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Abstract

The simplest measurements in physics are binary; that they
have only two possible results. An example is a beam split-
ter. One can take the output of a beam splitter and use it
as the input of another beam splitter. The compound mea-
surement is described by the product of the Hermitian matri-
ces that describe the beam splitters. In the classical case the
Hermitian matrices commute (are diagonal) and the measurements
can be taken in any order. The general quantum situation
was described by Julian Schwinger with what is now known as
“Schwinger’s Measurement Algebra”. We simplify his results by re-
striction to binary measurements and extend it to include -classi-
cal as well as imperfect and thermal beam splitters. We use el-
ementary methods to introduce advanced subjects such as geomet-
ric phase, Berry-Pancharatnam phase, superselection sectors, symme-
tries and applications to the identities of the Standard Model fermions.

is,

Keywords
Quantum Mechanics; Schwinger Measurement Algebra; Quantum Thermo-
dynamics.

1. Introduction

In 1955, Julian Schwinger began work on the foundations of quantum field
theory while employed at Harvard. This accounted for four of his papers
in 1959-1960 [7, 8, 10, 9]. Schwinger joined the faculty at the University
of California, Los Angeles in 1972. His lecture notes from when he taught
introductory quantum mechanics there resulted in two textbooks[12, 11]
that many of his students used when they taught introductory quantum
mechanics. These textbooks cover the usual subjects in a standard quantum
mechanics class. Where they are distinct is in their introduction to the
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C. A. Brannen

subject; they use a method now called “Schwinger’s Measurement Algebra”.
Here, “algebra” means a set of symbols that can be added and multiplied
rather than a Lie algebra.

Schwinger’s first paper “The Algebra of Microscopic Measurements” [7]
describes his measurement algebra. His measurements can be thought of
as beam splitters where one is concerned with only one of the exits. The
algebra relates to how one models a complex beam splitter that consists of
a series of beam splitters connected together by arranging for the output
of one beam splitter to be used as the input of the next. The reader of
Schwinger’s paper will note that while his notation is different, the prop-
erties of the elements of his algebra are similar to those of mixed density
matrices. We will use density matrix notation in this paper which expands
Schwinger’s results to include the classical situation as well as imperfect
and thermal beam splitters. To simplify the discussion, we will mostly
consider binary measurements.

There are two reasons for reading this paper. The first is that
Schwinger’s beam splitter model provides the most direct method of pass-
ing from the classical to the quantum domain. Since Schwinger’s method
is completely general for quantum mechanics and quantum field theory,
this provides an immediate connection between the classical and quantum
situations and may provide an improved understanding of the foundations
of quantum mechanics for students. In addition, binary measurements are
arguably the easiest introduction to physics and we introduce subjects that
usually require much more preparation such as geometric phase, Berry-
Pancharatnam phase and quantum statistics. The second reason is that
some problems in quantum mechanics are far easier to understand in one
formulation than in the others.[15] Schwinger’s formulation is particularly
useful in putting the symmetries of quantum mechanics on an algebraic ba-
sis. We demonstrate this by introducing a Schwinger algebra model of the
elementary fermions. This introduction substitutes complex group algebra
for symmetry / Lie algebra.

1.1. Beam Splitters

The physical apparatus we’re considering is a beam splitter. The beam
splitter has a single entrance and two exits. Entering particles must take
one of the two exits. Suppose that the particles are all identical of type “1”
and that they do not influence one another and that they arrive at a beam
splitter with a rate |A;|2. We use |A1|? here (instead of A;) for our rates
in order to match the notation in the physics literature for beam splitters
described with quantum mechanics. Our A; is the square root of a rate so
its units are \/ particles/second. In general, A; may be complex. This will
be discussed further in Subsection 3.3.

Suppose that a particle has a probability p; of exiting the upper exit
so that the probability of exiting the lower exit is 1 — p;. Then the rate
of particles in the upper exit beam is |B1|?> = p1|A1|? and the rate at the
other exit is (1 — p1)|A1]? = |B1|? — |A1]?. See Figure 1

If we know the input rate and the output rate for the upper exit, then
we can always obtain the output rate for the lower exit by subtraction.
Accordingly, for the remainder of this paper, we will ignore the lower exit
and concentrate only on the upper exit. For clarity, our drawings will
continue to include the lower exit but we will not write formulas for it, and
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Trivial Beam Splitter
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Figure 1: Trivial beam splitter splits a beam of type 1 particles arriving at a rate |A;|2. Particles take the

upper exit with probability p; so the output rate for the upper exit is | By

| 2

=pi|A;

| 2

and the output rate

for the lower exit is [A1]? — |B1|?> = (1 — p1)|A1|>. We've written the equations in terms of amplitudes A,
rather than rates |4;|? in order to match the standard quantum beam splitter notation.

will discontinue figures in the quantum section.

1.2. Outline

Schwinger noted that what makes quantum measurements different from
classical is that a quantum measurement of one property (say spin in the +z
direction) can disturb the system so that the results of a previous quantum
measurement (of spin in another direction), no longer applies. Schwinger
considered compound beam splitters obtained by putting the output of
a first beam splitter into the input of a second beam splitter. He showed
that these experiments can be represented by Hermitian matrices and that a
compound beam splitter is represented by the product of the its constituent

beam splitter’s matrices.

In general, Hermitian matrices do not commute.

For the Schwinger

measurement algebra this means that changing the order of measurements
can have a physical effect. If in addition to being Hermitian the matrices
are also diagonal, then they will commute and the measurement order does
not matter. In Section 2, we consider classical beam splitter experiments
with imperfections or at temperature. We show that these experiments can
be modeled with diagonal Hermitian matrices, that is, with real diagonal

matrices.

Section 3 continues the analysis to the quantum case by allowing for
nonzero off diagonal entries in the matrices. For simplicity, we specialize to
spin-1/2 Stern-Gerlach experiments. We find that the quantum situation
is a natural extension of the classical situation. We show why quantum
mechanics uses amplitudes instead of probabilities, and we introduce the
ideas of geometric phase, Berry-Pancharatnam phase, superselection sec-
tors, quantum symmetries and quantum statistics.

As a unique formulation of quantum mechanics, Schwinger’s measure-
ment algebra can be expected to provide unique applications to Nature.
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Identical particles

Two Connected Beam Splitters (ﬂ/ (ﬁ/
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Figure 2: Two trivial beam splitters connected together. Particles of type 1 arrive at rate |A;|. The beam
splitters have probability p; and ¢; so the overall probability is the product p;g; and the output beam has

a rate of |B1|? = p1q1]A1]?.

Our analysis of superselection sectors concluded that their algebras were
block diagonal in form. This suggests that we reverse the process. We can
start with an algebra and from it derive the particle content. We include
Section 4 as a speculation on the nature of the Standard Model fermions
and dark matter. The paper concludes with a conclusion and acknowledge-
ments.

2. Classical Beam Splitters

The two outputs of the beam splitter of Figure 1 have intensities |B;|? and
|A1|? —|B1|?. These intensities add up to |A1|?, the intensity of the original
beam. If we combine the two exits back together to obtain an exit beam
with intensity |A;|?> and expect that this beam will be indistinguishable
from the original beam.

The beam splitter of Figure 1 is described with only a single number, the
probability of a particle leaving the top exit, p;. Suppose we have another
beam splitter, this one with the corresponding probability ¢;. Assuming
independence, a particle will make it through both beam splitter’s top exits
with probability gi1pi. See Figure 2 This process can be continued with any
number of consecutive beam splitters. If we have n beam splitters with
probability pi1, the probability of a particle making it through all of them

is (p1)"

2.1. Classical Thermal Beam Splitters

To introduce thermal effects, let’s suppose that a trivial beam splitter has
its two probabilities p; and 1 — p;, depend on temperature T according
to a positive energy difference AF; and temperature 1" via the Boltzmann
factor

s .
L—p1 o exp(FoFh).

K2
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The proportionality can be determined by the requirement that p; and
1 —p; add to 1. So we divide by the sum of the right hand side to get the
probabilities:

P = () (exp(FRP + exp(HRr), @)
L—p1 = exp(Fo8)/(exp(FEF> + exp(To7L).

In the high temperature limit k;T° >> AF;, the probabilities approach
pr=1—p =1/2.

At the low temperature limit, the probabilities go to p1 =1, pg =0
and near zero, they are approximately

o~ 1 exp(Z5E)

In this cold limit, putting n beam splitters together by taking the exit ports
to the input port of the next beam splitter will give a final upper exit port
probability of p] and this corresponds to decreasing the temperature from

T to T/n:
= (en ) = e (02, @

Thus connecting identical thermal beam splitters has the effect of reducing
the temperature. This temperature effect will also work in the quantum
situation.

2.2. Classical Two Particle Beam Splitters

The reader may be relieved to read that now we consider beam splitters
that act on a particle beam with two kinds of particles, type 1 and type
2. The two particles arrive with rates |41]? and |A3|? and the probabilities
that they leave via the upper exits are p; and po. If the output of the
beam splitter is sent to another identical beam splitter, the probabilities
will square so that

B> = pip1]Ai]? = (p1)? |A1%, (5)
[Ba|> = papa|Aa|* = (p2)? [A2]*.

We can rewrite the above equations in 2 x 2 diagonal matrix form:

(5 ) = (o5 o) (M5 ) @

See Figure 3.

The reader may notice that we could have put the |B;* and |4;|?
numbers into vectors instead of matrices. We're doing it with matrices
so that our presentation will be compatible with the density matrices of
quantum mechanics.

With the probabilities for the two particle types being p; and po, the
corresponding probabilities for the lower exit will be 1 —p; and 1 — ps. This
is represented by a matrix with those numbers on the diagonal. So if we
recombine the lower and upper exit ports the resulting experiment will be
represented by the sum of the two matrices which is the unit matrix:

(5 )« () = (6Y) o

:g:: Scientific Research Publishing 5
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Two Identical, Classical Beam Splitters (ﬂ/ (ﬁ/
Identical particles

fﬁ/f( (m 0 >_ _ B = el
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<p1 0 >_ _ AP L [Bof? = (p2)°| Ao
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Figure 3: Two identical, classical beam splitters connected together. Particles of type 1 and 2 arrive mixed
together in a single beam with rates |A;|? and |A3|2. The beam splitters have probability p; and po for the
two types so their overall probabilities are (p;)? and (p2)?. This can be expressed with matrix multiplication.

The unit matrix has no effect on the particle rates so, as expected, the
effect of recombining the two outputs of a beam splitter is to give back a
beam identical to the original.

3. Quantum Beam Splitters

In the classical situation, particles do not interfere with each other so we
can use rates such as |4;|? to completely describe a mixture. For such a
situation, the rates add the same way that probabilities do. For example,
if I have two beams each with the same rate |A{|?, combining the beams
will give a beam with twice that rate 2 |A;|%2. But quantum mechanics is
a wave theory and waves can interfere, so it’s possible for the combination
of two beams to reduce the rate. In combining two beams we need to take
into account the relative phases. It turns out that complex numbers do this
handily, but we have to use amplitudes A; instead of rates |A;|?.

In the classical situation, we used real diagonal matrices to represent
the beam splitters and the product of two real diagonal matrices is also
real diagonal so real diagonal matrices were sufficient to represent a single
beam splitters as well as a connected series of beam splitters. For the quan-
tum case, an individual beam splitter will be represented by an Hermitian
matrices which is a generalization of a diagonal matrix.

3.1. Pauli Spin Matrices

Most of this paper is restricted to the subject of beams with only two
particle types. For quantum mechanics the standard example is su(2) spin-
1/2 where the two particle types are typically taken to be spin-up which we
will label with +z and spin-down which we will label as —z. There being
nothing special about the z direction, we can also consider spin measured in
other directions such as +x, +y or for spin measured in a general direction
u, spin +u.

K2
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The Pauli spin matrices 0,0y, 0., along with the unit 2 x 2 matrix 1,
can be used as a basis for the Hermitian 2 x 2 matrices (considered as a
vector space). The Pauli spin matrices have a symmetry interpretation as a
basis for the Lie algebra of SU(2) spin-1/2 the details of which are beyond
the scope of this paper.

Any Hermitian 2 x 2 matrix H can be written using four real numbers

hj:

1 0 0 1 0 —2 1 0
H = h0<0 1>+h1<1 0>+h2<i Ol>+h3<0 _1>,

= hgi + hiog + hQO'y + hso,.
(8)
Given a real unit vector u = (uy,uy, u;), the spin matrix for spin in the u
direction is given by

Ou = UgpOyq + Uyoy + U0 9)

As with the Pauli spin matrices, o, squares to 1.

If a classical beam splitter perfectly splits a beam with two particles 1
and 2, we would represent it with a diagonal matrix with values p; = 1 and
p2 = 0. We will call this matrix p;, as it is the same as the matrix for a
quantum beam splitter that puts spin-up (+z) into the upper exit:

p+z=(%1 ;?2):((1) 8). (10)

Of course p4, is an Hermitian matrix and we can represent it using the
Pauli spin matrix basis:

Ptz = ( (1) 8 ) =(1+0,)/2 (11)

Since +z is not in any physical way a special direction, the above equation
generalizes and the matrix for a beam splitter that puts spin-1/2 in the u
direction out the upper exit is

piu = 1+04)/2 = (1 4+ uzo, +uyoy, +u0s)/2. (12)

These p4,, matrices are projection operators or “idempotent”, that is, they
square to give themselves:

Piu Pru = Piu- (13)

This means that such a perfect beam splitter has the same effect on a beam
as two consecutive such beam splitters. In addition to being idempotent,
these matrices are “primitive idempotents”. Mathematically, a primitive
idempotent is an idempotent that cannot be written as the sum of two
nonzero idempotents. Physically, it means that it’s not possible to further
split the upper exit with a perfect beam splitter (except for the trivial cases
where the new perfect beam splitter passes all or none of the particles).

A perfect beam splitter for spin-1/2 in the +u direction is represented
by the matrix p4, = (1 + 04)/2. The particles that take the lower exit
will be spin-1/2 in the —u direction so that port will be represented by the
matrix p_, = (1 — 0,,)/2. These two matrices sum to unity:

Prutp—u = (A+04,)/2 + (1—04))/2,

_ 5 (14)

%%
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S0, as in the classical case, combining the outputs of a single perfect beam
splitter results in an experiment that has no effect on the beam.

Recombining the two exits has the effect of canceling the measurement.
This behavior may seem contradictory to the concept that measurements
affect quantum systems. Perhaps beam splitters can be better described
as devices that split waves rather than devices that make measurements
on particles. We follow the confusing tradition firmly established in the
literature. This is a case of the “separation fallacy” well described in [2].
To make a measurement requires something to absorb the particle and be
permanently altered such as a photographic plate. Until then the particle
is just a wave and can be recombined the same way that the electric and
magnetic fields of a light wave can be recombined.

3.2. Geometric Phase / Perfect Beam Splitter Calculations

Suppose we have three perfect quantum beam splitters, two for spin-1/2
in the 4+ direction and one for spin-1/2 in the +z direction. We connect
them up so that a particle is measured first for spin in +x direction, then
spin in the 4z direction and finally spin in the +x direction. The matrix
corresponding to the three consecutive measurements is given by the prod-
uct of the matrices. Computing with the above matrix definitions we have:

Pratzte = €+mp+zp+:ta
= 3P )

afte (15)
- ( 1/2) Dia

Compared with a single measurement of spin-1/2 in the +x direction, the

2
compound measurement is decreased by a factor ( 1/ 2) . In the second

line, the 1/2 indicates that the compound measurement has a reduction
in the particle rate of 1/2, i.e. |B1|?> = (1/2)|A1|?>. The rate reduction is
the result of particles having to navigate the change in the measurements
between +2z and +z. But there are two such navigation changes so each is
having an effect of \/1/72 as shown in the third line. This is an indication
that the quantum measurement is having an effect on the amplitudes, not
directly on the particle rates. That is, if we reduce the amplitudes by
the ratio By = \/WAl, then the resulting reduction in particle rates is
1B1[* = (1/2)|A1]*.

Two Hermitian matrices H and K have a product HK that is not in
general Hermitian. The product will be Hermitian if and only if the two
matrices commute. For matrices that represent beam splitters, the non
commutative case corresponds to the physical situation where the order of
measurements has an effect as we now discuss.

Suppose we have four perfect quantum beam splitters, two for spin-
1/2 in the +z direction (i.e. p;.) and one each for spin in the +x and
+y direction (i.e. p4, and piy). We connect the beam splitters so a
particle first enters one of the +z spin-1/2 measurements, then if it reaches
the upper exit it is made to enter a beam splitter for the +x spin-1/2
measurement, then the +y spin-1/2 measurement and finally it enters the

K2
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second +z spin-1/2 measurement. Computing, we find:

P+ztz+y+z =  P+zP+yP+zP+z;
— 144
= 4 Pz (16)

= e (V) o

The final line in the above shows that the results of connecting the four
beam splitters is a complex multiple of the first and last beam splitters
and so is not Hermitian. There are a number of observations to make here.
The first is that since the initial and final beam splitters are identical, the
compound beam splitter is a complex multiple of that initial / final beam
splitter. This is a general fact about products of primitive idempotent
matrices that begin and end with the same primitive idempotent matrix.

3
A second observation is the factor (\/1 / 2) . As with Equation 15, this

comes from the particles having to navigate three changes in measurement:
+2z to +x, then from 4z to +y, and finally from +y to +z. More generally, if
two perfect quantum beam splitters have directions that differ by 6 degrees,
combining them will reduce the amplitude by /(1 + cos(#))/2. This can
be verified by putting u = (sin(é), 0, cos(#)) and computing

2
1 + cos(0)
Prztutz = PrzPtuP+z = ( 9 Pz- (17)

That is, there are two transitions, +z to +x and then to +z so the factor
appears squared.

The last observation on Equation 16 is in regard to the complex phase
exp(2im (—1/8)). Since exp(2im) = 1, we can think of this phase as —1/8
of a full circle. If we think of the sequence of measurements as a path on
the sphere, we started at +z = (0,0,1) then went to +z = (1,0,0) then
+y = (0,1,0) and finally back to +z = (0,0,1). In terms of steradians, our
path included 1/8 of the surface of the sphere. The minus sign comes from
our convention in multiplying the matrices, if we’d reversed the order we’d
have gotten a factor +1/8 instead of —1/8:

. 3
PtzP+aP+yP+z = e2im (+1/8) < 1/2) Pz (18)

These are called geometric phases. They depend only on the relative ge-
ometry.

Together, these three observations allow quick computation of the ma-
trix corresponding to compound perfect quantum measurements in spin-
1/2. For example, suppose the path includes one face of an icosahedron.
Letting 6 ~ 65.435° be the angle between two adjacent points on an icosahe-
dron, the product of the matrices will include a factor of ((1+cos(#))/2)3/?
for the three changes in spin direction. Since the icosahedron has 20 faces,
the geometric phase will be exp(+2i7/20) where the sign depends on which
direction is taken.

3.3. Quantum Amplitudes

Since quantum beam splitters appear to modify the amplitudes rather than
directly modifying the particle rates, it makes sense to rewrite our matrix

%%
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multiplication with amplitudes instead of particle rates. The quantum case
is a generalization of the classical case. To illustrate this, we will work
with a classical beam splitter acting on a beam with two particle types.
From Subsection 2.2, the incoming particle rates |Aj|2 are related to the
exit particle rates |By|? by

|Bi* 0 (@ O A0
( 0 [Bf) \ 0 ¢ 0 |Ay? (19)

where g; are probabilities for the passage of the two particle types. The
two particle rate matrices are treated the same way; we’ll discuss the |Aj|2
matrix. We replace the matrices as follows:

(16" e ) = (9 ) Car o0+ () (0 a)- e

This factors an entry in the rate matrix into a product of two matrices, one
2 x 1 and the other 1 x 2. These are called bras and kets. The kets are:

<f(1)1> _ A1<é>:A1\+z>, o

0 0
while the bras are:

(A7 0) = Aj(1 0)=Af(+2]
(0 A5) = A3(0 1)=A3(—-l.
In most quantum mechanics textbooks, our notation |+ z) is replaced with
| 1) and | ). We will use the +z notation as we are concerned with other
spin measurements in other directions besides z.

In the bra ket notation, the particle rates are a product of bras and
kets:

A1 = Ay (+2] A + 2) = |A1? (+2] + 2),

| Asf2 = Ap(—2| A3 — 2) = |Ag? {~2| — 2). (23)

The above multiplications give a calculation which is bracketed “( )”.
Hence the ( | is called a bra and the | ) is called a ket. In this notation,
the matrix of particle rates in Equation 20 becomes:

[AL> 0 . .
A2 ) = Al +2) Aj(+z| + Ag| — 2) A5(—2],

0 (24)
= A [+2)(+2] + [A2* |- 2)(—2|

Splitting the rate matrix into 4z and —z components allows us to rewrite
Equation 19 which deals with the particle rates |B;|?> and |4;|? into a pair
of equations that relate the amplitudes A;| + z) and Bj| + z):

Bi| + 2) = ( e ;2> Ap| + 2),

0
)
Bal-a= (4 0 aal-a

This shows that classical beams, like the quantum case, can naturally be
analyzed in terms of amplitudes instead of probabilities.

10
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As we saw in the previous subsection, single quantum measurements are
Hermitian and consecutive measurements are “complex Hermitian”, that
is, they are Hermitian or Hermitian multiplied by a complex phase. This
shows that measurements in quantum can include a complex phase. !

3.4. Berry-Pancharatnam Phases

The geometric phases are related to the “Berry-Pancharatnam phases” that
a quantum state receives when it is adiabatically sent through a cycle. In
the last example of Subsection 3.2, the cycle is from spin-1/2 in the +z
direction, through a sequence of spin measurements in other directions and
then back to the +z direction.

To make the cycle adiabatic, we insert intermediate spin measurements
between two consecutive pairs of measurements. For example, between the
+z and 4z measurement, we would insert a large number N of spin-1/2
measurements in the directions u(N) = (sin(2/N/7), 0, cos(2N/7m)) so that
consecutive measurements differ in direction by only (7/2)/N radians. The
intermediate measurements are on the great circle route between the +z
and 4z directions. If we deviated from this path, the area enclosed by the
cycle could change and this would change the geometric phase.

Any two points on the surface of the sphere define a great circle route
unless those two points are on opposing ends of a diameter (antipodal). For
a unit vector u, the points v and —u are on the opposite ends of a diameter
and we have

Pu p—u = 0. (26)

That is, the projection operators for opposite spin measurements annihilate
each other and there is no unique great circle route to make the transition
adiabatic.

The usual introduction to spin-1/2 will uses raising and lowering oper-
ators. For the spin-1/2 case, these are operators that negate the direction
of a quantum state (amplitude), for example the raising operator for spin-
1/2 takes the spin-down state to a spin-up state. More general raising and
lowering operators change a state from one spin state to an orthogonal spin
state and again the projection operators annihilate.

The absence of a great circle route between annihilating spin projection
operators means that there is no natural phase that can be assigned for
such an operator. For example, the raising operator for spin-1/2 can be

written as:
puiey=( o ) (27)

where 0 is any angle. In the standard presentation of raising operators,
is chosen as zero. We can obtain the general case by making a choice for
the intermediate measurement along the equator of the sphere at the point
u(f) = (cos(),sin(#),0) so that

peu(8) = (1 + cos(8)oy + sin(8)ay)/2. (28)

!Quantum “observables” are beyond the scope of this paper however we note that observables are always Hermitian and
cannot have a complex phase. Products of perfect measurements such as Equation 18 have a single eigenvalue that is the
geometric phase exp(i¢), with the remaining eigenvalues zero.

P . . ..
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Then the arbitrary phased raising operator can be written as a product of
projection operators:

< 8 eXp(O_ie) > = 2p4204u(0)p—2 (29)

where the factor of 2 is included due to the \/m loss in amplitude in the
two transitions. The standard raising operator is obtained by choosing the
intermediate measurement as pi, = (1 + 0,)/2.

The method described here generalizes. A complete set of observables
can have the phases of their raising and lowering operators determined
by choosing a state like the u above, whose projection operator does not
annihilate any of the basis states which one wishes to raise and lower.

3.5. Quantum Temperatures

Temperatures work the same in the quantum situation as they do in the
classical. Using the classical numbers from Equation 1, a quantum beam
splitter acting on a beam with only a single particle type will be identical
to the classical case. To make it more interesting we can consider such a
device acting on a beam with two particle types. Consider a measurement
of spin-1/2 in the +z direction. A perfect measurement (temperature zero)
is given by (14 0,)/2. At finite temperatures some of the spin-up particles
end up in the lower exit and some of the spin-down particles take the upper
exit. Using +AF for the first particle type and —AFE for the second we
have a matrix for the upper exit port:

+AE>

p(T):<exp<6%T exp(iAT,E))/(emﬁHem(ﬁ)) (30)

In the low temperature limit, and choosing to keep the sum of the proba-
bilities 1, these become

1= exp(_iAE) 0
p(T) ~ < 0 o T eXp(—kaATE) > ’ (31)

similar to the classical result in Equation 4.
We can chain n of these experiments together; the composite experiment
is modeled by the n power of the matrix p(T):
1 —exp(£2£E) 0
(o))" ~ ( ARV §

exp( E T/n

(32)

The above is diagonal, as would be obtained for a classical thermal two
particle beam splitter. To get off diagonal elements we need to consider
spin in directions other than 4+z. Our calculations have been for spin-1/2
in the +z direction but that is not a special direction so we can generalize
to the +u direction. To do that, we need to rewrite the above in the Pauli
spin matrix basis. We find

()" ~ (1+ (1-exp(F2E)) 01u) /2. (33)

where o, has been replaced with o4, to give the general spin-1/2 case.
Putting n = 1 gives the matrix for a single thermal spin-1/2 measurement.
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Squaring a low temperature matrix p(7') approximately gives the ma-
trix for an even lower temperature p(7/2). For general temperatures, the
squaring does not necessarily divide the temperature by two but (other
than the high temperature limit) it does reduce the temperature. The high
temperature limit has probabilities 1/2:

AT >> AE k) ~ < 162 1(/)2 > (34)

Since the matrices for the upper and lower exits must sum to 1, the lower
exit matrix must be identical to the above. Squaring the above matrix
gives a matrix with 1/4s on the diagonal instead of 1/2s but the matrix
must still correspond to the same high temperature limit so we need to
multiply the matrix by 2. This “renormalization” was (approximately)
unnecessary at very low temperatures. At higher temperatures, one can
maintain the trace as one by dividing the matrix by the trace after squaring.
The trace of the above matrix is 1/2 so dividing by 1/2 will renormalize
it. Density matrices are beyond the scope of this paper however we note
that requiring our matrices to have trace 1 makes them mathematically
identical to “mixed density matrices” and when density matrices are used
in statistical physics, squaring and renormalization is a method used to
reduce their temperature.[14]

3.6. Superselection Sectors

Suppose we have a beam of spin-up electrons and we split it with a beam
splitter measuring spin-1/2 in the v = (ug, uy, u.) direction. The entering
beam is represented by a ket that is pure spin-up:

+29=( ). (35)

and the matrix representing the measurement is

pﬂ=< : y>. (36)

2\ ug + tuy — Uy

Performing the matrix multiplication p,, | 4 z), the exiting beam is repre-
sented by a ket for spin-1/2 in the +u direction:

14+u
_ 1 z
o= 3L, ) (37)

= L gy Bt gy

The above shows that it is physically possible to begin with a beam of
pure spin-up and from it make a beam that is a “linear superposition” of
spin-up and spin-down. This is accomplished by arranging for the matrix
P+ to have non zero off diagonal elements. That is, we will get a linear
superposition provided u, or u, is non zero.

It’s easy to imagine that its possible to create a superposition of any
quantum states, given that physicists talk about superposition of states
consisting of a live and dead cat. But in fact, not all quantum superposi-
tions can be created; superpositions are limited by “superselection sectors”
and this is what we will discuss in this subsection. Superselection sectors
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can be attributed to two subjects beyond the scope of this paper, symme-
try and decoherence so we will provide only an outline of the ideas. The
subject is explained in [4]; we will explore the subject from the point of
view of binary measurements.

Our starting point is to assume, as Julian Schwinger did, that given a
“complete set of commuting observables” to define a quantum state, it is
possible to define a beam splitter whose upper exit passes only that par-
ticular state, for example, spin-up. The spin-1/2 symmetry defines states
for all the possible directions u so we can use intermediate states to ob-
tain a superposition between spin-up and spin-down as was illustrated in
Equation 37.

We will now consider a binary measurement on a particle beam that
contains electrons and neutrinos. On the other hand, there are no interme-
diate quantum states between the electron and neutrino so there is no way
for us to use our spin-1/2 example to convert an electron beam into a beam
that is a superposition of electron and neutrino. This is the most common
case for “internal” symmetries, however, the particle “generations” are an
exception and in fact, the weak force converts an electron into a linear
superposition of neutrinos from different generations.

Since it’s not possible to create linear superpositions of electrons and
neutrinos, it is only possible to make statistical mixtures of these particles.
This is the same case as the classical beams we considered in the previous
section. Classical beams are represented by matrices of particle rates that
are diagonal as in Equation 6. Before we split the particle rates into bras
and kets, we represented spin-1/2 particles with 2 x 2 Hermitian matrices.

By reconsidering our splitting we can create a 4 x 4 matrix that rep-
resents a statistical mixture of electrons and neutrinos, each of which is
a quantum superposition of spin-up and spin-down. Suppose our beam is
40% electrons with spin-1/2 in the 4u direction and 60% neutrinos with
spin-1/2 in the +v direction. Then the matrix representation is:

p(T) =04 +u,e)(+u,e| + 0.6] +v,v){(+v,v| = 04piye + 0.6p14,
0.240.2u, 0.2uy — 0.27u,
| 0.2u; +0.24uy, 0.2 —-0.2u,
0.3+0.3v,  0.3v; — 0.37vy,
0.3vg +0.3ivy 0.3 —0.3v;

(38)
where T is some arbitrary temperature and, for the sake of clarity, we’ve
left the forbidden matrix entries blank instead of zero. This matrix is in
the form of a mixed density matrix subject to the requirement that its bras
and kets not cross the superselection sector boundary. That is, the kets are
split into two halves and only one of the halves can be non zero. If it is
the top half, then the ket is an electron ket while the bottom half defines
a neutrino ket.

We'’ve just shown that the particle rate matrix for beams that include
more than one superselection sector must be in block diagonal form. The
splitting of the two superselection sectors is a classical beam splitter and
this can always be done. After reducing a beam to a single superselection
sector we can do quantum measurements on it with the methods discussed
above. We can do this to both the particle types and then reassemble
the two beams into one. This way we can design a beam splitter whose
output stream will have the properties of 40% electron and 60% neutrino
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beam discussed above, at least given an input stream with both electrons
and neutrinos. This shows that the matrices that represent quantum beam
splitters have the form given in Equation 38, that is, they must be block
diagonal.

We can also consider thermal measurements of beams composed of par-
ticles from two different superselection sectors. As before with Equation
34, the high temperature limit for each superselection sector will be a mul-
tiple of the unit matrix for that sector. If we balance the sectors to have
the same multiple, the high temperature limit will be a multiple of unity.
Setting the trace to be 1, the high temperature limit for the electron /
neutrino block diagonal matrix will be:

10
101
4 1o (39)

01

where again we’ve left the forbidden entries blank rather than zero.

We can reduce the temperature of the above matrix p(7T") in Equation
38 by squaring and renormalizing to keep the trace 1. This is easily done in
the form 0.4p4ye + 0.6p40, as pyye and piy, are idempotent, annihilate
each other and have unit trace. We find:

p(T)" [ tr(p(T)") = ((04)"p1ue + (0.6)"p1vn) / ((0.4)"+(0.6)") (40)
In the limit as n — oo the (0.6)" terms dominate numerator and denomi-
nator giving a limit

p(0) = P (41)
It should be clear that this is a general attribute of quantum beam splitters
that cross superselection sectors. That is, their T' = 0 limit almost always
falls into a single sector.

If we are able to make calculations in an algebra and want to know what
particles it contains this implies an algorithm. We begin with the high
temperature limit of Equation 39 and add a small Hermitian modification
to it. Then repeatedly square and renormalize the trace to unity. It will
approach the primitive idempotent for a particle.

For our example of the electron / neutrino, the operator for electric

charge is zero in the neutrino part and —1 = —11 in the electron part:
-1 0
0 -1
= . 42
Q - (42)
0 0

This matrix commutes with any element of the measurement algebra for
the electron / neutrino beam. In fact, the definition of a charge that cre-
ates superselection sectors is that the symmetry must commute with every
possible measurement (observable).

Given an algebra, we can define the possible charges that define its
superselection sectors. Each diagonal block can take a different charge.
For the electron / neutrino algebra, the possible charges are:

g O

Qaea)=| " " o] (43)
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where ¢. and ¢, are the charges for the electron and neutrino blocks. This
observation is trivial for block diagonal algebras but becomes interesting
when the algebra is defined more subtly.

4. Standard Model / Dark Matter

The idea behind elementary particle experiments is that matter becomes
simpler at higher temperatures. For example, the crystalline structure of
ice becomes water when it melts. The correlation between nearby molecules
becomes simpler when water is turned to steam. The expectation is that
matter becomes simpler, or at least more elementary, at higher tempera-
tures. The high temperature limit for quantum beam splitters indeed is
very simple as shown in Equation 39.

The Standard Model of elementary particles is built around symmetries.
This is a natural consequence of the experiments; humans look for patterns
in the experimental results and the nicest way to define patterns is with
symmetry. So the quantum mechanics that models the elementary particles
is defined using the symmetries that are observed in the experiments. While
this sort of self-referential theory is the easiest way of obtaining a theory
that matches experiment it is not necessarily indicative of the way that
Nature works and it certainly should not be used as a limitation on the
ways that we might describe elementary particle symmetry.

Symmetries can be used to describe a vast number of possibilities and
this is simultaneously a strength and a weakness of the method. It’s a
strength in that you can take any observations and find a symmetry that
fits them. But it’s a weakness in that the number of available choices is
so hugely infinite that one suspects that there may be a simple differential
equation hiding behind those complicated symmetries.

The Standard Model of elementary particles consists of representatives
of SU(3)xSU(2)xU(1) symmetry. Why did nature choose this symmetry
rather than, for example, SU(4)xE4xU(1)xU(1)? The Standard Model pro-
vides no explanation for the arbitrariness of the choice of symmetry. On
the other hand, what is interesting here is that SU(3), SU(2) and U(1) are
symmetries that require 3 x 3, 2 x 2 and 1 x 1 blocks in a block diagonal.
Other symmetries, such as Fg, can be put into square matrix form but with
restrictions on the matrices. So block diagonal form is what we expect to
see in quantum measurements subject to superselection sectors.

After choosing the symmetry SU(3)xSU(2)xU(1), the Standard Model
fermions are taken from irreducible representations of this symmetry. To
define an irrep of SU(3)xSU(2)xU(1) one chooses an irrep of SU(3), one of
SU(2) and one of U(1). Each of these has an infinite number of choices;
the ones used by the fermions in the Standard Model are:

SU(3) SU(2) U(1) | Particles
—2 | right-handed electron
0 right-handed neutrino
—1 | left-handed leptons (44)
4/3 | right-handed up quark
—2/3 | left-handed up quark
1/3 | left handed quarks.

W W W = ==
N = =N = =

Why did Nature choose these six representations? And why do they appear
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in three generations identical except for mass and the weak force? The
Standard Model provides no explanations for the arbitrariness of the above
choice of symmetry representations.

What we would like is a single mathematical object that is natural,
and reduces the arbitrary choices of the Standard Model. To do that, we
can assume that the symmetry and representations arise from a choice of
algebra instead of a choice of symmetry. One problem with this idea is that
SU(3)xSU(2)xU(1) is a gauge symmetry and the tool this paper develops is
the particle content. In addition, the Standard Model symmetry is defined
only in the high temperature limit.

At normal temperatures, the weak SU(2) symmetry that relates the left
handed electron and neutrino is broken. In fact, left handed fermions travel
at speed ¢ and so do not appear at all at zero temperature. This implies
that the zero temperature particle content needs to deal with the electron,
neutrino, up-quark and down-quark rather than their left and right handed
components. Under this assumption, there are 4 Standard Model fermions.
Ignoring spin and anti particles, the electron and neutrino will appear as
1x 1 blocks. The up and down quarks are color SU(3) triplet states so they
will appear as 3 x 3 blocks.

If we have a finite group G, we can create an algebra from it that is
called the “complex group algebra” called C(G). A complex group algebra
can be put into block diagonal form. We can then read the particle content
off by noting the size of the blocks. Note that the particle content is not
the same as the symmetry

In Subsection 3.2 we showed that consecutive measurements in the +z,
4z, +y and +z directions resulted in the beam picking up a geometric
phase of —7/4. On the other hand, any complex plane wave picks up a
phase through translation in space or time according to exp(ikx —wt). We
cannot distinguish these two effects; either one will give a phase change to
a beam that we can detect by seeing changes in an interference pattern. If
Nature were truly simple, these two causes of phase changes would be the
same. For that to happen, the movement of spin-1/2 particles would have
to be accompanied by changes in their spin direction.

The left and right handed fermions of Equation 44 are massless and
travel at speed c. A stationary electron with spin-1/2 in the 4z direction
is produced by combining a right handed electron with speed ¢ in the +z
direction and a left handed electron with speed ¢ in the —z direction. The
“Feynman checkerboard model” of the electron is a 1-dimensional model
of the Dirac equation based on sums over discrete paths on the corners of
a checkerboard.[3] The axes on the checkerboard correspond to position z
and time ¢. Each step in a path the electron moves one unit forward in
time by € and steps by a distance +ec in z. So the electron is moving up
the checkerboard on diagonal lines, the way a checker moves in a game of
checkers or draughts. Each time the electron changes direction the path
receives a factor of —iemc?/h. In the € — 0 limit, the sum of all paths gives
a propagator that satisfies the 1-d Dirac equation.

The 1-dimensional Feynman checkerboard paths have been extended to
3-dimensional.[6, 13] The spatial dimensions are on a cubic lattice. This
gives us a hint on what groups to use in making a complex group algebra;
the cubic or isometric crystallographic point groups as this is the symmetry
of the cubic lattice.
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There are five isometric crystallographic point groups. In the Hermann-
Mauguin notation they are 23, m3, 432, 43m and m3m, they corre-
spond respectively to tetartoidal, diploidal, gyroidal, hextetrahedral and
hexoctahedral.[1] The sizes of the five groups are:

Group:T' |1, O Ty Oy (45)
Size:12 | 24 24 24 48
in Schoenflies notation.

The block diagonal structure of a complex group algebra can be read
off of the group character table. Each irreducible character corresponds to
a block on the diagonal and the size of the block is given by the irreducible
character of the identity.[5] For example, the character table for T" is given
by

T |E 3C, 4C3 4C4
All 1 1 1

Ell 1 w W (46)
E'll 1 W w
T3 -1 0 0

where w = exp(2im/3). Each row corresponds to an irreducible represen-
tation of the symmetry. There are four: A, E,E’,T and each irrep will
appear in the algebra as a block on the diagonal. So there are four blocks
in the C(T); three of size 1 x 1 and one of size 3 x 3.
A general element of the C(7) algebra, in block diagonal form, looks
like:
o)

711 T12  T13
T2 722 723
731 T32 733,

where «,n,7" and 7j, are complex numbers. For the Standard Model
fermions we need two 1 x 1 blocks for the leptons and two 3 x 3 blocks
for the quarks so T" symmetry will not suffice.

As we can count from Equation 47, the total number of complex degrees
of freedom in the C(T') algebra is 12 4+ 12 + 12 4 32 = 12. This is the same
as the size of the finite group 7'. In other words, putting the algebra into
block diagonal form is just a way of rewriting its degrees of freedom.

Examining the character tables of all five isometric crystallographic
point groups we find that their particle content consists of:

T:]3 1 11
T,:13 31111111

Ty: 13 32 11 (48)
O0:13 3211

On:13 333221111

and we find that all but the T" group include the 3 3 1 1 particle content of
the Standard Model. Of these five groups, 1, and Oy, include an inversion
1 or point reflection. Such a symmetry transforms an object into its mirror
image. In the Standard Model the weak interaction is not symmetric under
parity so we will reject those groups.
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This leaves T,; and O which share the same character table:

O:|E C3 Cy|C) Cy

Tg:|E C3 Cy| o4 Ss

Size: | 1 3 6 6

A1 1 1 1 1

Ay |1 1 1 |-1 -1 (49)
E:12 -1 2 0 O

h:13 0 —-1]-1 1

5:13 0 —-1] 1 -1

where “Size” is the number of group elements for that column’s conjugacy
class. In the above table, we’ve included an extra vertical line between
the first three conjugacy classes and the last two. This is to note that F,
(35 and Cs are even while the two right classes are odd. Even and odd
are determined by the Az or “sign” irrep. We assign the A; pair to the
leptons and the T} pair to the quarks. These pairs differ only in their odd
characters so we presume that it is the odd characters that define their weak
isospin and weak hypercharge quantum numbers. The remaining irrep F
is distinctive in that it has no odd characters. Thus it corresponds to a
particle with no weak hypercharge or weak isospin and we assign it to dark
matter.

5. Conclusion

We’ve shown that binary measurements are quite similar whether they
are classical or quantum. Since binary measurements form a foundation
for quantum mechanics as demonstrated in the Schwinger measurement
algebra textbook introductions to quantum mechanics [12, 11], this shows
that this formulation of quantum mechanics is more closely aligned with our
classical intuition than the other formulations. This makes this formulation
important for pedagogy as well as the foundations of quantum mechanics.

The paper shows a new way of introducing quantum mechanics to stu-
dents from the point of view of classical mechanics. This allows students to
have an intuitive understanding of how quantum mechanics works. We’ve
shown how the use of quantum amplitudes instead of probabilities is nat-
ural to quantum mechanics. And since these methods generalize to the
quantum textbooks based on Schwinger’s measurement algebra, students
can learn quantum mechanics in a way where their understanding of the
subject is firmly seated in their understanding of classical mechanics.

Some of the subjects discussed in this paper including quantum phase,
Berry-Pancharatnam phase, superselection sectors and quantum statistics
are introduced in this paper at an elementary level. These subjects provide
interesting subjects to study for students in their first lectures on quantum
mechanics with interesting problems available for assignment.

Finally, we’ve illustrated the possible uses of this new formulation of
classical and quantum mechanics in explorations of the nature of the el-
ementary fermions. We show that the choice of an algebra defines both
symmetry and particle representations. This may be a method of wrap-
ping the symmetries of the Standard Model into an algebraic description
that will be much more tightly determined than the arbitrary choice of
symmetry and representations found in the Standard Model.
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