Deriving Euler’s Two Great Gems
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Introduction

In this paper we derive from scratch
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where B, are the Bernoulli numbers. Both are attributed to Euler [3].

Taylor series for sin
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At some point someone determined that there is a relationship between nth order
derivatives and coefficients of polynomials. This can be anticipated by the easiest
observation; if f(x) = ax? + bx + c, the coefficient of x° is given by the zero
order derivative evaluated at x = 0: f(0) = c¢. As we take ever increasing
derivatives the constant of the derivative becomes a new coefficient. So, f/(x) =
2ax + b and f'(0) = b. When we repeat this pattern, we notice that a factorial
is building by way of the formula (¢x")’ = cnx""!. Factorials need to be divided

out. Here it is for the quadratic: f”(x) = 2a gives
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In general, for a function f(x) with derivatives
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This is termed the Taylor (actually Maclaurin) series expansion of f(x) about the
point 0. It is a Maclaurin expansion when the point used, the center is 0.

The power of these power series (an infinite series with x™) is that they al-
low for approximations to an arbitrary precision. The transcendental functions in
particular are in need of such. What after all can we say about sin(1.2387) and
the like? We only have exact evaluations possible for this trigonometric function
when the argument is a fraction with r: /2, /3, etc.. If we have a power series
for sin we can evaluate any x value.

We know the derivative of sin is cos and taking nth derivatives is not difficult;
the functions just cycle around:

sin’ = cos; cos’ = —sin; (—sin)’ = —cos; and (—cos)’ = sin.
As £5sin(0) = 0, cos(0) = 1, and —cos(0) = —1, we can easily generate a
Maclaurin series for sin:
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The odd 2n + 1 follows from the even terms, thanks to % sin(0) = 0, vanishing.

Properties of polynomials

Power series are like an infinite polynomial and polynomials have coefficients that
are related to their roots — what x values make them 0. So, for example, expanding
(x —a)(x —b)(x — c) gives

x> —(a+b+c)x* + (ab + ac + bc)x — abe. 3)

We can sense that in general the constant will be the sum of the roots taken all at
a time, hence one term, and the coefficient of x will be the sum of the roots taken
(or multiplied) n — 1 at a time. We are obtaining sums that remind us of the goal
of determining the sum in (1). In comparing this sum with the ones in (3) and the
powers of x in (2), we have a puzzle.



Puzzle of (1)

We’d like to get the polynomial of sin x to have a x term and a 1 constant. If this
were true then, using (3) as a model,
x3—(a+b+c)x*+ (ab+ ac + bc)x —abc
abc

gives a coefficient of x equal to 1/c¢ + 1/b + 1/a, a sum of the reciprocals of the
roots. The roots of sin are +ns.

First
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gives
sinx = x(1 —x%/31 4+ x*/5!—...)
which gives ‘
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Letting y = x2, we get a infinite polynomial which we set to 0:
0=1—-y/31+....

This has a constant of 1, so the sum of the roots is 1/3! = 1/6 and the roots are
given by the squares of sin x’s roots (just using y = x?2). Thus
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and this implies (1).
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