residual net. That is, it generalizes better on the CIFAR-10 dataset.
Figure B] compares the validation accuracy of the residual net with and
without accumulation.

2We reinitialize whenever the input to a block changes shape, which removes the ne-
cessity for the addition.

accuracy

0.7

0.65

0.6

0.55

‘ Min top-1 error ‘ Avg top-1 error ‘

ResNet 13.92 19.9
Accumulated 12.65 18.1

Table 1: Top-1 validation error over 50 epochs

T T
synthetic
residual ------ -

5 10 15 20 25 30 35 40 45
epochs

Figure 3: Validation accuracy

50

1.8 T

T
history
residual --------

16! i

12F &

loss

0.8 -

0.6 |-

0.4 L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50

epochs

Figure 4: Training loss

Figure Ml compares the training loss of the residual net with and without
accumulation. Figure Bl compares the training accuracy of the residual net
with and without accumulation. Figure [6l compares the validation loss of the
residual net with and without accumulation.

3. Conclusions

We presented an augmentation of residual neural networks where the
residuals accumulate along the depth of the neural net. This permits the
output of each layer to play an equal role in the classification. We showed
that these networks outperform the residual networks of [1]. It is of interest
to see whether this approach extends to the wide networks of [2] and the
aggregated networks of [3].

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun, Deep Resid-
ual Learning for Image Recognition, CoRR (2015)

[2] Sergey Zagoruyko and Nikos Komodakis, Wide Residual Networks,
CoRR (2017)

history ‘

residual

accuracy
o
~
T

0.45 L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50

epochs

Figure 5: Training accuracy

[3] Saining Xie, Ross Girshick, Piotr Dolla, Zhuowen Tu and Kaiming He,
Aggregated Residual Transformations for Deep Neural Networks, CoRR
(2017)

[4] A. Krizhevsky, Learning multiple layers of features from tiny images,
Tech Report (2009)

[5] Frangois Chollet et al, https://github.com/fchollet/keras) GitHub
(2015)

[6] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with
deep convolutional neural networks. In NIPS, 2012.

[7] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
Hubbard, and L. D. Jackel. Backpropagation applied to handwritten
zip code recognition. Neural computation, 1989.

[8] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. In ICLR, 2015.

https://github.com/fchollet/keras

1.8 T

T
history
residual --------

1.6 | ¢ i
14| |

12

loss

0.8 -

0.4 L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50

epochs

Figure 6: Validation loss

[9] M.D.Zeiler and R.Fergus. Visualizing and understanding convolutional
neural networks. In ECCV, 2014.

[10] W. L. Briggs, S. F. McCormick, et al. A Multigrid Tutorial. Siam, 2000.

[11] C. M. Bishop. Neural networks for pattern recognition. Oxford university
press, 1995.

	Introduction
	Experiments
	Conclusions

