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We address historical circumstances surrounding the absence of two essential tools - geometric
interpretation of Clifford algebra and generalization of impedance quantization - from the particle
physicist’s tool kit, and present details of the new perspective that follows from their inclusion. The
resulting geometric wavefunction model permits one to examine the interface between fundamental
and emergent.

Introduction

The topic for the 2018 Foundational Questions Institute’s annual essay contest[1] is more than a little recursive,
given that ‘fundamental’ has its origins in the Latin ‘found’. Foundational Questions are fundamental questions. The
foundation is fundamental. The fundamental is the foundation. A koan for the philosopher physicist.

FIG. 1. Fundamentals - the theoretical
minimum for philosopher physicists, show-
ing spacetime emerging from wavefunction
interactions, manifesting as single mea-
surement observables of the S-matrix[6–9].

Introducing the concept of emergence permits a straightforward delin-
eation of the fundamental. Here we take emergent to mean the whole is
greater than the sum of its parts. There is perhaps no better example than
the innumerable variety of snowflakes emerging from clusters of but one
simple molecular structure - two atoms of hydrogen and one of oxygen.

We take the fundamental to be that which cannot be understood to be
emergent in any observable sense, where observable is taken to be that
which can give information in a single measurement. Phase is relative, not
a single measurement observable. This radically diminishes possibilities,
puts us at the phase-coherent boundary between classical and quantum,
between observables and our models, puts us in the interaction of figure 1.

The figure comprises a partial outline of this essay, with interactions
marking the boundary between how we know and what we know, between
knowledge and reality, the epistemic and the ontic, the fundamental and
the emergent, our models and the world.

It marks the boundary as interactions of that which cannot be observed,
the enigmatic wavefunction. Observing the wavefunction changes it. What
we see is the change. From many measurements we construct our model.
One might argue that the unobservable nature of the wavefunction does
not prevent it from being emergent, but then the question arises - emergent
from what? From what emerges the unobservable? An easier question -
from where comes the universe?

In what follows we don’t offer new proposals about some ‘fundamen-
tal’ constituents of the universe, but rather mix old ideas in new ways,
starting with Euclid and fundamental geometric objects of physical space,
presenting the mix in historical context.

Over two millenia elapsed between discovery of Euclid’s fundamental
geometric objects[2] and development of their algebra by Grassman and
Clifford in the 1800s[3–5]. It was rediscovered by Pauli and Dirac in the
1920s in the much more abstract matrix representation, with the unfortunate consequence that simple intuitive
geometric interpretation remains lost in mainstream physics yet today.

Of itself the geometry and its algebra are abstractions. It is only with the possibility of excitation by physical fields
that the concept of geometric vacuum wavefunction becomes useful. For interactions to exist requires assignment
of quantized electric and magnetic fields to Euclid’s fundamental geometric objects, requires the introduction of five
fundamental physical constants. One might argue that the constants are not fundamental, but rather emergent.
However then the question again arises - emergent from what? Our models that seek to describe the fundamental?

The wavefunction.
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Historical Perspective on Geometric Algebra and Geometric Wavefunctions

FIG. 2. Geometric algebra (and its extension into geometric calcu-
lus) claims to encompass the physicist’s mathematical toolkit[16].

Over fifty years have passed since the origi-
nal geometric intent of Clifford algebra was re-
discovered by David Hestenes and introduced to
physics [10], sixteen years since he was awarded
the Oersted Medal by the American Physical Soci-
ety for “Reformulating the Mathematical Language
of Physics”[11]. Figure 2 illustrates an important
point - geometric algebra claims to encompass the
better part of the particle physicist’s mathematical
toolkit[11–13]. Geometric interpretation remains
unrecognized by mainstream physics, a profound
measure of our inertia.

The algebra as originally conceived describes in-
teractions of geometric objects. Grassman was “...a
pivotal figure in the historical development of a
universal geometric calculus for mathematics and
physics... He formulated most of the basic ideas
and... anticipated later developments. His influ-
ence is far more potent and pervasive than generally
recognized.”[14]

Grassman’s work lay fallow until Clifford
“...united the inner and outer products into a sin-
gle geometric product. This is associative, like
Grassman’s product, but has the crucial extra fea-
ture of being invertible, like Hamilton’s quaternion
algebra.”[15]

While Clifford algebra attracted interest, with his
early death in 1879 absence of an advocate to bal-
ance the powerful Gibbs led to its eventual neglect.
It was “...largely abandoned with the introduction
of what people saw as a more straightforward and
generally applicable algebra, the vector algebra of Gibbs... This was effectively the end of the search for a unifying
mathematical language and the beginning of a proliferation of novel algebraic systems...”[13]. Geometric algebra
resurfaced, unrecognized, as algebra without geometric meaning in the Pauli and Dirac matrices.

FIG. 3. Geometric algebra components in 3D
Pauli algebra of space, showing operation of the
grade/dimension raising wedge and lowering dot
products.[17]

.

Spinors of the Dirac equation wavefunction are comprised of two
of the eight fundamental geometric objects of the Pauli algebra
- one each scalar and bivector. The full eight component Pauli
vacuum wavefunction is comprised of one scalar, three vectors,
three bivectors, and one trivector.

Figure 3 illustrates operation of the Pauli algebra of space. The
two products (dot and wedge or inner and outer) comprising the
geometric product lower and raise the grade. Mixing of grades, of
dimensionality, makes geometric algebra unique in the ability to
handle geometric concepts in any dimension.

Given vacuum wavefunctions, geometric algebra models inter-
actions by the geometric product, the non-linear process of mul-
tiplication, in particular geometric multiplication. The vacuum
wavefunction is 3D, just geometry. Time emerges from the in-
teractions, from the mixing of grades, dynamic from the static.
Interactions of 3D vacuum wavefunctions yield geometry of the 4D
spacetime S-matrix shown in figure 4[8–10]. However, this remains
an abstraction without fields.
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Historical Perspective on Quantized Fields and the resulting Quantized Impedances

The leap from point particle quark and lepton wavefunctions to the full eight component Pauli wavefunction is a
big one, and surprisingly easy. What was obscure, intrinsic, populating abstract ‘internal’ spaces finds representation
in our intuitively familiar 3D physical space, benefits from the wisdom of the body.

The fundamental geometric objects we use to model that space introduce geometric quantization. They are indi-
vidual, discrete, not continuous, clearly defined. One point, three lines, three area elements and one volume element,
all orientable. The eight geometric quanta of the Pauli vacuum wavefunction are shown in the detailed example at
top and left of figure 4 for electron and positron respectively. Their geometric product generates the Dirac matrix,
geometric structure of the impedance representation of the S-matrix[18, 19].

Physical manifestion requires assignment of appropriate fields to the geometric objects of the wavefunction. The
simplest possibility is to work with electromagnetic fields only. We know they are quantized - electric charge quantum,
magnetic flux quantum, Bohr magneton,... all fundamental constants. To assign topologically appropriate fields to
vacuum wavefunction elements of figure 4 requires five fundamental constants - electric charge quantum, electric
permittivity of free space, speed of light, Planck’s constant, and electron mass to set the scale of space.

FIG. 4. Dirac matrix - Impedance Representation of the S-matrix: As in the Dirac equation, the eight-component
wavefunction at figure top can be associated with the electron, and at left with the positron. Their interaction, as described by
the geometric product, generates the 4D Dirac algebra of flat Minkowski spacetime, arranged in odd transition modes (yellow)
and even eigenmodes (blue) by geometric grade/dimension. Modes indicated by symbols (triangle, square, dot, diamond) have
their impedances plotted in figure 8, opening new windows on the unstable particle spectrum. Transition and eigenmodes of
the proton are highlighted in green[19, 20].
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FIG. 5. Development of theory and technology of classical
impedances highlighted in white, quantum impedances in yellow (the-
ory) and gold (experiment), generalization of quantum impedances
in green, and QED scaffolding in red.[24]

Impedance may be defined as that which gov-
erns the amplitude and phase of the flow of energy.
In a model that defines the boundary between fun-
damental and emergent to be wavefunction inter-
actions, one would like to understand what gov-
erns the flow of energy in such interactions. Given
that the model is electromagnetic, we know how to
calculate electromagnetic impedances, for instance
in calculating the 377 ohm vacuum impedance
from photon excitation of the virtual Dirac spinor
vacuum wavefunction[21]. Extending the analysis
to the full Dirac S-matrix is non-trivial, computa-
tionally intensive.

However, there is a simple and straightfor-
ward shortcut. One can calculate mechanical
impedances from Mach’s principle[22]. Analysis of
the electromechanical oscillator then permits cal-
culating electrical interaction impedances for any
element of the matrix, at any length scale. The
impedance network of the vacuum is that of the
virtual electron, centered upon the lightest stable
excitation[23].

Figure 5 shows a timeline of the impedance con-
cept, with a two century coming-of-age that led to
development of the electrical engineer’s network
analyzers, and importation of the S-matrix for-
malism from the physicists[6, 7].

Coincident with that was the final crystalliza-
tion of QED with renormalization procedures that followed from the 1948 Shelter Island conference, and first inquiries
into the possibility of impedance quantization.

FIG. 6. Scale dependent near-field and invariant 377 ohm far-field
impedances of a 13.6eV photon, showing near-field match to quantum
Hall impedance at the Bohr radius[25].

The photon-electron interaction is the key-
stone of QED. What governs energy flow
in photon-electron interactions is impedance
matching in the transition region between far
and near fields, shown in part in figure 6 for the
hydrogen atom, and figure 8 for the single free
electron. Why is this not common knowledge in
physics?

Missing from formal education of physicists,
and essential for reflectionless energy transfer in
dissociation of atomic hydrogen, are both photon
near-field impedance[25] shown in figure 6 and
the corresponding electron dipole impedance[23].
Neither can found in grad school physics texts,
the curriculum, or the journals. The same is true
of the single free electron quantized impedance
network shown in figure 8. What governs the
flow of energy in photon-electron interactions is
absent from mainstream physics.

The oversight can be attributed to three pri-
mary causes. The first is historical [26], the second follows from theorists’ habit of setting fundamental constants to
dimensionless unity, and the third from topological and electromagnetic paradoxes in our systems of units. [23, 27, 28].

First and perhaps foremost, foundations of QED (red in fig.5) were set long before Nobel prize discovery of the scale
invariant quantum Hall impedance in 1980 [29]. Prior to that impedance quantization was more implied than explicit
in the literature [30, 31, 36–41]. The concept of impedance quantization did not exist, much less exact quantization.
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The second origin of overlooked quantization is setting fundamental constants to dimensionless unity. Doing so
with free space impedance made quantization just a little too easy to overlook. And to no useful purpose. What
matters are not absolute values but relative, whether impedances are matched.

The third confusion is seen in an approach [36] summarized [37] as “...an analogy between Feynman diagrams and
electrical circuits, with Feynman parameters playing the role of resistance, external momenta as current sources, and
coordinate differences as voltage drops. Some of that found its way into section 18.4 of...” the canonical text [38]. As
presented there, Feynman parameter units are [sec/kg], units not of resistance, but rather conductance [32].

It is not difficult to understand how we lost our way[22, 33–41]. The units of mechanical impedance are [kg/sec].
One would think more [kg/sec] would mean more mass flow. However, the physical reality is more [kg/sec] means
more impedance and less mass flow. This is one of many interwoven mechanical, electromagnetic, and topological
paradoxes [28] found in SI units, which ironically were developed with the intent that they “...would facilitate relating
the standard units of mechanics to electromagnetism.” [42].

With the confusion that resulted from misinterpreting conductance as impedance and lacking the concept of quan-
tized impedance, the anticipated intuitive advantage [38] of the circuit analogy was lost. Possibility of the jump from
well-considered analogy to a quantized photon-electron impedance model was not realized at that time.

Historical Perspective on Geometric Wavefunctions and their Interactions

FIG. 7. Historical threads of the geometric wavefunction[48].

The geometric wavefunction has been to
some extent explored over the years. Early
attempts were incomplete, ahead of their
time[43, 44]. Seeds of the modern geometric
wavefunction were sown by the Pauli and Dirac
algebras of Hestenes’ short and lucid seminal
text[10]. Ensuing geometric approaches have
gone astray, one reason being attempts to ac-
comodate two or more fundamental forces[44–
47]. The mix of multiple fields and geometric
objects remains intractable today. However,
proceeding on the assumption of an electro-
magnetic conceptual synthesis requires noth-
ing more than endowing geometric elements of
the Pauli vacuum wavefunction with quantized
EM fields.

Parallel evolutions of gauge theory into the
Standard Model, S-matrix theory into String
Theory, and the synthesis of geometric alge-
bra and impedance quantization into the Ge-
ometric Wavefunction Interaction model are
shown in figure 7. Lateral boundaries between
threads are obviously not as clear as suggested
there, with much mixing between threads. Ar-
rows indicate portions of the threads whose ex-
perimental and theoretical place in the GWI
model is at least partially understood and ap-
pears essential.

Arrangement of the threads in the figure is
suggestive of their conceptual relationship. The synthesis of geometric algebra with impedance quantization encom-
passes the two threads of mainstream particle physics, embraces them, appears to contain them.

Just as geometric structure of the Dirac matrix of figure 4 provides a detailed example of geometric interactions of
3D Pauli vacuum wavefunctions, the impedance networks of figure 8 provides a detailed example of electromagnetic
interactions of 3D Pauli electron wavefunctions.
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FIG. 8. Correlation of unstable particle lifetimes/coherence lengths with nodes of the electron impedance network comprised of
a subset of the S-matrix shown in figure 4 [49], spanning thirteen powers of the electromagnetic fine structure constant α, from
neutron to superheavies (top/Higgs/Z/W), with great precision and resolution (a few parts in 1027). Corresponding modes are
indicated by like symbols (triangle, square, dot, diamond) in the S-matrix. Strong correlation follows from the requirement
that impedances be matched for energy flow between modes during decays.

At the top of figure 8 is yet another long-enduring perspective on the unstable particle spectrum that, in addition
to geometric algebra and impedance quantization, has not found favor with the mainstream[50–52]. Unstable particle
lifetimes/coherence lengths are clustered in powers of α. Strong correlation of network nodes with coherence lengths
(boundary of the light cone) follows from the requirement that impedances be matched for energy flow between modes
during decays.

That the GWI model is naturally finite begins to become clear from the figure. IR and UV divergences are cut off
by the impedance mismatches as one moves away from the Compton wavelength. A consequence of the numerical
values of the five fundamental constants input by hand, the mismatches are in powers of the fine structure constant
and correspond to the renormalization coefficients of QED. In a similar manner, as suggested at the upper left of the
figure precise π0, η, and η′ branching ratios can be calculated from impedance matches at the nodes indicated by solid
and dashed circles in the figure[53].

A welcome corollary to natural finiteness is natural confinement, by reflections from impedance mismatches as one
moves away from the quantization scale, the Compton wavelength.

Lifetimes of the superheavies (top, Higgs, Z, W) cluster at the impedance-matched intersection of the ∼10GeV
coherence length of the dominant bottomonium decay modes with the 377 ohm photon far-field impedance and the
magnetic Coulomb and scalar Lorentz mode impedances, suggesting they are comprised of magnetic resonances.
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Summary and Conclusion

We presented a model in which the fundamental is that which cannot be observed, the wavefunction. Detailed
examples illustrated how this model might be applied to the elementary particle spectrum, giving new perspective on
the boundary between the fundamental and the emergent.
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