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Abstract

In this article we derive a formula for zeta(2) and zeta(2n).

Introduction

In this paper we derive from scratch
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1
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kD1

1

k2p
D .�1/p�1 22p�1

.2pŠ/
B2p�2p (2)

where B2p are the Bernoulli numbers. Both are attributed to Euler [5]. Our

treatment is close to that of Eymard [5] and Knopp [6].

The justification for this article is that these texts seem rather unfocused:

both authors develop other material sporadically as they prove this result.

We wish here to isolate the result and just develop the mathematics necessary

for an understanding of this formula. There are many treatments of these

result [1]. Here we wish to motivate known, easiest proofs.

Taylor series for sin

At some point someone determined that there is a relationship between nth

order derivatives and coefficients of polynomials. This can be anticipated

by the easiest observation; if f .x/ D ax2 C bx C c, the coefficient of x0
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is given by the zero order derivative evaluated at x D 0: f .0/ D c. As

we take ever increasing derivatives the constant of the derivative becomes a

new coefficient. So, f 0.x/ D 2ax C b and f 0.0/ D b. When we repeat

this pattern, we notice that a factorial is building by way of the formula

.cxn/0 D cnxn�1 . Factorials need to be divided out. Here it is for the

quadratic: f 00.x/ D 2a gives

f .2/.0/

2Š
D a:

In general, for a function f .x/ with derivatives

f .x/ D

1
X

kD0

f .n/.0/

nŠ
xn:

This is termed the Taylor (actually Maclaurin) series expansion of f .x/

about the point 0. It is a Maclaurin expansion when the point used, the

center is 0.

The power of these power series (an infinite series with xn) is that they

allow for approximations to an arbitrary precision. The transcendental func-

tions in particular are in need of such. What after all can we say about

sin.1:2387/ and the like? We only have exact evaluations possible for this

trigonometric function when the argument is a fraction with � : �=2, �=3,

etc.. If we have a power series for sin we can evaluate any x value.

We know the derivative of sin is cos and taking nth derivatives is not

difficult; the functions just cycle around:

sin0 D cosI cos0 D � sinI .� sin/0 D � cosI and .� cos/0 D sin :

As ˙ sin.0/ D 0, cos.0/ D 1, and � cos.0/ D �1, we can easily generate a

Maclaurin series for sin:

sin.x/ D

1
X

kD0

.�1/n x2nC1

.2n C 1/Š
: (3)

The odd 2n C 1 follows from the even terms, thanks to ˙ sin.0/ D 0, van-

ishing.

Properties of polynomials

Power series are like an infinite polynomial and polynomials have coeffi-

cients that are related to their roots – what x values make them 0. So, for
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example, expanding .x � a/.x � b/.x � c/ gives

x3 � .a C b C c/x2 C .ab C ac C bc/x � abc: (4)

We can sense that in general the constant will be the sum of the roots taken

all at a time, hence one term, and the coefficient of x will be the sum of

the roots taken (or multiplied) n � 1 at a time. We are obtaining sums that

remind us of the goal of determining the sum in (1). In comparing this sum

with the ones in (4) and the powers of x in (3), we have a puzzle.

Puzzle of (1)

We’d like to get the polynomial of sin x to have a x term and a 1 constant.

If this were true then, using (4) as a model,

x3 � .a C b C c/x2 C .ab C ac C bc/x � abc

abc

gives a coefficient of x equal to 1=c C 1=b C 1=a, a sum of the reciprocals

of the roots. The roots of sin are ˙n� .

First
1
X

kD0

.�1/n x2nC1

.2n C 1/Š
D x

1
X

kD0

.�1/n x2n

.2n C 1/Š

gives

sin x D x.1 � x2=3Š C x4=5Š � : : : /

which gives
sin x

x
D .1 � x2=3Š C x4=5Š � : : : /:

Letting y D x2, we get a infinite polynomial which we set to 0:

0 D 1 � y=3Š C : : : :

This has a constant of 1, so the sum of the roots is 1=3Š D 1=6 and the roots

are given by the squares of sin x’s roots (just using y D x2). Thus

1

6
D

1
X

kD1

1

k2�2

and this implies (1).
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Puzzle of (2)

We start from the observation that there are three ways (at least) to generate a

power series: using a division, like 1=.x�1/; using Taylor series expansions,

as above; and using a Fourier expansion. As (2) involves all

�.2p/ D

1
X

kD1

1

k2p

and as all power series expansions have both a sequence of coefficients and

powers of z,
1
X

kD1

akxk ;

if we can use two different means of obtaining a power series expansion for a

given same function, we can hope to equate the coefficients and arrive at (2).

We would need one set of coefficients to be �.2p/. We can use a division to

generate that situation.

Theorem 1.

1
X

nD1

x2

x2 � n2
D

1
X

nD1

1
X

pD1

x2p

n2p
D

1
X

pD1

�.2p/x2p (5)

Proof. First,

x2

x2 � n2

1=n2

1=n2
D

x2

n2

�

1

x2=n2 � 1

�

:

Letting m D x2=n2, we have

m

m � 1

1=m

1=m
D

1

1 � 1=m
:

This last is the formula for a geometric series:

x2

x2 � n2
D

1
X

kD1

x2k

n2k
:

Substituting,
1
X

nD1

x2

x2 � n2
D

1
X

nD1

1
X

kD1

x2k

n2k

and transposing summation gives (5).
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Next is the puzzle of finding a function that is amenable to two methods

of power series generation one of which gives (5). This is not as far fetched

as it seems. Consider that

x

x C n
C

x

x � n
D

2x2

x2 � n2

and

x

Z

cosŒ.x C n/t � dt D
x

x C n
sinŒ.x C n/t �

x

Z

cosŒ.x � n/t � dt D
x

x � n
sinŒ.x � n/t �:

Using a product to sum trigonometric identity and given that the integration

limits when computing Fourier coefficients have an upper limit of � , there

is some hope that say the cos.nt/ Fourier expansion of cos xt might yield

the desired function with power series (5).

Theorem 2. The cos.nt/ Fourier expansion of cos.xt/ yields

�x cot �x D 1 � 2

1
X

kD1

x2

x2 � n2
:

Proof. By definition of a Fourier series (and half series), the Fourier half

series expansion of cos.xt/ using cos.nt/ is

cos.xt/ D
a0

2
C

1
X

nD1

an cos.nt/;

where

an D
1

�

Z �

��

cos.xt/ cos.nt/ dt: (6)

Using a trigonometric identity (product to sum) and cos is an even function,

this is
2

�

Z �

0

1

2
.cosŒ.x C n/t � C cosŒ.x � n/t �/

D
1

�

�

sinŒ.x C n/��

x C n
C

sinŒ.x � n/��

x � n

�

D
sin.�x/ cos.nx/

�

�

1

x C n
C

1

x � n

�

D .�1/n 2x sin.�x/

�

1

x2 � n2
:
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So we have

cos.xt/ D
sin.�x/

�x
C

2x sin �x

�

1
X

kD1

.�1/n cos.nt/

x2 � n2
(7)

Setting t D � , (7) becomes

�x cot �x D 1 C 2

1
X

nD1

x2

x2 � n2
:

Corollary 1.

�x cot �x D 1 � 2

1
X

kD1

x2

x2 � n2
D 1 � 2

1
X

pD1

�.2p/x2p:

Proof. This follows from Theorem 1.

Now if we just have another way to obtain a power series expansion for

z cot z, we could equate the coefficients for each. Why not use Taylor? We

have already an expansion for sin and the one for cos can be derived easily.

We could divide the two series. This is what Larson in his calculus text

[7] does to arrive at the beginnings of a power series expansion for tan. He

doesn’t follow through and divide 1 by this tan result: 1= tan D cot.

The catch with this approach is that we are not getting a closed form of

the coefficients whereby we could compute them at will. Of course the even

more natural approach is to take derivatives of z cot z, per Taylor’s theorem,

and develop the series this wise. The catch is repeated differentiation of cot

(and tan) is not nearly so neat and nice as taking such for sin and cos. It is

fast a mess.

Can we look it up in a reference book? The following line occurs in

Spiegel [8]:

cot x D
1

x
�

x

3
�

x3

45
�

2x5

945
� � � � �

22nBnx2n�1

.2n/Š
:

Multiplying this by x gives

x cot x D 1 �
x2

3
�

x4

45
�

2x6

945
� � � � �

22nBnx2n

.2n/Š
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and substituting �x for x gives

�x cot �x D 1 �
.�x/2

3
�

.�x/4

45
�

2.�x/6

945
� � � � �

22nBn.�x/2n

.2n/Š
� : : :

Equating

�x cot �x D 1 �

1
X

kD1

22nBn.�x/2n

.2n/Š
D 1 � 2

1
X

pD1

�.2p/x2p

The same reference book gives B1 D 1=6, so what is �.2/? Well

4.1=6/.�/2

2Š
D 2�.2/

implies �.2/ D �2=6.

Bernoulli numbers

Typically calculus textbooks do not include power series expansions for

tan x and cot x. This seems to disallow a tabular and systematic understand-

ing of the subject matter. Instead it favors uninformed understandings of

mathematics that just drops natural questions leaving the student thinking

that mathematics consists of a sequence of problems without any particular

rhyme or reason. Of course the writers of calculus textbooks have a good

reason not to include such series; they are difficult. But why can’t this be

stated? In this section we will derive the series for cot.

1. Let
z

ez � 1
D 1 C B1z C

B2z2

2Š
C

B3z3

3Š
C : : : (8)

(a) Show that the numbers Bn, called the Bernoulli numbers, satisfy

the recursion formula .B C 1/n D Bn where Bk is formally

replaced by Bk after expanding.

(b) Using (a) or otherwise determine B1,: : : ,B6.

Answer: For (a) multiply RHS by 1/LHS of (8) and get 1. We can then infer

coefficient properties. To wit:

ez � 1

z

�

1 C B1z C
B2

2Š
z2 C

B3z3

3Š
C : : :

�

D 1:
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Now

ez � 1 D

�

z0

0Š
C

z1

1Š
C

z3

3Š
C : : :

�

� 1

D z C
z2

2Š
C

z3

3Š
C : : :

and divided by z this is

D 1 C
z

2Š
C

z2

3Š
C : : : :

So

�

1 C
z

2Š
C

z2

3Š
C : : :

��

B0

0Š
C

B1

1Š
z C

B2

2Š
z2 C

B3z3

3Š
C : : :

�

D 1

and this is really .z powers/.z powers/ D 1C 0 times z powers which im-

plies that the coefficients of the z powers on the right hand side are 0, except

for the first one. Speaking of which, equating constants

B0 D 1:

Equating coefficients of z,

1

2Š

B0

0Š
C

1

1Š

B1

1Š
D 0:

Equating coefficients of z2,

1

3Š

B0

0Š
C

1

2Š

B1

1Š
C

1

1Š

B2

2Š
D 0: (9)

We see something close to

 

n

k

!

D
nŠ

.n � k/ŠkŠ

emerging. If we multiply (9) by 3Š, we get

 

3

0

!

B0 C

 

3

1

!

B1 C

 

3

2

!

B2 D 0:

Now this is a row of Pascal’s triangle, absent the last
�

3
3

�

B3. Temporarily

confusing super with subscripts, we have .B C 1/3 is too much by
�

3
3

�

.D

1/B3, so .BC1/3�B3 D 0 and .BC1/3 D B3. In general, .BC1/n D Bn.
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For (b), we solve the recursive equations one after the other starting with

.B C 1/2 D B2: B2 C 2B C 1 D B2 implies 2B C 1 D 0 or B1 D �1=2.

Next, .B C 1/3 D B3 implies 3B2 C 3B C 1 D 0 and substituting B D

�1=2, this gives 3B2 � 3=2 C 1 D 0 and B2 D 1=6. And so on for B3:

.B C1/4 D B4 implies 4B3 C6.1=6/C4.�1=2/C1 D 0 for B3 D 0. And

for B4: .B C 1/5 D B5 implies B4 D �1=30. B5 D 0 and B6 D 1=42.

2. (a) Prove that
z

ez � 1
D

z

2

�

coth
z

2
� 1

�

: (10)

(b) Use problem 163 and part (a) to show that B2kC1 D 0, if k D

1; 2; 3; : : : .

Answer For (a), we use a hyperbolic identity:

RHS D
z

2

 

ez=2 C e�z=2

ez=2 � e�z=2
� 1

!

(11)

D
z

2

 

���ez=2 C e�z=2 ����ez=2 C e�z=2

ez=2 � e�z=2

!

(12)

D
z

�2

 

�2e�z=2

ez=2 � e�z=2

!

ez=2

ez=2
(13)

D
z

ez � 1
D LHS: (14)

For (b), we need to show z=.ez � 1/ C z=2 is an even function using (a).

It is important to note that B1 has an odd subscript with k D 0. We are to

show all other odd subscripts are 0. We have (10) and

z

ez � 1
D

B0

0Š
z0 C

B1

1Š
z1 C

B2

2Š
z2 C

B3

3Š
z3 C : : : :

Using these two and knowing B1 D �1=2,

z

ez � 1
C

1

2
z D

z

2
coth

z

2
D

B0

0Š
z0 C

B2

2Š
z2 C

B3

3Š
z3 C : : : :

Now there is no odd that we know is not zero. Let f .z/ D .z=2/ coth.z=2/,

we will show that f .�z/ D f .z/ using a hyperbolic identity:

f .�z/ D
�

�
z

2

� e�z=2 C ez=2

e�z=2 � ez=2

D
�z

2

� ez=2 C e�z=2

ez=2 � e�z=2
D f .z/:
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So f .z/ is an even function.

For power series such that
P

anzn D
P

an.�z/n, it is clear that anzn D

an.�z/n D 0. This implies that an.�1/n D an, which can only be true if

n is even. This implies that a2nC1 D 0 for power series representations,
P

anzn, of even functions.

3. Derive the series expansions:

(a) coth z D 1
z

C z
3

� z3

45
C � � � C B2n.2z/2n

.2n/Šz
C : : : ; .jzj < �/

(b) cot z D 1
z

� z
3

� z3

45
C : : : .�1/n B2n.2z/2n

.2n/Šz
C : : : ; .jzj < �/

(c) tan z D zCz3

3
C2z5

15
C: : : .�1/n�1 2.22n�1/B2n.2z/2n�1

.2n/Š
C: : : ; .jzj <

�
2

/

(d) csc z D 1
z

C z
6

C 7z3

360
C : : : .�1/n�1 2.22n�1�1/B2n.2z/2n�1

.2n/Š
C

: : : ; .jzj < �/

Answer For (a), we know

z

ez � 1
D

z

2

�

coth
z

2
� 1

�

and this implies
z

ez � 1
C

z

2
D

z

2
coth

z

2
:

The z term cancels, for

1 C���B1z C
B2

2Š
z2 C

B3

3Š
z3 C � � � C

�
��
z

2
D

z

2
coth

z

2
:

Substitute 2z for z:

1 C
B2

2Š
.2z/2 C

B3

3Š
.2z/3 C � � � C

Bn

nŠ
.2z/n C � � � D z coth.z/:

Dividing both by z and knowing B2kC1 D 0, we get

1

z
C

B2

2Š
4z C

B4

4Š
16z3 C � � � C

B2n

.2n/Šz
.2z/2n C � � � D z coth.z/:

As B2 D 1=6 and B4 D �1=30, we get a confirmation of the terms in (a).

For (b), we use the hyperbolic identity coth.zi/ D cot.z/ and just sub-

stitute into the above series for coth:

coth zi D

1
X

nD0

B2n.2iz/n

.2n/Šz
D

1
X

nD0

.�1/n B2n.2z/n

.2n/Šz
D cot.z/:
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We note i0 D 1; i2 D �1 D .�1/1; i4 D 1 D .�1/2; and i6 D �1 D

.�1/3 shows the accuracy of the .�1/n factor in the above.

For (c), we first establish the trigonometric identity tan z D cot z �

2 cot 2z. Here’s the sequence of steps:

tan z=2 � cot z=2 D
sin z=2

cos z=2
�

cos z=2

sin z=2
(15)

D
�.cos2 z=2 � sin2 z=2/

.1=2/.2 sinz=2 cos z=2
(16)

D
� cos 2z

.1=2/ sin2z
D �2 cot z (17)

and substituting 2z for z gives

tan z D cot z � 2 cot 2z:

As we have the series for cot, we can find the series for tan.

Using the general term for cot with cot z �2 cot 2z gives that the general

term for tan

D
.�1/nB2n.2z/2n

.2n/Šz
� 2

.�1/nB2n.2 � 2z/2n

.2n/Š.2z/

D
.�1/nB2n.2z/2n

.2n/Šz
� �2

.�1/nB2n22n.2z/2n

.2n/Š.�2z/

D
.�1/nB2n.2z/2n.1 � 22n/

.2n/Šz

D
.�1/nB2n.2z/2n.�1/.1 � 22n/

.2n/Šz.�1/

D
.�1/n�1B2n.2z/2n.22n � 1/

.2n/Šz

D
.�1/n�1B2n.2z/2n2.22n � 1/

.2n/Š2z

D
.�1/n�12.22n � 1/B2n.2z/2n�1

.2n/Š
:

For (d), we establish the trigonometric identity csc z D cot z C tan z=2.

This follows from a standard trigonometric identity [?]:

1 � cos z

sin z
D tan

z

2

csc z � cot z D tan
z

2
:
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This identity follows, in turn, from half angle identities for sin and cos.

Using the general terms for cot and tan with csc z D cot z C tan z=2, we

can deduce the general term for csc z

D
.�1/nB2n.2z/2n

.2n/Šz
C

.�1/n�12.22n � 1/B2nz2n�1

.2n/Š

D
.�1/nB2n22nz2n�1

.2n/Š
C

.�1/n�12.22n � 1/B2nz2n�1

.2n/Š

D
Œ.�1/n22n C .�1/n�12.22n � 1/�B2nz2n�1

.2n/Š

D
Œ.�1/n�1.�1/22n C .�1/n�12.22n � 1/�B2nz2n�1

.2n/Š

D
.�1/n�1Œ2.22n � 1/ � 22n�B2nz2n�1

.2n/Š

D
.�1/n�1Œ2.22n � 1/ � 2 � 22n�1�B2nz2n�1

.2n/Š

D
.�1/n�12Œ.22n � 1/ � 22n�1�B2nz2n�1

.2n/Š

D
.�1/n�12Œ.2 � 22n�1 � 1/ � 22n�1�B2nz2n�1

.2n/Š

D
.�1/n�12.22n�1 � 1/B2nz2n�1

.2n/Š
:
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