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Abstract—In this paper, we generalize Huygens’ principle (HP), 

extinction theorem (ET), and Franz-Harrington formulation 

(FHF). In our previous works, the traditional HP, ET, and FHF in 

homogeneous isotropic environment are generalized to inhomo-

geneous anisotropic lossy environment; the traditional FHF of 

homogeneous isotropic material system is generalized to inho-

mogeneous anisotropic lossy material system and then to piece-

wise inhomogeneous anisotropic lossy material system; the tradi-

tional HP, ET, and FHF of simply connected material system are 

generalized to multiply connected system and then to 

non-connected system; the traditional FHF of external scattering 

field and internal total field are generalized to internal scattering 

field and internal incident field. In previous work, it is proved that 

the generalized HP (GHP) and generalized ET (GET) are equiv-

alent to each other; the GHP, GET, and generalized FHF (GFHF) 

satisfy so-called topological additivity, i.e., the GHP/GET/GFHF 

of whole electromagnetic (EM) system equals to the superposition 

of the GHP/GET/GFHF corresponding to all sub-systems. 

In this paper, the above results obtained in our previous works, 

which focus on the EM system constructed by material bodies, are 

further generalized to the metal-material combined EM system in 

inhomogeneous anisotropic lossy environment, and traditional 

surface equivalence principle is generalized to line-surface equiv-

alence principle. 

 

 
Index Terms—Current decomposition method, equivalent line 

current, extinction theorem (ET), Franz-Harrington formulation 

(FHF), Huygens’ boundary, Huygens’ principle (HP), inhomoge-

neous anisotropic lossy media, line-surface equivalence principle, 

metal-material combined system. 

 

  

I. INTRODUCTION 

UYGENS’ principle (HP) [1], extinction theorem (ET) [2], 

and Franz-Harrington formulation (FHF) [3]-[5] are the 

important components of classical electromagnetic (EM) the-

ory, and they have had many successful applications in EM 

engineering society. In paper [6], they are generalized from the 

following aspects: 
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■ In the aspect of EM media, the traditional HP, ET, and 

FHF in homogeneous isotropic environment are generalized to 

inhomogeneous anisotropic lossy environment; the traditional 

FHF of homogeneous isotropic material system is generalized 

to inhomogeneous anisotropic lossy material system and then 

to piecewise inhomogeneous anisotropic lossy material system. 

■ In the aspect of topological structure of EM system, the 

traditional HP and ET for the case that Huygens’ surface is a 

single closed surface is generalized to the case that “Huygens’ 

surface” is constituted by multiple closed surfaces; the tradi-

tional FHF of a simply connected material body is generalized 

to a multiply connected material body and then to the EM 

system constructed by non-connected material bodies. 

■ In the aspect of formulating fields, the traditional FHF of 

external scattering field and internal total field are generalized 

to the FHF of internal incident field and internal scattering 

field. 

For the EM system constructed by material bodies, it is 

found in paper [6] that: 

● The generalized Huygens’ principle (GHP), generalized 

extinction theorem (GET), and generalized Franz-Harrington 

formulation (GFHF) satisfy so-called topological additivity, 

i.e., the GHP/GET/GFHF of whole EM system equals to the 

superposition of the GHP/GET/GFHF corresponding to all 

sub-systems. 

● The GHP is equivalent to GET, i.e., the GHP of any field 

satisfies GET, and any GET corresponds to the GHP of a field. 

● The GFHF of external scattering field and internal incident 

field is not the mathematical expression of GHP, and it is solely 

the summation of scattering field GHP and incident field GHP. 

● The GFHF of internal total field satisfies so-called weak 

extinction theorem instead of extinction theorem. If the piece-

wise Green’s functions proposed in paper [6] are utilized, the 

GFHF of internal total field satisfies so-called artificial extinc-

tion theorem, and this artificial theorem is helpful to unify the 

mathematical form of GFHF for various topological structures. 

● The GHP is a special surface equivalence principle (SEP), 

but SEP is not necessarily GHP. The GHP can be particularly 

called as physical equivalence principle, because it simulta-

neously satisfies the concept of action at a distance, the law of 

causality, and the principle of superposition. It is not necessary 
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for SEP to simultaneously satisfy these fundamental physical 

requirements. 

● The GFHF is not the mathematical expression of GHP and 

GET, and it is only the mathematical expression of SEP. The 

values of GFHF are mainly manifested in that various fields are 

uniformly expressed in terms of an identical set of equivalent 

surface currents, and this feature is very valuable for many 

engineering applications, such as solving the EM scattering and 

constructing the characteristic mode (CM) of material system. 

In this paper, the results obtained in previous works will be 

further generalized to the metal-material combined system in 

inhomogeneous anisotropic lossy environment, and the mate-

rial part of system can be any case discussed in [6]. In addition, 

SEP is generalized to line-surface equivalence principle. 

This paper is organized as follows. Some necessary prepa-

rations, such as some symbols used in this paper and the topo-

logical restrictions of metallic and material parts, are provided 

in Sec. II. The metallic and material boundaries are decom-

posed in Sec. III for the preparation of decomposing various 

currents in Sec. IV. The currents related to metal-material 

combined system are decomposed in Sec. IV to reveal the de-

pendences among them. The GHP, GET, and GFHF of met-

al-material combined system are provided in Sec. V, based on 

the Sec. IV of this paper and the results given in paper [6]. As 

an application, the GFHF given in Sec. V is utilized to construct 

the CM of metal-material combined system in Secs. VI and VII. 

At last, this paper is concluded in Sec. VIII. 

In what follows, the j te   convention is used throughout. 

 

 

II. PREPARATIONS 

Some necessary preparations for deriving the mathematical 

formulation of GHP, GET, and GFHF corresponding to met-

al-material combined EM system are done in this section. 

A. Some symbols used in this paper 

The EM system focused on by this paper is constructed by 

the metallic line part metL , the metallic surface part metS , the 

metallic volume part metV , and the material body matV , and a 

typical example is shown in Fig. 1. To efficiently derive the 

mathematical formulation of GHP, GET, and GFHF of the 

structure in Fig. 1, it is necessary to employ some concepts on 

point set topology, such as the boundary, interior, exterior, and 

closure, and the rigorous mathematical definitions for them can 

be found in [7]. The boundaries of metL , metS , metV , and matV  

are respectively denoted as metL , metS , metV , and matV ; the 

interior of matV  is denoted as int matV , and the exterior of matV  

is denoted as ext matV , i.e., 3ext \ clmat matV V , where cl matV  

represents the closure of matV . Obviously, both the int matV  and 

ext matV  are open sets [7].  

When an external excitation incF  incidents on the structure 

in Fig. 1, the scattering line electric current SLJ , the scattering 

surface electric current ,

SS

met surfJ , and the scattering surface 

electric current ,

SS

met volJ  will be excited on the metL , metS , and 
metV  respectively [8]; the scattering volume ohmic electric 

current ,

SV

mat ohmJ , the scattering volume polarization electric 

current ,

SV

mat polJ , and the scattering volume magnetization mag-

netic current ,

SV

mat magM  will be induced on the int matV  [8], [9]. 

Here, the superscript “ SL ” on SLJ  is the acronyms of term 

“scattering line”, and the other superscripts on various currents 

can be similarly explained. To simplify the symbolic system of 

this paper, the summation of ,

SS

met surfJ  and ,

SS

met volJ  is simply de-

noted as SSJ , i.e., , ,

SS SS SS

met surf met volJ J J+ ; the summation of ,

SV

mat ohmJ  

and ,

SV

mat polJ  is simply denoted as SVJ , i.e., , ,

SV SV SV

mat ohm mat polJ J J+ ; 

the ,

SV

mat magM  is simply denoted as SVM , i.e., ,

SV SV

mat magM M . 

The scattering currents  ,SL SSJ J  and  ,SV SVJ M  will gen-

erate scattering field scaF , and the summation of incF  and scaF  

is total field totF , i.e., tot inc scaF F F= + , where ,F E H= . For 

the convenience of this paper, the scaF  is divided into two parts, 

the sca

metF  generated by metal-based scattering electric currents 

 ,SL SSJ J  and the sca

matF  generated by material-based scattering 

currents  ,SV SVJ M , and sca sca sca

met matF F F= +  because of superpo-

sition principle [10]. 

B. Some restrictions for the topological structure in Fig. 1, 

from a practical point of view 

From a purely mathematical point of view, clmet metL L , and 

clmet metS S , and clmet metV V  [7]. However, from a practical 

point of view it is restricted in this paper that 

 

 Restrction for : clmet met metL L L=  (1.1) 

 Restrction for : clmet met metS S S=  (1.2) 

 Restrction for : clmet met metV V V=  (1.3) 

 

and these restrictions can be vividly understood as that there 

does not exist any “point-type holes” on metL , “point-type and 

line-type holes” on metS , and “point-type, line-type, and sur-

face-type holes” on metV . In addition, the restrictions (1.1) and 

(1.2) imply that met metL L=   and met metS S=   in 3  [7]. Based 

on the same consideration, it is also restricted that 

 

( )Restrction for : cl \mat mat mat mat met met metV V V V L S V=    (1.4) 
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Fig. 1. The metal-material combined system considered in this paper and the 

decomposition for its boundary. 
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and this restriction can be vividly understood as that there does 

not exist any environment-filled “point-type, line-type, and 

surface-type holes” on matV ; the “line-type holes” on matV  

originate from the submergence of metL  into matV , and the 

“surface-type holes” on matV  originate from the submergence 

of metS  into matV . In summary, the “holes” on matV  are met-

al-filled instead of being environment-filled. 

From a practical point of view, it is further restricted that 

 

 ( )( )Restrction for : cl \met met met met metL L L S V=  (1.1') 

 ( )Restrction for : cl \met met met metS S S V= . (1.2') 

 

The restriction (1.1') is equivalent to saying that the intersection 

between metL  and met metS V  can only be some discrete points, 

and cannot be any lines; the restriction (1.2') is equivalent to 

saying that the intersection between metS  and metV  can only be 

some discrete points or lines, and cannot be any surfaces. These 

imply that the structures in Fig. 2 are not considered in this 

paper.  

In addition, it is also restricted that matV  is a simply con-

nected inhomogeneous anisotropic lossy material body, and 

that the material parameters  ,  , and   are two-order 

symmetrical tensors as explained in paper [6]. The multiply 

connected case, the non-connected case, and the piecewise 

inhomogeneous anisotropic lossy case can be similarly dis-

cussed, and corresponding mathematical formulations are 

formally identical to the formulations given in this paper. 

 

 

III. BOUNDARY DECOMPOSITION 

All currents appearing in the following parts of this paper 

distribute on the metallic and material boundaries of the 

structure in Fig. 1, so this section decomposes the boundaries 

into some sub-boundaries, to prepare for decomposing corre-

sponding currents in the next section. 

A. The decomposition for metallic boundary 

The metL , metS , and metV  can be decomposed as follows: 

 

 0

met met metL L L=  (2) 

 0

met met metS S S=  (3) 

 0

met met metV V V =    (4) 

 

where the 0

metL  and metL  are defined as 

 

 ( )0 \ intmet met met matL L L V  (5.1) 

 ( )intmet met met matL L L V  (5.2) 

 

and the 0

metS  and metS  are defined as 

 

 ( )0 \ intmet met met matS S S V  (6.1) 

 ( )intmet met met matS S S V  (6.2) 

 

and the 0

metV  and metV  are defined as 

 

 ( )0 \ intmet met met matV V V V   (7.1) 

 ( )intmet met met matV V V V  . (7.2) 

 

The 0

metL  and metL  can be vividly understood as the part 

which is not submerged into matV  and the part which is sub-

merged into matV , and the 0

metS  and metS  can be similarly ex-

plained; the 0

metV  and metV  can be vividly understood as the 

part which contacts with environment and the part which con-

tacts with material body matV . In addition, it is obvious that 

 

 0

met metL L =   (8) 

 0

met metS S =   (9) 

 0

met metV V  =  . (10) 

 

B. The decomposition for material boundary 

As pointed out in (1), there doesn’t exist any environ-

ment-filled “point-type, line-type, and surface-type holes” on 
matV , so matV  can be decomposed into the following four 

parts: 

 

Boundary Point Part : mat

pointV =   (11.1) 

Boundary Line Part : mat met

lineV L =  (11.2) 

Boundary Open Surface Part : mat met

open surfV S =  (11.3) 

( )Boundary Closed Surface Part : \mat mat met met

closed surfV V L S =  .(11.4) 

 

Obviously, the above four parts are pairwise disjoint, and 

 1) The boundary point part (i.e. the metal-filled “point-type 

holes” on matV ) does not exist on matV , based on (1). 

2) The boundary line part (i.e. the metal-filled “line-type 

holes” on matV ) originates from the submergence of metallic 

lines into material body, and it is constituted by some lines only, 

and it does not include any surfaces and discrete points. 

(a)                                                  (b)

(c)                                                  (d)

metV metV

metV
metS

metS metS

met metL S ( )int clmet metL V met metL V

met metS V ( )int clmet metS V

 
 
Fig. 2. (a) A part of metallic line contacts with metallic surface, and this case is 

not considered in this paper; (b) a part of metallic line contacts with or is 

submerged into metallic body, and this case is not considered in this paper; (c) a 

part of metallic surface contacts with metallic body, and this case is not con-

sidered in this paper; (d) a part of metallic surface is submerged into metallic 

body, and this case is not considered in this paper. 
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3) The boundary open surface part (i.e. the metal-filled 

“surface-type holes” on matV ) originates from the submergence 

of metallic surfaces into material body, and it is constituted by 

some open surfaces only, and it does not include any lines, 

closed surfaces, and discrete points. 

4) The boundary closed surface part originates from the 

contact between material body and environment, the contact 

between material body and metallic lines (here, the metallic 

lines are not submerged into material body), the contact be-

tween material body and metallic surfaces (here, the metallic 

surfaces are not submerged into material body), and the contact 

between material body and metallic bodies. The boundary 

closed surface part does not include any lines, open surfaces, 

and discrete points. In fact, the boundary closed surface part 
mat

closed surfV  can be further decomposed as follows: 

 

 
0

mat mat met

closed surfV V V =    (12) 

 

where the metV  is defined as (7.2), and the 0

matV  is defined as 

 

 ( )( )

( )

0 \

\ \

\

mat mat met

closed surf

mat met met met

mat met met met

V V V

V L S V

V L S V

  

=  

=  

. (13) 

 

If the union of mat

open surfV  and mat

closed surfV  is denoted as mat

surfV  

(i.e., the whole material boundary surface part is denoted as 
mat mat mat

surf open surf closed surfV V V   ), then the whole material boundary 
matV  can be decomposed as follows in detail: 

 

0

matmatmat
surflinepoint

mat mat
open surf closed surf

VVV

mat met met met mat

V V

V L S V V



 

 =    . (14) 

 

 

 

IV. CURRENT DECOMPOSITION METHOD 

Based on the boundary decomposition given in above section, 

the current decomposition method is provided in this section, 

and then the relationships among various sub-currents are 

discussed in detail for deriving GHP, GET, and GFHF in the 

next section. 

A. The decompositions for metal-based scattering currents 

Based on (2)-(4) and (8)-(10), the scattering electric currents 
SLJ  and SSJ  can be correspondingly decomposed as follows: 

 

 ( ) ( ) ( ) ( )0 ,SL SL SL metJ r J r J r r L= +   (15) 

 ( ) ( ) ( ) ( )0 ,SS SS SS met metJ r J r J r r S V= +    (16) 

 

where the 
0

SLJ  and SLJ  are defined as 

 

 ( )
( ) ( )

( )
0

0

,

0 ,

SL met

SL

met

J r r L
J r

r L

 



 (17.1) 

 ( )
( )

( ) ( )
00 ,

,

met

SL

SL met

r L
J r

J r r L





 (17.2) 

 

and the 
0

SSJ  and SSJ  are defined as 

 

 ( )
( ) ( )

( )
0 0

0

,

0 ,

SS met met

SS

met met

J r r S V
J r

r S V

  


 
 (18.1) 

 ( )
( )

( ) ( )
0 00 ,

,

met met

SS

SS met met

r S V
J r

J r r S V

 


 
. (18.2) 

 

B. The decompositions for material-based equivalent currents 

In this subsection, the equivalent current on whole material 

boundary matV  is separately defined according to the bound-

ary decomposition formulation (14). 

1) The equivalent surface currents on  mat

closed surfV  (i.e. on 

 mat met
V V0 ) 

Based on papers [4]-[6], the equivalent surface currents 

 ,ES ES

closed surf closed surfJ M  on boundary closed surface part mat

closed surfV  

are as follows: 

 

 ( ) ( ) ( ) ( )0 ,met

ES ES ES mat

closed surf closed surfV
J r J r J r r V


= +   (19.1) 

 ( ) ( ) ( ) ( )0 ,met

ES ES ES mat

closed surf closed surfV
M r M r M r r V


= +   (19.2) 

 

in which the  0 0,ES ESJ M  are defined as follows: [4], [5] 

 

 ( ) ( ) ( ) ( )0 0
ˆ ,ES tot mat

mat r r
J r n r H r r V→ →

     (20.1) 

 ( ) ( ) ( ) ( )0 0
ˆ ,ES tot mat

matr r
M r E r n r r V→→

      (20.2) 

 

and the  ,met met

ES ES

V V
J M

 
 are defined as 

 

 ( ) ( ) ( ) ( )ˆ ,met

ES tot met

matV r r
J r n r H r r V→ →

     (21.1) 

 ( ) ( ) ( ) ( )ˆ ,met

ES tot met

matV r r
M r E r n r r V→ →

      (21.2) 

 

where int matr V , and r  tends to r  as illustrated in the sub-

scripts in (20) and (21); ˆ
matn→  is the normal vector of mat

closed surfV , 

and points to int matV . It should be emphasized that the equiv-

alent surface currents defined in [5] equal to the  0 0,ES ESJ M− − , 

because the normal vector used in [5] is ˆ
matn→−  instead of 

ˆ
matn→ . 

2) The equivalent surface currents on  mat

open surfV  (i.e. on 
met

S ) 

To efficiently introduce the equivalent surface currents on 

the boundary open surface part metS , we consider the example 

illustrated in Figs. 3 (a) and 3 (a’) (i.e., a thick metallic slab 
met

slabV  is submerged into the material body) at first, and then the 
metS  shown in Figs. 3 (b) and 3 (b’) is viewed as the limitation 

of met

slabV  when the thickness of met

slabV  tends to zero. 

The plus and minus faces of met

slabV  are denoted as ;

met

slabS +  and 

;

met

slabS −  respectively, and the scattering surface electric currents 

on ;

met

slabS +  and ;

met

slabS −  are denoted as 
;

met
slab

SS

S
J

+

 and 
;

met
slab

SS

S
J

−

. Obviously, 

the ;

met

slabS +  and ;

met

slabS −  are the parts of material boundary (i.e., 
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; ;,met met mat

slab slabS S V+ −   ), and the material-based equivalent surface 

currents on 
;

met

slabS +
 and 

;

met

slabS −
 are denoted as  

; ;

,met met
slab slab

ES ES

S S
J M

+ +

 and 

 
; ;

,met met
slab slab

ES ES

S S
J M

− −

 respectively. If the thickness of metallic slab is 

denoted as met

slabD , the following limitations exist:  

 

 ;
0

lim
met
slab

met met

slab
D

S S
→

=  (22) 

 ( )
; ;0

lim met met
met slab slab
slab

SS SS SS

S S
D

J J J
+ −→

+ =  (23) 

 
;0

lim met
met slab
slab

ES ES

S
D

J J



→

=  (24.1) 

 
;0

lim met
met slab
slab

ES ES

S
D

M M



→

=  (24.2) 

 

where the  ,ES ESJ M   on metS  are defined as follows: 

 

 ( ) ( ) ( ) ( )ˆ ,ES tot met

r r
J r n r H r r S


  

→
     (25.1) 

 ( ) ( ) ( ) ( )ˆ ,ES tot met

r r
M r E r n r r S


  

→
     . (25.2) 

 

In (25), , int matr r V+ −  ; r+  and r−  tend to r  from the plus and 

minus sides of metS  respectively; n̂+  and n̂−  are the normal 

vectors of metS , and they point to the plus and minus sides of 
metS  respectively. 

Because of superposition principle [10], the summation of 

the fields respectively generated by  ,ES ESJ M+ +
 and  ,ES ESJ M− −

 

are identical to the field generated by  ,ES ES ES ESJ J M M+ − + −+ + , 

and then the  ,ES ES ES ESJ J M M+ − + −+ +  is treated as a whole in this 

paper. In addition, considering of that both the domain of 

 ,ES ESJ M+ +
 and the domain of  ,ES ESJ M− −

 are metS  and that 

( ) ( )ˆ ˆn r n r− += −  for any metr S , the equivalent surface currents 

on the boundary open surface part metS  can be defined as 

 

( ) ( ) ( )

( ) ( ) ( ) ( )
,

ˆ ,

ES ES ES

open surf

tot tot met

r r r

J r J r J r

n r H r H r r S
+ −

+ −

+ + −
→

+

 =  −  

 (26.1) 

( ) ( ) ( )

( ) ( ) ( ) ( )
,

ˆ ,

ES ES ES

open surf

tot tot met

r r r

M r M r M r

E r E r n r r S
+ −

+ −

+ − +
→

+

 = −   

. (26.2) 

 

3) The equivalent line currents on  mat

lineV  (i.e. on met
L ) 

To efficiently introduce the equivalent line currents 

 ,EL ELJ M  on the boundary line part metL , we consider the 

example illustrated in Fig. 4 (a) (i.e., a metallic cylinder met

cylinderV  

is submerged into the material body) at first, and then the metL  

shown in Fig. 4 (b) is viewed as the limitation of met

cylinderV  when 

the radius of met

cylinderV  tends to zero.  

The boundary of met

cylinderV  is denoted as met

cylinderV , and the scat-

tering surface electric current on met

cylinderV  is denoted as met
cylinder

SS

V
J


. 

Obviously, the met

cylinderV  is a part of material boundary (i.e., 
met mat

cylinderV V   ), and the material-based equivalent surface 

currents on met

cylinderV  are denoted as  ,met met
cylinder cylinder

ES ES

V V
J M

 
. If the radius 

of met

cylinderV  is denoted as met

cylinderR , the following limitations exist: 

 

 
0met

cylinderRmet met

cylinderV L
→

 ⎯⎯⎯⎯→  (27) 

 
0met

cylinder

met
cylinder

RSS SL

V
J J

→


⎯⎯⎯⎯→  (28) 

 
0met

cylinder

met
cylinder

RES EL

V
J J

→


⎯⎯⎯⎯→  (29.1) 

 
0met

cylinder

met
cylinder

RES EL

V
M M

→


⎯⎯⎯⎯→  (29.2) 

 

and then the equivalent line currents  ,EL ELJ M  on the bound-

ary line part metL  can be defined as follows: 

 

 ( ) ( )
( )

( )ˆ lim ,EL tot met

l
C rr r

J r e H r dl r L
→

    (30.1) 

 ( ) ( )
( )

( )ˆ lim ,EL tot met

l
C rr r

M r e E r dl r L
→

 −   . (30.2) 

 

In (30), the integral path ( )C r  is a circle constructed by the 

points r  which are in the set int matV  and tend to point r ; ˆ
le  is 

the reference direction of ELJ  and ELM ; the ˆ
le  and the refer-

ence direction of ( )C r  satisfy right-hand rule. 

4) Summary 

In summary, the whole material boundary matV  can be de-

composed into four parts as (11) or more elaborately decom-

posed into five parts as (14), and then the equivalent currents on 
matV  can be correspondingly defined as (20), (21), (26), and 

(30). To simplify the symbolic system of the following parts of 

this paper, the summation of met

ES

V
C


 and ES

open surfC  is denoted as 
ESC  (because met

ES

V
C


 and ES

open surfC  exist on the intersection be-

0

matV
ˆ

matn→

0

matV

n̂−

n̂+

ˆ
matn→

;

met

slabS − ;

met

slabS +

matV matV

metS

0 0,ES ESJ M 0 0,ES ESJ M

,ES ESJ M+ +,ES ESJ M− −

(a)                                                                   (b)

(a’)                                                                 (b’)

0met

slabD →

0met

slabD →
; ;

,met met
slab slab

ES ES

S S
J M

+ +; ;

,met met
slab slab

ES ES

S S
J M

− −

metS
;

met

slabS −

;

met

slabS +

 
 
Fig. 3. (a) A thick metallic slab is submerged into material body; (b) a metallic 

surface is submerged into material body; (a’) the sectional view of Fig. 3 (a), 

and the equivalent surface currents  
; ;

,met met
slab slab

ES ES

S S
J M

+ +

 and  
; ;

,met met
slab slab

ES ES

S S
J M

− −

; (b’) the 

sectional view of Fig. 3 (b), and the equivalent surface currents  ,ES ESJ M+ +  and 

 ,ES ESJ M− − . 

0met

cylinderR →

(a)                                                                      (b)

matV
matV

met

cylinderV metL

 
 
Fig. 4. (a) A metallic cylinder is submerged into material body; (b) a metallic 

line is submerged into material body. 
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tween matV  and met metV S ), and the summation of ES

closed surfC  

and ES

open surfC  is denoted as ESC  (because ES

closed surfC  and ES

open surfC  

constitute the whole of equivalent surface currents), i.e., 

 

, ,t

ES

me

ES ES ES

V

C

C C C+ − 0Equivalent Currents on : , , , ,

ES

ES ES
closed surf open surf

met

C

C C

mat EL ES ES ES ES

V
V C C C C C+ −

 (31) 

 

where ,C J M= . 

C. The relationships among various sub-currents 

Based on the above discussions, all the sub-currents on the 

boundary of a metal-material combined system are as follows: 

 

0 , , ,

E

me

S

ES

t

ES ES ES ES

V

J

J

J J J J+ −

equivalent on material boundaryscattering on metal boundary

0 0 0Electric Currents : , , , , , , , ,

ES ES
SL SS closed surf open surf

met

JJ

J JJ J

SL SL SS SS EL ES ES ES ES

V
J J J J J J J J J+ −   (32.1) 

0 , , ,

ES

S

t

E

me

ES ES

M

M

ES ES

V
M M M M+ − 

equivalent on material boundary

0Magnetic Currents : , , , ,

ES ES
closed surf open surf

met

M

M M

EL ES ES ES ES

V
M M M M M+ − . (32.2) 

 

Due to the tangential boundary conditions of totH  and totE  

on metV , it is easy to derive that 

 

 ( ) ( ) ( ),met met

ES SS met

V V
J r J r r V

 
=   (33.1) 

 ( ) ( )0 ,met

ES met

V
M r r V


=  . (33.2) 

 

Due to the same reasons as deriving (33), the following re-

lations for the currents defined in Sec. IV-B 2) can be derived: 

 

 ( ) ( ) ( )
; ;

;,met met
slab slab

ES SS met

slabS S
J r J r r S

 
=   (34.1) 

 ( ) ( )
;

;0 ,met
slab

ES met

slabS
M r r S


=   (34.2) 

 

and then 

 

 ( ) ( ) ( ),ES SS met

open surfJ r J r r S=   (35.1) 

 ( ) ( )0 ,ES met

open surfM r r S=   (35.2) 

 

because of (23), (24), and (26). 

In fact, the above (33) and (35) can be uniformly written as 

follows: 

 

 ( ) ( )
( ) ( )

( ) ( )

,

,met

ES met

open surf
SS ES

ES met

V

J r r S
J r J r

J r r V


 
= = 



 (36.1) 

 ( )
( ) ( )

( ) ( )

,
0

,met

ES met

open surf
ES

ES met

V

M r r S
M r

M r r V


 
= = 



. (36.2) 

In addition, it must be EMPHASIZED that: ( )0 0ESM r =  for any 

0

mat metr V S  , because of the tangential boundary condition 
of the total electric field on metS ; ( ) ( )  ( )0

ˆ ˆ 0ES

mat ln r e r M r→   =  
for any 0

mat metr V L  , because of the tangential boundary 
condition of the total electric field on metL . 

Similarly, the following relationships among the currents 

defined in Sec. IV-B 3) can be derived: 

 

 ( ) ( ) ( ),met met
cylinder cylinder

ES SS met

cylinderV V
J r J r r V

 
=   (37.1) 

 ( ) ( )0 ,met
cylinder

ES met

cylinderV
M r r V


=   (37.2) 

 

and then 

 

 ( ) ( ) ( ),EL SL metJ r J r r L=   (38.1) 

 ( ) ( )0 ,EL metM r r L=   (38.2) 

 

because of (28) and (29). 

The equivalent currents appeared in the material boundary of 

metal-material combined system include equivalent line elec-

tric current besides traditional equivalent surface electric and 

magnetic currents, so the corresponding equivalence principle 

is particularly called as line-surface equivalence principle 

(LSEP) to be distinguished from traditional SEP. In paper [6], it 

is found that the GFHF of material system is the mathematical 

expression of SEP, and the mathematical expression of the 

LSEP of metal-material combined system will be explicitly 

provided in the following Sec. V. 

 

 

V. GENERALIZED HUYGENS’ PRINCIPLE, EXTINCTION 

THEOREM, AND FRANZ-HARRINGTON FORMULATION 

In this section, the formulations and conclusions obtained in 

paper [6] for material system will be further generalized to the 

metal-material combined system. 

The domain occupied by whole metal-material combined 

system is denoted as sysD , i.e., 

 

 sys met met met matD L S V V  (39) 

 

and then [7] 

 

 0 0 0 0

sys met met met matD L S V V =    (40.1) 

 int int intsys met met met met matD L S V V V=   (40.2) 

 

( )

3

3

3

ext \ cl

\

\

sys

met met met mat

D D

D

L S V V

=

=

=

. (40.3) 

 

The second and third equalities in (40.3) are based on (1) and 

(39). 

A. Generalized Huygens’ principle and extinction theorem 

For material system, the Huygens’ surface supporting Huy-

gens’ secondary source is not unique, and the boundary of real 
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source is a natural and the smallest one [6], so the Huygens’ 

surfaces used in [6] are selected as material boundaries. How-

ever, the source boundaries of metal-material combined system 

are not restricted to surfaces as illustrated in Sec. III, so they are 

particularly called as “Huygens’ boundaries” to be distin-

guished from traditional Huygens’ surfaces. 

1) The GHP and GET corresponding to the “Huygens’ 

boundary” which is selected as material boundary 

If the “Huygens’ boundary” is selected as whole material 

boundary matV , the incident field GHP can be mathematically 

written as (41.1) based on the conclusion given in paper [6]. 

 

( ) ( )
( )

( ) ( )
( )

( )

ext : 0

ˆint : , lim

int : 0
ˆ, lim

ˆ ˆ

met

met

met

sys

mat inc JF inc

env l
C rr r L

met

MF inc

env l
C rr r L

JF inc MF inc

env envS

D

V F G r r e H r dl

V
G r r e E r dl

G n H G E n
+

 →

 →


    =     

    −  

  

+   +  





( )
( ) ( )
( ) ( )
( ) ( )

0

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ

met
met

met met
met

mat mat
met

mat mat
mat

mat

S S

JF inc MF inc

env envS S S

JF inc MF inc

env envV V V

JF inc MF inc

env envV V V

JF

env V

G n H G E n

G n H G E n

G n H G E n

G n

+
+

− −
−

− −
+

− −
−

−





 
 

 +   +  
 

 +   +  
 

 +   +  
 

=  ( ) ( )
( ) ( )

0

ˆ

ˆ ˆ

mat
met

mat mat
mat

inc MF inc

env V V

JF inc MF inc

env envV V V

H G E n

G n H G E n

−

− −





 +  
 

 +   +  
 

 

  (41.1) 

 

where the second equality is because of that the incident 

sources don’t distribute on metL  and metS ; the mathematical 

formulation of the GHP corresponding to material scattering 

field is as follows: 

 

( ) ( )
( )

( ) ( )
( )

ext :

ˆint : 0 , lim

int :
ˆ, lim

ˆ

met

met

met

sys sca

mat

mat JF sca

env l mat
C rr r L

met sca

mat MF sca

env l mat
C rr r L

JF

env matS

D F

V G r r e H r dl

V F
G r r e E r dl

G n H
−

 →

 →


    = −     

    +  

  

+  





( ) ( )
( ) ( )
( ) ( )
( )

ˆ

ˆ ˆ

ˆ ˆ

ˆ

met
met

met met
met

mat mat
met

mat

sca MF sca

env mat S S

JF sca MF sca

env mat env matS S S

JF sca MF sca

env mat env matV V V

JF sca MF

env mat env maV

G E n

G n H G E n

G n H G E n

G n H G E

−
+

+ +
−

+ +
−

+



 +  
 

 +   +  
 

 +   +  
 

+   +  ( )
( ) ( )
( ) ( )

0

0

ˆ

ˆ ˆ

ˆ ˆ

mat
mat

mat mat
met

mat mat
mat

sca

t V V

JF sca MF sca

env mat env matV V V

JF sca MF sca

env mat env matV V V

n

G n H G E n

G n H G E n

+
+

+ +

+ +







 
 

 =   +  
 

 +   +  
 

 

  (42.1) 

 

where the second equality is because of that there doesn’t exist 

material-based scattering current distributing on metL , metS , and 
matV , and this conclusion can be strictly proven by employing 

the method given in paper [9]; the mathematical formulation of 

the GHP corresponding to the metallic scattering field is as 

follows: 

 

( ) ( )
( )

( ) ( )
( )

( )

ext : 0

ˆint : , lim

int : 0
ˆ, lim

ˆ

met

met

met

sys

mat sca JF sca

met env l met
C rr r L

met

MF sca

env l met
C rr r L

JF sca

env met enS

D

V F G r r e H r dl

V
G r r e E r dl

G n H G
+

 →

 →


    =     

    −  

  

+   +





( )
( ) ( )
( ) ( )
( )

ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

met
met

met met
met

mat mat
met

mat

MF sca

v met S S

JF sca MF sca

env met env metS S S

JF sca MF sca

env met env metV V V

JF sca MF sca

env met env metV V

E n

G n H G E n

G n H G E n

G n H G E n

+
+

− −
−

− −
+

−



  
 

 +   +  
 

 +   +  
 

+   +  ( )

( ) ( )
( ) ( )

0

0

ˆ ˆ

ˆ ˆ

mat
mat

met met

mat mat
met

mat mat
mat

V

JF SL JF SS

env envL S

JF sca MF sca

env met env metV V V

JF sca MF sca

env met env metV V V

G J G J

G n H G E n

G n H G E n

−
−

− −
+

− −
−







 
 

   =  +    

 +   +  
 

 +   +  
 

 

  (42.2) 

 

where the second equality is because of that there doesn’t exist 

any metal-based scattering magnetic currents on the metL  and 
metS . 

In (41.1), the integral domains metS +  and metS −  respectively 

represent the plus and minus sides of metS ; the ˆ metS
n

+

 and ˆ metS
n

−

 

are the normal vectors of metS , and respectively point to the 

plus and minus sides of metS ; the integral domains metV +  and 

0

matV −  respectively represent the metallic outer boundary cor-

responding to metV  and the material inner boundary corre-

sponding to 0

matV ; the ˆ matV
n

−

 is the normal vector of matV , and 

points to the interior of matV ; the various Green’s functions are 

the environment Green’s functions used in paper [6]. The other 

symbols in (41.1), (42.1), and (42.2) can be similarly explained. 

2) The GHP and GET corresponding to the “Huygens’ 

boundary” which is selected as metallic boundary 

If the “Huygens’ boundary” is selected as whole metallic 

boundary met met metL S V , the incident field GHP can be 

mathematically written as the following (41.2) based on the 

conclusion given in paper [6]: 

 

( ) ( )
( )

( ) ( )
( )

( )

ext : 0

ˆint : 0 , lim

int :
ˆ, lim

ˆ ˆ

met

met

met

sys

mat JF inc

env l
C rr r L

met inc

MF inc

env l
C rr r L

JF inc MF inc

env envS S

D

V G r r e H r dl

V F
G r r e E r dl

G n H G E n
− −

 →

 →


    = −     

    +    

+   +  




( )

( ) ( )
( ) ( )
( ) ( )

ˆ ˆ

ˆ ˆ

ˆ ˆ

met
met

met met
met

met met
met

met met
met

S

JF inc MF inc

env envS S S

JF inc MF inc

env envV V V

JF inc MF inc

env envV V V

G n H G E n

G n H G E n

G n H G E n

+

+ +
−

− −
−

− −





 
 

 +   +  
 

 +   +  
 

 =   +  
 

 

  (41.2) 

 

where the second equality is due to that the incident sources 

don’t distribute on metL , metS , and metV ; the mathematical 

formulation of the GHP corresponding to metallic scattering 

field is as follows: 
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( ) ( )
( )

( ) ( )
( )

( )

ext :

ˆint : , lim

int : 0
ˆ, lim

ˆ

met

met

met

sys sca

met

mat sca JF sca

met env l met
C rr r L

met

MF sca

env l met
C rr r L

JF sca

env metS

D F

V F G r r e H r dl

V
G r r e E r dl

G n H
+

 →

 →


    =     

    −  

  

+   +




( )

( ) ( )
( ) ( )

ˆ

ˆ ˆ

ˆ ˆ

met
met

met met
met

met met
met

met met

MF sca

env met S S

JF sca MF sca

env met env metS S S

JF sca MF sca

env met env metV V V

JF SL JF SS

env envL S

en

G E n

G n H G E n

G n H G E n

G J G J

G

+
+

− −
−

+ +
+

  
 

 +   +  
 

 +   +  
 

   =  +    

+ ( ) ( )ˆ ˆmet met
met

JF sca MF sca

v met env metV V V
n H G E n

+ +
+

   +  
 

 

  (42.3) 

 

where the second equality is due to that there doesn’t exist 

metal-based scattering magnetic current on metL  and metS ; the 

mathematical formulation of the GHP corresponding to mate-

rial scattering field is as follows: 

 

( ) ( )
( )

( ) ( )
( )

( )

ext : 0

ˆint : 0 , lim

int :
ˆ, lim

ˆ

met

met

met

sys

mat JF sca

env l mat
C rr r L

met sca

mat MF sca

env l mat
C rr r L

JF sca M

env mat envS

D

V G r r e H r dl

V F
G r r e E r dl

G n H G
−

 →

 →


    = −     

    +  

  

+   +




( )

( ) ( )
( ) ( )
( ) ( )

ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

met
met

met met
met

met met
met

met met

F sca

mat S S

JF sca MF sca

env mat env matS S S

JF sca MF sca

env mat env matV V V

JF sca MF sca

env mat env matV V

E n

G n H G E n

G n H G E n

G n H G E n

−
+

+ +
−

− −
−

− −



  
 

 +   +  
 

 +   +  
 

 =   +  
  metV

 

  (42.4) 

 

where the second equality is due to that there doesn’t exist 

material-based scattering current on metL , metS , and metV . 

3) The GHP and GET corresponding to the “Huygens’ 

boundary” which is selected as system boundary: Topo-

logical additivity 

The summation of GHP (41.1) and (41.2) is the following 

incident field GHP (41'): 

 

( ) ( )

( ) ( )
( ) ( )

0

0

0

ext : 0

ˆ ˆint :

int :
ˆ ˆ

ˆ ˆ

mat mat
mat

met met
met

sys sys
m

sys

mat inc JF inc MF inc

env envV V V
met inc

JF inc MF inc

env envV V V

JF inc MF inc

env envD D V

D

V F G n H G E n

V F
G n H G E n

G n H G E n

− −

− −

− −








  =   +    

  +   +  

 

 =   +  
 

0
at metV

 

  (41') 

 

where the first equality is due to (4), (10), and that ˆ ˆmat metV V
n n

− −

= −  

on metV , and that incF  is continuous on metV ; in the 

right-hand side of second equality, integral domain 

0 0

mat metV V   is just the closed surface part of whole system 

boundary sysD , and ˆ sysD
n

−

 is the inward normal vector of sur-

face 0 0

mat metV V  . 

The summation of the material scattering field GHP (42.1)& 

(42.4) and the metallic scattering field GHP (42.2)&(42.3) is 

 

( ) ( )

( ) ( )
0

0

0 0
0 0

ext :

ˆ ˆint : 0

int : 0
ˆ ˆ

mat mat
mat

met met
met

met met

sys sca

mat JF sca MF sca

env envV V V
met

JF sca MF sca

env envV V V

JF SS JF SL

env envS L

JF

env

D F

V G n H G E n

V
G n H G E n

G J G J

G

+ +
−

+ +
+








 =   +    

  +   +  

 

   +  +    

= ( ) ( )
0 0

0 0
0 0

ˆ ˆsys sys
mat met

met met

sca MF sca

envD D V V

JF SS JF SL

env envS L

n H G E n

G J G J

+ +
− + 

   +  
 

   +  +    

 

  (42') 

 

where ˆ sysD
n

+

 is the outward normal vector of 0 0

mat metV V  . 

The above (41') and (42') are just the incident field GHP and 

the total scattering field GHP corresponding to “Huygens’ 

boundary” sysD . Obviously, they satisfy GET and the topo-

logical additivity introduced in paper [6]. 

B. Generalized Franz-Harrington formulation and artificial 

extinction theorem 

The summation of the incident field GHP (41') and scattering 

field GHP (42') gives the following GFHF of internal incident 

field and external scattering field. 

 

 
0

0 0 0

0 0

0 0

ext :

int :

int :

mat

met met met

sys sca

mat inc JF ES MF ES

env env V
met inc

JF SS JF SL

env envS V L

D F

V F G J G M

V F G J G J





− 


 =  +   

    −  −    

. (43) 

 

Following the ideas of paper [6], the following piecewise 

Green’s functions are proposed to derive so-called artificial 

extinction theorem corresponding to internal total field. 

 

 ( )

( ) ( )

( )

( ) ( )

, , cl , cl

, 0 , ext , cl

, , ext

JF mat mat

mat

JF mat mat

sys

JF mat

env

G r r r V r V

G r r r V r V

G r r r V

   



  


 

 (44.1) 

 ( )

( ) ( )

( )

( ) ( )

, , cl , cl

, 0 , ext , cl

, , ext

MF mat mat

mat

MF mat mat

sys

MF mat

env

G r r r V r V

G r r r V r V

G r r r V

   



  


 

(44.2) 

 

where JF

matG  and MF

matG  are the Green’s functions corresponding 

to the material part of EM system. Based on the above (44) and 

the results given in paper [6], the following artificial extinction 

theorem for internal total field exists: 

 

 

0

0 0

ext : 0

int :

int : 0
met met met

mat

sys

mat tot JF EL JF ES

sys sys
L S V

met
JF ES MF ES

sys sys
V

D

V F G J G J

V
G J G M






    =  +     

  +  + 

 

. (45) 

 

In fact, the above (45) can be equivalently rewritten as follows: 

 

 

0

0 0

ext : 0

int :

int :
met met met

mat

sys

mat tot JF SL JF SS

sys sys
L S V

met tot
JF ES MF ES

sys sys
V

D

V F G J G J

V F
G J G M






    =  +     

  +  + 

 

 (45') 
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because of (36.1), (38.1), and that 0totF   on int metV . 

Following the ideas of paper [6], the following piecewise 

delta Green’s functions are proposed: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

, , ,

, , , cl , cl

, , ext , cl

0 , ext

JF JF JF

sys sys env

JF JF mat mat

mat env

JF mat mat

env

mat

G r r G r r G r r

G r r G r r r V r V

G r r r V r V

r V

   −

   −  



 = −  




 (46.1) 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

, , ,

, , , cl , cl

, , ext , cl

0 , ext

MF MF MF

sys sys env

MF MF mat mat

mat env

MF mat mat

env

mat

G r r G r r G r r

G r r G r r r V r V

G r r r V r V

r V

   −

   −  



 = −  




(46.2) 

 

and then the following GFHF (47) of scattering field can be 

obtained: 

 

 

0

0 0

ext :

int :

int :
met met met

mat

sys sca

mat sca JF SL JF SS

sys sys
L S V

met sca

JF ES MF ES

sys sys
V

D F

V F G J G J

V F
G J G M






    =  +     

  +   +  

 

 (47) 

 

based on (43) and (45'). 

C. Summary 

In summary, above GHP, GET, and GFHF of metal-material 

combined system are formally identical to the inhomogeneous 

anisotropic lossy material system given in Part I, and the former 

satisfies the same topological additivity as the latter, i.e., 

 

Scattering field GHP GET of metal- material combined system

Scattering field GHP GET of metallic subsystem

Scattering field GHP GET of material subsystem

Scattering field GHP GET of metallic line

Scattering field GHP GET of

metL

=

+

=

+


metallic surface

Scattering field GHP GET of metallic body

Scattering field GHP GET of material body

met

met

mat

S

V

V







+

+






 

  (48.1) 

 

and 

 

Incident field GHP GET of metal- material combined system

Incident field GHP GET of metallic subsystem

Incident field GHP GET of material subsystem

Incident field GHP GET of metallic line

Incident field GHP GET of metallic su

metL

=

+

=

+


rface

Incident field GHP GET of metallic body

Incident field GHP GET of material body

met

met

mat

S

V

V







+

+






 

  (48.2) 

 

and 

 

 

The GFHF of metal- material combined system

The GFHF of metallic subsystem

The GFHF of material subsystem

The GFHF of metallic line

The GFHF of metallic surface

The GFHF of metallic body

The GFHF of material b

met

met

met

L

S

V







=

+

=

+

+

+






ody matV

. (48.3) 

 

As the typical engineering applications, the above GFHF is 

applied to construct the CM of metal-material combined system 

in the following Secs. VI and VII. In the following Secs. VI and 

VII, the environment is restricted to being VACUUM, and then 

the various environment Green’s functions become free-space 

Green’s functions, and the mathematical formulations of these 

free-space Green’s functions can be found in [8]. 
 
 

VI. APPLICATION OF GFHF: TO CONSTRUCT HARRINGTON’S 

CM OF METAL-MATERIAL COMBINED SYSTEM 

For metallic system, Harrington et al. [11] developed a 

mathematical scheme to construct CM by using SEFIE-MoM 

(surface electric field integral equation based method of mo-

ments). For isotropic material system, Harrington et al. con-

structed some kinds of CM by using VIE-MoM (volume inte-

gral equation based MoM) [12] and SIE-MoM (surface integral 

equation based MoM, also known as PMCHWT-based MoM) 

[5]. The physical essence of Harrington’s CM is to construct a 

series of orthogonal modes which have ability to orthogonalize 

objective EM power, for example: 

• For metallic system, Harrington’s SEFIE-based CM [11] 

orthogonalizes the following objective power: 
 

 ( ) ( )1 2 , 1 2 ,
met met met

SL inc SS inc

L S V
J E J E


+  (49) 

 

where the inner product is defined as ,f g f g d




    . 

• For homogeneous or inhomogeneous isotropic material 

system, Harrington’s VIE-based CM [12] orthogonalizes the 

following objective power: 
 

 ( ) ( )1 2 , 1 2 ,
mat mat

SV inc SV inc

V V
J E M H+ . (50) 

 

• For homogeneous isotropic material system, Harrington’s 

PMCHWT-based CM [5] orthogonalizes the following power: 
 

 ( ) ( )1 2 , 1 2 ,
mat mat

ES inc ES inc

V V
J E M H

 
− −  (51) 

 

where the minus signs originate from that the equivalent sur-

face currents in [5] are  ,ES ESJ M− − . 

Recently, [13] proved that the objective powers orthogo-

nalized by VIE-based CM and PMCHWT-based CM are iden-

tical to each other, i.e., 
 
1 1 1 1

, , , ,
2 2 2 2

mat mat mat mat

SV inc SV inc ES inc ES inc

V V V V
J E M H J E M H

 
+ = − −  

  (52) 
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when material system is homogeneous isotropic. By directly 

combining Harrington’s SEFIE-based and PMCHWT-based 

schemes, [14] constructed the SEFIE-PMCHWT-based CM of 

the metallic body which was completely coated by a homoge-

neous isotropic lossless dielectric medium. 

In this section, Harrington’s CM will be further generalized 

to the metal-material combined system whose metallic part can 

be line or surface or body and material part can be inhomoge-

neous anisotropic lossy material body. The reason to call the 

CM constructed below as “Harrington’s CM” is that the CM 

orthogonalizes the following objective power operator: 

 

1 1 1
, , ,

2 2 2
met met met mat mat

Harrington SL SS inc SV inc SV inc

met mat sys
L S V V V

P J J E J E M H−


=  + +  

  (53) 

 

by following Harrington’s ideas in [11] and [12]. The subscript 

“ met mat sys− ” in Harrington

met mat sysP −
 is to emphasize that the power cor-

responds to metal-material combined system. The symbol “  ” 

in , met met met

SL SS inc

L S V
J J E


    is defined as follows: 

 

, , ,
met met met met met met

SL SS inc SL inc SS inc

L S V L S V
J J E J E J E

 
 +  (54) 

 

and the reason to utilize “  ” instead of “ + ” is that the di-

mensions of line current SLJ  and surface current SSJ  are dif-

ferent from each other. 

A. Power characteristic of operator (53) 

The power operator Harrington

met mat sysP −
 in (53) can be equivalently 

rewritten as follows: 

 

( ) ( )

1 1 1
, , ,

2 2 2

1 2 , 1 2 ,

1 1 1
, , ,

2 2 2

Im ,

met met met mat mat

mat mat

met met met mat mat

Harrington SL SS inc SV inc SV inc

met mat sys
L S V V V

inc SV SV inc

V V

SL SS inc SV inc inc SV

L S V V V

SV

P J J E J E M H

H M M H

J J E J E H M

j M

−






=  + +

+ −

=  + +

+  

( ) ( )

 

1 1 1
, , ,

2 2 2

1 2 , 1 2 ,

Im ,

mat

met met met mat mat

mat mat

mat

inc

V

SL SS sca SV sca sca SV

L S V V V

SV tot tot SV

V V

SV inc

V

H

J J E J E H M

J E H M

j M H


= −  − −

+ +

+

. 

  (53') 

 

In (53'), the first equality is due to that , mat

inc SV

V
H M  =

, mat

SV inc

V
M H   ; the second equality is because of that 

 2ImC C j C− =  for any complex scalar C ; the third equality 

is based on the tangential electric field boundary condition on 

metallic boundary and that inc tot scaF F F= −  on matV . 

Based on complex Poynting’s theorem [4], constitutive re-

lationship, and that   is real symmetrical, the following re-

lations can be derived: 

 

, , ,

1 1 1
, , ,

2 2 2
met met met mat mat

SL SS sca SV sca sca SV

L S V V V

sca rad sca sto field

met mat sys met mat sys

J J E J E H M

P j P



− −

−  − −

= +

 

  (55.1) 

( ) ( ) , , , ,1 2 , 1 2 ,
mat mat

SV tot tot SV tot loss mat tot sto mat

met mat sys met mat sys
V V

J E H M P j P− −+ = +  

  (55.2) 

   Im , , Re ,
mat mat mat

SV inc inc inc sca inc

V V V
M H H H H H   = −   +  

  
 

  (55.3) 

 

where 

 

 ( ) ( ), 1 2sca rad sca sca

met mat sys
S

P E H dS




−
 =  
    (56.1) 

 ( ), , , , , ,

; ;2sca sto field sca sto field sca sto field

met mat sys met mat sys m met mat sys eP W W− − −= −  (56.2) 

 ( ), , 1 2 ,
mat

tot loss mat tot tot

met mat sys
V

P E E− =   (56.3) 

 ( ), , , , , ,

; ;2tot sto mat tot sto mat tot sto mat

met mat sys met mat sys m met mat sys eP W W− − −= −  (56.4) 

 

in which S  is a spherical surface at infinity, and 

 

 ( )
3

, ,

; 01 4 ,sca sto field sca sca

met mat sys mW H H− =  (57.1) 

 ( )
3

, ,

; 01 4 ,sca sto field sca sca

met mat sys eW E E− =  (57.2) 

 ( ), ,

; 1 4 ,
mat

tot sto mat tot tot

met mat sys m
V

W H H− =    (57.3) 

 ( ), ,

; 1 4 ,
mat

tot sto mat tot tot

met mat sys e
V

W E E− =   . (57.4) 

 

In (56.1), the superscript “ ,sca rad ” means that ,sca rad

met mat sysP −
 is the 

radiated power carried by scattering field; in (56.2), the su-

perscript “ , ,sca sto field ” and subscript “ m e ” mean that 
, ,

;

sca sto field

met mat sys m eW −
 is the magnetic/electric energy stored in scattering 

field; in (56.3), the superscript “ , ,tot loss mat ” means that 
, ,tot loss mat

met mat sysP −
 is the lossy power due to the interaction between total 

electric field and material; in (56.4), the superscript “ , ,tot sto mat ” 

and subscript “ m e ” mean that , ,

;

tot sto mat

met mat sys m eW −
 is the magnetiza-

tion/polarization energy due to the interaction between total 

magnetic/electric field and material. In (57.3) and (57.4), 

0I   −  and 
0I   − . 

Inserting (55) into the last equality of (53'), the power char-

acteristic of operator Harrington

met mat sysP −
 is exhibited as below: 

 

 
( )

 

, , , , , , ,

, Re ,
mat mat

Harrington sca rad tot loss mat sca sto field tot sto mat

met mat sys met mat sys met mat sys met mat sys met mat sys

inc inc sca inc

V V

P P P j P P

j H H H H  

− − − − −= + + +

 −   +  
  

. (58) 

 

B. Line-surface formulation of operator (53) 

Based on the same process as deriving (64.1) and (64.2) in 

paper [6], the following relations corresponding to the material 

body shown in Fig. 1 can be derived: 

 

0 0, , , ,
mat mat mat mat

EL ES inc tot inc tot inc SV inc

V V V V
J J E j H H j E E J E   


 = − + −  

  (59.1) 

0 0, , , ,
mat mat mat mat

EL ES inc tot inc tot inc SV inc

V V V V
M M H j H H j E E M H   


 = − − . 

  (59.2) 

 

The summation of (59.1) and (59.2) gives that 
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( )
00

0 0

, ,

, ,

, ,

mat mat

mat mat

matmet met met mat

SV inc SV inc

V V

EL ES inc EL ES inc

V V

SL SS ES inc ES inc

VL S V V

J E M H

J J E M M H

J J J E M H

 

 

+

= −  − 

= −  + −

 (60) 

 

where the second equality is based on (14), (31), (36), and (38). 

Inserting (60) into (53), it is obtained that 

 

( )

( )

( ) ( ) ( )

( )

0 0 0

00

0 0

0 0

0 0

0 0

1 2 ,

1 2 ,

1 2 , 1 2 ,

1 2 ,

met met met

met met met

matmet met met mat

met me

Harrington

met mat sys

SL SS sca

L S V

SL SS inc

L S V

SL SS ES inc ES inc

VL S V V

SL SS sca

L S

P

J J E

J J E

J J J E M H

J J E

−





 

= − 

+ 

−  + −

= − 

( ) ( )

0

0 0
0 01 2 , 1 2 ,

t met

mat mat

V

ES inc ES inc

V V
J E M H



 
− −

 

  (53'') 

 

where the first equality is based on (15)-(16) and electric field 

tangential boundary condition; the second equality is obvious. 

By utilizing the GFHF given in (43), the line-surface formula-

tion of power operator Harrington

met mat sysP −
 can be expressed as follows: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 0 0

0

0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 2 ,

1 2 ,

1 2 ,

met met met

mat

mat

Harrington

met mat sys

SL SS SL SS ES ES

L S V

ES SL SS ES ES

V

ES ES SL SS ES

V

P

J J j J J J M

J j J J J M

M j M J J J







−

−

−







=   − −

−  − −

− − −  −

 

  (53''') 

 

where [5], [8] 

 

 ( ) ( ) ( )0 02

0

1
1 ,X G r r X r d

k


 
  +    

 
  (61.1) 

 ( ) ( ) ( )0 0 ,X G r r X r d


      (61.2) 

 

and ( ) 0

0 , 4
jk r r

G r r e r r
− − = − , and 0 0 0k   = . The sub-

script “ − ” used in integral domain 0

matV −  is to emphasize that 

the integral is done on the internal surface of boundary 0

matV , 

because ( )0 0

ESC  is discontinuous on the two sides of 0

matV . 

The reason to call (53''') as line-surface formulation is that all 

arguments in this formulation are line or surface currents. 

C. Discretization of operator (53''') 

In this subsection, the operator (53''') is transformed from 

current space to expansion vector space at first, and then the 

equivalent electric and magnetic currents are related to each 

other in expansion vector space [13]. 

From current space to expansion vector space 

To discretize the operator (53'''), the currents 0

SLJ , 0

SSJ , 0

ESJ , 

and 0

ESM  are expanded in terms of proper basis functions as 

 

 ( ) ( ) ( )
0

0 0 0 0

0 0

1

,

SLJ

SL SL SL SLJ J J JSL metJ r a b r B a r L 




=

= =    (62.1) 

 ( ) ( ) ( )
0

0 0 0 0

0 0 0

1

,

SSJ

SS SS SS SSJ J J JSS met metJ r a b r B a r S V 




=

= =     (62.2) 

 ( ) ( ) ( )
0

0 0 0 0

0 0

1

,

ESC

ES ES ES ESC C C CES matC r a b r B a r V 




=

= =     (62.3) 

 

where ,C J M= , and 

 

 
1 2, , , X

X X X XB b b b


 =  
 (63.1) 

 1 2, , , X

T
X X X Xa a a a


 =    (63.2) 

 
for any 0 0 0 0, , ,SL SS ES ESX J J J M= . The symbol “  ” represents the 
matrix multiplication, and the superscript “ T ” in (63.2) repre-
sents the transpose of matrix. In addition, it must be 
EMPHASIZED that: ( )0 0

ESMb r =  for any 0

mat metr V S  , be-
cause of the tangential boundary condition of the total electric 
field on metS ; ( ) ( )  ( )0ˆ ˆ 0

ESM

mat ln r e r b r→   =  for any 

0

mat metr V L  , because of the tangential boundary condition 
of the total electric field on metL . 

Inserting (62) into (53'''), the objective power Harrington

met mat sysP −
 is 

discretized to the following matrix form: 

 

 

 ( )
   

0 0 0 0

0 0 0 0 0 0 0 0

, , , , ,

, , , , , , , , , ,

SL SS ES SL SS ES

SL SS ES SL SS ES SL SS ES SL SS ES

H
J J J J J MHarrington

met mat sys met mat sys

J J J J J M J J J J J M

met mat sys met mat sys

P a

P a

− −

− −

=

 

 (64) 

 

where superscript “ H ” represents transpose conjugate, and 

 

 

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0, , , , ,

0 0

0 0

0 0

0 0 0 0 0 0

0 0 0 0 0 0

SL SL SL SS SL ES SL ES

SS SL SS SS SS ES SS ES

ES SL ES SS ES ES ES ES
SL SS ES SL SS ES

J J J J J J J M

J J J J J J J M

J J J J J J J M
J J J J J M

met mat sys

M

P P P P

P P P P

P P P P
P

P

− =

0 0 0 0 0 0 0 00 0
ES SL ES SS ES ES ES ESJ M J M J M M

P P P

 
 
 
 
 
 
 
 
 
  

 (65.1) 

 

0

0

0

0 0 0 0

0

, , , , ,

SL

SS

ES

SL SS ES SL SS ES

SL

SS

ES

J

J

J
J J J J J M

met mat sys
J

J

M

a

a

a
a

a

a

a

−

 
 
 
 
 

=  
 
 
 
 
 

  (65.2) 

 

in which the elements of various submatrices are as follows: 

 

 ( ) ( )0 0 0 0

0 0 0

0 01 2 ,
Y Z Y Z

met met met

J J J J

L S V

p j b b  


=  (66.1) 

 ( ) ( )0 0 0 0

0 0 0

0 01 2 ,
Y ES Y ES

met met met

J J J J

L S V

p j b b  


= −  (66.2) 

 ( ) ( )0 0 0 0

0 0 0

01 2 ,
Y ES Y ES

met met met

J M J M

L S V

p b b  


= −  (66.3) 

 ( ) ( )0 0 0 0

0

0 01 2 ,
ES Z ES Z

mat

J J J J

V

p j b b  


= −  (66.4) 
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 ( ) ( )0 0 0 0

0

0 01 2 ,
ES ES ES ES

mat

J J J J

V

p j b b  


=  (66.5) 

 ( ) ( )0 0 0 0

0

01 2 ,
ES ES ES ES

mat

J M J M

V

p b b  
−

=  (66.6) 

 ( ) ( )0 0 0 0

0

0 01 2 ,
ES ES ES ES

mat

M M M M

V

p j b b  


=  (66.7) 

 ( ) ( )0 0 0 0

0

01 2 ,
ES Z ES Z

mat

M J M J

V

p b b  


=  (66.8) 

 ( ) ( )0 0 0 0

0

01 2 ,
ES ES ES ES

mat

M J M J

V

p b b  
−

= −  (66.9) 

 

for any , ,Y Z SL SS= , where the subscript “ − ” used in integral 

domain 0

matV −  is to emphasize that the integral is done on the 

internal surface of boundary 0

matV . 

To relate equivalent electric and magnetic currents in 

expansion vector space 

It has been pointed out in [13] that: the equivalent electric 

and magnetic currents depend on each other, and it is an in-

dispensable step for CM theory to relate equivalent electric and 

magnetic currents; if the equivalent electric and magnetic cur-

rents are not properly related to each other, some spurious 

modes will be generated. In the following parts of this subsec-

tion, the transformations between equivalent electric and 

magnetic currents are established by employing formulation 

(20) and artificial extinction theorem (45'). 

The equivalent electric current and equivalent magnetic 

current on material boundary satisfy the following relations: 

 

0

tan tan

0 0

tan

0 0

ˆ:
met met met

mat

mat ES JH SL JH SS

mat sys sys
L S V

JH ES MH ES

sys sys
V

V J n G J G J

G J G M

→




     =  +       

 +  +     

 (67.1) 

0

tan tan

0 0

tan

0 0

ˆ:
met met met

mat

mat ES JE SL JE SS

mat sys sys
L S V

JE ES ME ES

sys sys
V

V n M G J G J

G J G M

→




     =  +       

 +  +     

 (67.2) 

 

as illustrated in (20) and (45'). If the (69.2) is tested by using 

basis functions set 0{ }
ESJb , then the expansion vector 0

ESJa  can 

be expressed in terms of other expansion vectors as the fol-

lowing transformation: 

 

 
 0 00

0

, ,

SL

SL SS ES ES SSES

ES

J

J J M J JJ

met mat sys

M

a

a T a

a

→

−

 
 
 = 
 
 
 

 (68) 

 

where 

 

  0 00 00 0 0 0

1
, ,

ES ESES ESSL SS ES ES J JJ JSL SSES ESJ J M J b J b Jb J b M

met mat sysT

−
→

−

  
=           

 (69) 

 

in which the superscript “ 1− ” represents the inverse of matrix, 

and the elements of various submatrices are as follows: 

 

 
0

0 0 0

0
0

,
ESJ ES ES ES

mat
mat

b J J JJE

sys
V

V

b G b  

−




 = 
  

 (70.1) 

 
0

0

0

,
ESJ SL SLES

met
mat

b J JJ JE

sys
L

V

b G b  

−

 = − 
  

 (70.2) 

 
0

0

0

,
ESJ SS SSES

met met
mat

b J JJ JE

sys
S V

V

b G b  

−




 = − 
  

 (70.3) 

 
0

0 0 0 0

0
0

ˆ,
ESJ ES ES ES ES

mat
mat

b M J M MME

mat sys
V

V

b n b G b   

−

→




 =  − 
  

 (70.4) 

 

where the subscript “ − ” used in integral domain 0

matV −  is to 

emphasize that the integral is done on the internal surface of 

boundary 0

matV . 

Inserting (68) into (64), (64) becomes the following form: 

 

 ( )    0 0 0 0 0 0 0 0 0, , , , , , , , , , , ,SL SS SL SS ES SL SS SL SS ES SL SS SL SS ES
H

J J J J M J J J J M J J J J MHarrington

met mat sys met mat sys met mat sys met mat sysP a P a− − − −=    

  (71) 

 

where 

 

 
 

 
 

0 0 0 0 0 0 0

0 0 0 0

, , , , , , , , ,

, , , ,

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

SL SS SL SS ES SL SS ES SL SS ES

SL SS ES ES SL SS ES ES

H

J J J J M J J J J J M

met mat sys met mat sys
J J M J J J M J

met mat sys met mat sys

I I

I I
P P

T T

I I

− −
→ →

− −

  
  
  
 =  
 
 
 
  





 
 
 
 



 

  (72.1) 

 

 

0

0 0 0 0

0

, , , ,

, ,

SL

SL SS SL SS ES SS

SL SS ES

J

J J J J M J

met mat sys

J J M

a

a a

a

−

 
 
 =
 
 
 

.  (72.2) 

 

In (72.2), 

 

 
 0

0

, ,

SL

SL SS ES SS

ES

J

J J M J

M

a

a a

a

 
 
 =
 
 
 

. (72.3) 

 

Similarly to establishing (68) by testing (67.2) with 0{ }
ESJb , 

the following transformation can be easily established: 

 

 
 

0

0 00
, ,

ES

ES SL SS ES SLES

SS

J

J J J M JM

met mat sys

J

a

a T a

a

→

−

 
 
 = 
 
 
 

 (73) 

 

by testing (67.1) with basis functions set 0{ }
ESMb . Inserting (73) 

into (64), (64) becomes the following form: 

 

 ( )    0 0 0 0 0 0 0 0 0, , , , , , , , , , , ,SL SS ES SL SS SL SS ES SL SS SL SS ES SL SS
H

J J J J J J J J J J J J J J JHarrington

met mat sys met mat sys met mat sys met mat sysP a P a− − − −=    

  (74) 

 

where 
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 

 

 

 

0 0 0 0 0 0 0

0 0 0 0

, , , , , , , , ,

, , , ,

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

SL SS ES SL SS SL SS ES SL SS ES

ES SL SS ES ES SL SS ES

H

J J J J J J J J J J M

met mat sys met mat sys

J J J M J J J M

met mat sys met mat sys

I I

I I
P P

I I

T T

− −

→ →

− −

  
  
  
 =  
 
 
   





 
 
 
 

 

  (75.1) 

 

 

0

0 0 0 0

0

, , , ,

, ,

SL

SL SS ES SL SS SS

ES SL SS

J

J J J J J J

met mat sys

J J J

a

a a

a

−

 
 
 =
 
 
 

.  (75.2) 

 

In (75.2), 

 

 
 

0

0 , ,

ES

ES SL SS SL

SS

J

J J J J

J

a

a a

a

 
 
 =
 
 
 

. (75.3) 

 

D. Harrington’s CM orthogonalizing operator (53) 

Taking matrix form (71) as an example, the Harrington’s CM 

of metal-material combined system is constructed as below. 

The power matrix 0 0 0{ , , , , }SL SS SL SS ESJ J J J M

met mat sysP −  can be decomposed as 

 

 
     0 0 0 0 0 0 0 0 0, , , , , , , , , , , ,

; ;

SL SS SL SS ES SL SS SL SS ES SL SS SL SS ESJ J J J M J J J J M J J J J M

met mat sys met mat sys met mat sysP P j P− − + − −= +  (76) 

 

where [13] 

 

     ( )0 0 0 0 0 0 0 0 0, , , , , , , , , , , ,

;

1

2

SL SS SL SS ES SL SS SL SS ES SL SS SL SS ES H
J J J J M J J J J M J J J J M

met mat sys met mat sys met mat sysP P P− + − −

 
= + 

 
 (77.1) 

     ( )0 0 0 0 0 0 0 0 0, , , , , , , , , , , ,

;

1

2

SL SS SL SS ES SL SS SL SS ES SL SS SL SS ES H
J J J J M J J J J M J J J J M

met mat sys met mat sys met mat sysP P P
j

− − − −

 
= − 

 
. (77.2) 

 

Based on Harrington’s classical method [5], [11], [12], the 

CM can be obtained by solving characteristic equation 

 

 

   

   

0 0 0 0 0 0

0 0 0 0 0 0

, , , , , , , ,

; ;

, , , , , , , ,

; ; ;

SL SS SL SS ES SL SS SL SS ES

SL SS SL SS ES SL SS SL SS ES

J J J J M J J J J M

met mat sys met mat sys

J J J J M J J J J M

met mat sys met mat sys met mat sys

P a

P a



 

− − −

− − + −



= 

. (78) 

 

 

VII. APPLICATION OF GFHF: TO CONSTRUCT THE 

ELECTROMAGNETIC-POWER-BASED CM OF METAL-MATERIAL 

COMBINED SYSTEM 

In papers [15]-[17], the electromagnetic-power-based 

(EMP-based) CM of metal-material combined system was 

constructed, and the material sub-system was restricted to being 

homogeneous and isotropic. In this section, some results ob-

tained in [15]-[17] are generalized to the metal-material com-

bined system whose material sub-system is inhomogeneous, 

anisotropic, LOSSLESS, and NON-MAGNETIC. At the same 

time, a new EMP-based CM set, optimally radiative intrinsi-

cally resonant CM (OptRadIntResCM) set, is proposed here. 

A. Various powers 

Based on the conclusions given in [13] and [18] and the 

above Sec. VII, when the permeability of a EM system is 0 , 

the input power inp

met mat sysP −
 (i.e. the power done by incident fields 

on scattering currents) equals to Harrington’s power Harrington

met mat sysP −
. 

Then, taking the matrix form (71) as an example, the matrix 

form of inp

met mat sysP −
 is as follows: 

 

 ( )    0 0 0 0 0 0 0 0 0, , , , , , , , , , , ,SL SS SL SS ES SL SS SL SS ES SL SS SL SS ES
H

J J J J M J J J J M J J J J Minp

met mat sys met mat sys met mat sys met mat sysP a P a− − − −=    

  (79) 

 

and the radiated and reactive powers are as follows: 

 

 

 ( )    0 0 0 0 0 0 0 0 0, , , , , , , , , , , ,

;

Re

SL SS SL SS ES SL SS SL SS ES SL SS SL SS ES

rad inp

met mat sys met mat sys

H
J J J J M J J J J M J J J J M

met mat sys met mat sys met mat sys

P P

a P a

− −

− − + −

=

=  
 

  (80.1) 

 

 ( )    0 0 0 0 0 0 0 0 0, , , , , , , , , , , ,

;

Im

SL SS SL SS ES SL SS SL SS ES SL SS SL SS ES

react inp

met mat sys met mat sys

H
J J J J M J J J J M J J J J M

met mat sys met mat sys met mat sys

P P

a P a

− −

− − − −

=

=  
 

  (80.2) 

 

based on the results given in above Sec. VII. 

B. Optimally radiative intrinsically resonant CM 

In papers [18] and [19], the radiated power CM (RadCM) set 

was introduced, and it has ability to optimize radiated power. 

However, the RadCM set cannot guarantee the orthogonality of 

modal reactive powers. In paper [17], the intrinsically resonant 

CM (IntResCM) set was introduced, and it constitute the basis 

of whole intrinsic resonance space as explained in [20]. How-

ever, the IntResCM set cannot guarantee that the IntResCMs 

can efficiently radiate EM energies as explained in paper [20]. 

Following the ideas of papers [17]-[20], a new EMP-based 

CM set, optimally radiative intrinsically resonant CM (Op-

tRadIntResCM) set, is introduced in this section. The Op-

tRadIntResCMs constitute a basis of whole intrinsic resonance 

space [20], and at the same time [the most efficiently radiative] 

intrinsically resonant modes can be found in the Op-

tRadIntResCM set. 

Intrinsically resonant CMs 

Based on paper [17], the IntResCMs can be obtained by 

solving the following equation: 

 

 
   0 0 0 0 0 0, , , , , , , ,

; ; ; 0
SL SS SL SS ES SL SS SL SS ESJ J J J M J J J J M

met mat sys met mat sys int resP a − − − = . (81) 

 

From whole modal space to intrinsic resonance space 

If we obtain 0 0 0{ , , , , }

;

SL SS SL SS ESJ J J J M

met mat sys int res−  IntResCMs, then any intrinsically 

resonant mode 0 0 0{ , , , , }

;

SL SS SL SS ESJ J J J M

met mat sys int resa −  can be expanded in terms of 

IntResCM set as follows: [20] 

 

     
 , , , ,

0 0 0
;

0 0 0 0 0 0 0 0 0, , , , , , , , , , , ,

; ; ; ; ;

1

SL SS SL SS ESJ J J J M

met mat sys int resSL SS SL SS ES SL SS SL SS ES SL SS SL SS ESJ J J J M J J J J M J J J J M

met mat sys int res met mat sys int res met mat sys int res

m

a a

A

 



−

− − −

=

=

=



   0 0 0 0 0 0, , , , , , , ,

; ;

SL SS SL SS ES SL SS SL SS ESJ J J J M J J J J M

et mat sys int res met mat sys int res− −

 (82) 
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where 

 

 

 

 
 

 

0 0 0

0 0 0 0 0 0

, , , ,
0 0 0

;

, , , ,

;

, , , , , , , ,

; ;1
; ;

SL SS SL SS ES
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−
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

 
−

−

−
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 
=  

 

. (83.2) 

 

Inserting the above (82) into (80.1), we have that 
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A P A
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− − + −=  

. (85) 

 

Normalized radiated powers of intrinsically resonant 

modes 

Following the normalization way proposed in papers [18] 

and [19], the normalized rad

int resP  is as follows: 
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and 
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0
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0
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=  
 
 
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  

. (88) 

 

In (88), the elements of various sub-matrices are as follows: 

 

 0 0

0

0 ;

0

1
,

2

SL SL

met

J JSL

met
L

j b b
L
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 0 0

0 0
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1
,

2

SS SS

met met

J JSS

S V

j b b  


=  (89.2) 

 0 0

0

0; 2

0

1
,

2

ES ES

mat

M MES

V

m b b  
 

=  (89.3) 

 

where the 0

metL  is the length of 
0

metL , and the 0  is wave im-

pedance in vacuum. 

Optimally radiative intrinsically resonant CM 

Following the ideas of papers [18] and [19], the Op-

tRadIntResCMs can be derived from solving the following 

generalized characteristic equation: 

 

 

   
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
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 0, , ,SS SL SS ESJ J M

. (90) 

 

 

VIII. CONCLUSIONS 

In this paper, the formulations and conclusions given in our 

previous works, which focus on the EM system constructed by 

inhomogeneous anisotropic lossy material bodies, are gener-

alized to metal-material combined EM system. The formula-

tions appeared in both this paper and our previous works are 

formally unified, and the conclusions in both this paper and our 

previous works are consistent. 

In previous our works, it is pointed out that the GFHF of 

material system is the mathematical expression of SEP rather 

than the mathematical expression of GHP. In this paper, it is 

found out that the GFHF of metal-material combined system is 

the mathematical expression of line-surface equivalence prin-

ciple. 

The values of GFHF are mainly manifested in that various 

fields are uniformly expressed in terms of an identical set of 

currents, and this feature is very valuable for many engineering 

applications, such as solving EM scattering problem and con-

structing CM set, and some typical applications are exhibited in 

this paper. 
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