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Abstract

In this paper, we derive a maximum velocity for anything with rest-mass from Heisenberg’s uncertainty
principle. The maximum velocity formula we get is in line with the maximum velocity formula suggested by
Haug in a series of papers. This supports the assertion that Haug’s maximum velocity formula is useful in
considering the path forward in theoretical physics. In particular, it predicts that the Lorentz symmetry will
break down at the Planck scale, and shows how and why this happens. Further, it shows that the maximum
velocity for a Planck mass particle is zero. At first this may sound illogical, but it is a remarkable result that
gives a new and important insight into this research domain. We also show that the common assumed speed
limit of v < c for anything with rest-mass is likely incompatible with the assumption of a minimum length equal
to the Planck length. So one either has to eliminate the idea of the Planck length as something special, or one
has to modify the speed limit of matter slightly to obtain the formula we get from Heisenberg’s uncertainty
principle.
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1 Introduction

Haug [3–7] has recently suggested a new maximum velocity for subatomic particles (anything with mass) that
is just below the speed of light. The formula is given by

vmax = c

r
1�

l2p
�̄2

(1)

where �̄ is the reduced Compton wavelength of the particle we are trying to accelerate and lp is the Planck
length [8, 9]. This formula can be derived from special relativity by simply assuming that the maximum frequency
one can have is the Planck frequency c

lp
, or that the shortest wavelength possible is the Planck length. We will

also get the same formula if we assume that the ultimate fundamental particle has a spatial dimension equal to
lp and always is traveling at the speed of light; this is a model outlined by [1, 3].

This maximum velocity for anything with rest-mass was first predicted by Haug in 2014 and presented at
the Royal Institution in London in October 2015, see [1, 2]. It was first derived from two postulates in atomism.
The theory leads to the same mathematical end results as special relativity theory, as long as one uses Einstein-
Poincaré synchronized clocks. However, at that time Haug had not yet linked his theory to some of the core
concepts of Max Planck. Here the key understanding given in 2014 will lead to the same formula that is described
above.1

In this paper, we will show that the same formula implicitly agrees with a new result that comes out of
Heisenberg’s uncertainty principle when combined with an essential insight from Max Planck.

2 Heisenberg’s Uncertainty Principle Leads to a Maximum Ve-

locity for Anything with Rest-Mass

The original Heisenberg’s uncertainty principle formulation [11] is given by

⇤e-mail espenhaug@mac.com. Thanks to Victoria Terces for helping me edit this manuscript. And thanks to Pierre Millette for a
useful comment.

1Back then I only derived my maximum velocity formula with a link to one-sided relativistic Doppler shift, based on a slightly
di↵erent clock synchronization procedure and therefore got slightly di↵erent results than those given here.
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�x�p � h̄ (2)

where �x is considered to be the uncertainty in the position, �p is the uncertainty in the momentum, and h̄ is
the reduced Planck constant. Alternatively, one could use the more modern Kennard [24] version of the Heisen-
berg’s uncertainty principle formula as we have done in section 4. The di↵erence is h̄ or h̄

2 in the formulation.
Even if this results in a very small di↵erence in maximum velocity, it still leads to exactly the same important
main conclusions. The rest-mass of an elementary subatomic particle is given by

m =
h̄

�̄

1
c

(3)

For an electron, for example, we have

m =
h̄

�̄e

1
c
⇡ 9.10938⇥ 10�31 kg (4)

This means the mass of an elementary particle can be found by measuring the reduced Compton wavelength
of the particle, as has been done experimentally with electrons, see [? ]. We will assume that the minimum
uncertainty in the position of any elementary particle (or any other object) is the Planck length. Setting �p = lp
and the momentum �p to the relativistic momentum we get

�x�p � h̄

lp�p � h̄

lp
mvq
1� v2

c2

� h̄

lp
h̄
�̄

1
c vq

1� v2

c2

� h̄

1
c vq
1� v2

c2

� �̄
lp

vq
1� v2

c2

� �̄
lp
c (5)

Solved with respect to v this gives

v2

1� v2

c2

� �̄2

l2p
c2

v2  �̄2

l2p
c2

✓
1� v2

c2

◆

v2
✓
1 +

�̄2

l2p

◆
 �̄2

l2p
c2

v2 
�̄2

l2p
c2

⇣
1 + �̄2

l2p

⌘

v  cq
1 +

l2p
�̄2

(6)

We could also have done the derivation below without decomposing the mass in this way; this alternative,
which gives exactly the same result, is shown in the Appendix A.

For example, for an electron we have �̄e ⇡ 3.861593⇥10�13 m and the Planck length lp ⇡ 1.616229⇥10�35 m
(2014 NIST CODATA). We then see that the maximum velocity of an electron must be

v  c
1r

1 +
l2p
�̄2
e

 c⇥ 0.999999999999999999999999999999999999999999999124

This is basically identical to the maximum velocity we get from Haug’s maximum velocity formula (that
corresponds to the one we get from the energy time uncertainty principle)
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vmax = c

s

1�
l2p
�̄2
e

⇡ c⇥ 0.999999999999999999999999999999999999999999999124

This is far above velocities one can achieve in today’s particle accelerators, but still falls inside Einstein’s
assumption of v < c.

For all observed particles we have �̄ >> lp and then we can use the Taylor series expansion

v
c
 1q

1 +
l2p
�̄2

⇡ 1� 1
2

l2p
�̄2

+
3
8

l4p
�̄4

� 5
16

l6p
�̄6

+ · · · (7)

Further, we have the Taylor series expansion for

vmax

c
=

s

1�
l2p
�̄2
e

⇡ 1� 1
2

l2p
�̄2

+
1
8

l4p
�̄4

� 1
16

l6p
�̄6

+ · · · (8)

In most cases, using only the first term of the Taylor series expansion will be more than accurate enough, and
then we see that they are the same, which explains why we obtained the same numerical value for an electron.
Still there is a structural di↵erence between the two formulas that we will discuss more in the next section.

3 Maximum Velocity from the Heisenberg Energy Time Un-

certainty Principle

In 1927, Heisenberg also introduced a corresponding uncertainty principle for energy and time

�E�t � h̄ (9)

The energy time uncertainty has not been considered as profound as the momentum position uncertainty
principle due to the Pauli objection [13]. However, the Pauli’s objection has encountered several counterexamples,
criticisms, and discussions; see, for example [14–23]. Haug has also suggested the maximum velocity formula to
resolve the Pauli objection [10]. Let us assume that the Heisenberg energy time uncertainty principle holds.

If we also assume that the shortest possible time interval is the Planck time, then we can derive the maximum
uncertainty by

�E�t � h̄

�E
lp
c

� h̄

mc2q
1� v2

c2

lp
c

� h̄

h̄
�̄

1
c c

2

q
1� v2

c2

lp
c

� h̄

cq
1� v2

c2

lp
c

� �̄
lp

1q
1� v2

c2

� �̄
lp

lp
�̄

�
r

1� v2

c2

l2p
�̄2

� 1� v2

c2

v  c

r
1�

l2p
�̄2

(10)

This is the same as the maximum velocity formula given by Haug. We can naturally wonder why we get a
structurally di↵erent maximum velocity from the momentum position principle and the energy time uncertainty
principle. Numerically, for any known particle they give the same value to any practical degree of accuracy, but
it is worth evaluating carefully to see if it is fully consistent. In a recent working paper, we have shown how the
(old) momentum used by modern quantum mechanics is non-optimal. It is linked to the de Broglie wavelength
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[25, 26], while a new momentum rooted in the Compton wavelength seems to simplify quantum mechanics and

also resolves this inconsistency. It seems to be v  c
q

1� l2p
�̄2 that is the exact speed limit and not v  cr

1+
l2p
�̄2

,

even though they both give the same numerical answer for any observable particle, because when �̄ << lp the

first term of the Taylor series expansion is the same vmax ⇡ c

✓
1� 1

2

l2p
�̄2

◆
, see [27]. Only for particles with mass

very close to the Planck mass we get significant di↵erences in the numerical output and predictions.

4 The Planck Mass Particle Must Stand Absolutely Still

The rest-mass of the Planck mass particle is given by

mp =
h̄
lp

1
c
⇡ 2.1765⇥ 10�8 kg (11)

That is to say, the reduced Compton wavelength of a Planck mass particle is lp. Further, we know that
the Planck mass particle momentum is mpc. Now let us combine this formula with Heisenberg’s uncertainty
principle, where we will set �x = lp again. In this special case, we think it makes sense to set it only “equal to”
rather than “greater than or equal to,” because, unlike any other particle, we claim that the Planck mass particle
momentum must always be mpc, and then there is no uncertainty per se in the momentum. In other words,
we predict that Heisenberg’s uncertainty principle breaks down at the Planck scale and becomes a certainty
principle. This is not really the topic of this paper and is covered in great detail in a recent Preprint paper [10].
However, the uncertainty principle limit must hold, and this is exactly what we see here

�x�p � h̄

lpmpc = h̄

lp
h̄
lp

1
c
c = h̄

1 = 1 (12)

This can only happen when v = 0. That is to say, only a Planck mass particle must have a velocity of zero.
This is the same result as given by Haug’s maximum velocity formula for anything with rest-mass; in the special
case of a Planck mass particle

vmax = c

s

1�
l2p
l2p

= 0 (13)

A velocity of zero (no matter the reference frame from which it is observed) sounds absurd at first. But
actually this is not so strange at all. The Planck mass particle, according to Haug, can only last for one Planck
second. This is the collision point between two light particles. Recent research has been quite clear on the
concept that in a photon–photon collision we likely can create matter, see [12]. What is the speed of a light
particle at the very turning point of light? It is zero. This means that light has two invariant “velocities”: when
it is energy, it always moves at speed c, as measured with Einstein-Poincaré synchronized clocks, no matter
what the reference frame may be. And the velocity is zero when the particle is colliding and stands still for one
Planck second, also as measured with Einstein-Poincaré synchronized clocks. As we see, at the deepest level the
world is likely binary: we only have the Planck mass particle lasting for one Planck second (colliding indivisible
particles), and energy (non-colliding indivisible particles).

This could best be interpreted to mean that the Planck mass particle can only have what we will call rest-
mass momentum. The rest-mass momentum of the Planck mass particle is zero, as its maximum velocity is zero.
It actually has zero momentum, if we define momentum as the momentum for a particle that moves. That is,
for a Planck mass particle we have

mvmaxq
1� v2

max
c2

= 0 (14)

We predict that the Planck mass particle, the Planck length, and the Planck second are invariant and the
same as observed from any reference frame. This means that Lorentz symmetry is broken at the Planck scale;
this view is consistent with what has been predicted by several scientists in relation to quantum gravity. An
important question is then if new physics at the Planck scale could be weakly detected at lower energies; this
is discussed by [28–30], for example, and there is clearly room for more investigation here before any final
conclusions are made.
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5 h̄ or
h̄
2 ?

Heisenberg himself postulated his uncertainty principle as �x�p � h̄, while Kennard [24] was the first to come
up with and partly prove this version of Heisenberg’s uncertainty principle �x�p � h̄

2 .
We could also have derived the limit on the velocity based on the Kennard version of the Heisenberg principle,

but here we will on purpose use the energy time version (the momentum version is shown in appendix B); when
assuming the minimum uncertainty in the position is the Planck length this gives

�t�E � h̄
2

lp
c
�E � h̄

2
lp
c

mc2q
1� v2

c2

� h̄
2

lp
c

h̄
�̄

1
c c

2

q
1� v2

c2

� h̄
2

lp

�̄
q

1� v2

c2

� 1
2

(15)

Solved with respect to v this gives

v  c

r
1� 4

l2p
�̄2

(16)

For example, for an electron this would mean a speed limit of

v  c

s

1� 4
l2p
�̄2
e

⇡ c⇥ 0.99999999999999999999999999999999999999999999649

Interestingly, when �̄ >> lp, as it is for all observed particles, numerically this is almost identical to the
maximum velocity limit that one would get from the maximum velocity formula given by Haug in 2014. Haug’s
2014 formula shows that when we set the diameter of the indivisible particle to lp we get

vmax = c

✓
�̄2 � l2p
�̄2 + l2p

◆
(17)

For an electron, we have

vmax = c

✓
�̄2
e � l2p

�̄2
e + l2p

◆
⇡ c⇥ 0.99999999999999999999999999999999999999999999649

In addition, if we take a Taylor series expansion of formula 16 we get

v
c


r
1 + 4

l2p
�̄2

⇡ 1� 2
l2p
�̄2

� 2
l4p
�̄4

� 4
l6p
�̄6

· · · (18)

Using only the first term of the series expansion and we have v  c

✓
1� 2

l2p
�̄2

◆
and also a series expansion of

1�x2

1+x2 ⇡ 1� 2x2 + 2x4 � 2x6 · · · . This means when we have �̄ >> lp, we can write Haug’s maximum formula as

vmax = c

✓
�̄2 � l2p
�̄2 + l2p

◆
= c

0

@1� l2p
�̄2

1 +
l2p
�̄2

1

A ⇡ c

✓
1� 2

l2p
�̄2

◆
(19)

Yet an alternative is to indicate that half the Planck length is the minimum possible uncertainty in position,
instead of the full Planck length. This would lead to the same formula for the maximum limit on velocity when
calculated using the Kennard version of the Heisenberg principle formula, just as we calculated using the Planck
length from the original Heisenberg principle formula, that is formula 6.

We could introduce further discussion on the Heisenberg principle, including the linkage to atomism, why
both versions of the Heisenberg principle make sense, and how they are closely related. However, we will leave
the more philosophical discussions for a separate paper.
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The fact that two postulates in atomism lead to all of the known equations in special relativity theory, plus
the result we have derived from combining the theory from Heisenberg and Max Planck indicate that this theory
should be considered as an viable alternative. Atomism is quantized from the very beginning by returning to a
spatial dimension for one unique particle that makes up all other masses and energy.

6 Conclusion

We have shown that Heisenberg’s uncertainty principle can predict an exact maximum velocity that is below the
speed of light for anything with rest-mass. For any practical purpose, this seems to be the same limit as given
by Haug’s earlier suggested maximum velocity formula.

This could have major implications for how we look at light particles at the very collision point with other
light particles. This also indicates that Lorentz symmetry breaks down at the Planck scale. The Planck mass
particle stands absolutely still and is invariant and the same as observed across di↵erent reference frames.

Below we show some possible choices of assumptions, where the theory presented above seems to be compatible
with the Planck length being a minimum length. The idea that the velocity of a mass has to be below c, but
can come as close to c as we want, is actually not compatible with accepting the Planck length as a minimum
length.

1. �x � lp and v  c
q

1� l2p
�̄2 . What we have derived above.

2. �x > 0 and v < c. This is the current theory on velocity, but it is incompatible with idea of Planck length as
a minimum. If modern physicists want to hold on to v < c, then they must reconsider and likely eliminate
the Planck length. This is improbable and probably unwise; instead they should replace v < c with the
formula above.

3. �x � 0 and v  c. Impossible for anything with rest-mass, as the relativistic mass could become infinite,
so this can easily be excluded.

Choice three can be excluded based on Einstein’s analysis that a mass traveling at the speed of light will
attain an infinitely large relativistic mass, so it is impossible to have the limit on v for anything with rest-mass.
Choice two has the drawback that one must claim the Planck length is nothing special. Choice one is, in our
view, an alternative that should be considered seriously by the physics community.
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[11] W. Heisenberg. Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik.
Zeitschrift für Physik, (43):172–198, 1927.



7

[12] O. J. Pike, F. Mackenroth, E. G. Hill, and R. S. J. A photon–photon collider in a vacuum hohlraum. Nature
Photonics, 8, 2014.

[13] W. Pauli. Die allgemeinen prinzipien der wellenmechanik. Springer, Berlin, p.84, 190.

[14] J. Kijowski. On the time operator in quantum mechanics and the Heisenberg uncertainty relation for energy
and time. Reports on Mathematical Physics, 6(3), 1974.

[15] V. S. Olkkovsky, E. Recami, and A. J. Gerasimchuk. Time operator in quantum mechanics. IL Nuovo
Cimento, 22(2), 1974.

[16] P. Busch, M. Grabowski, and P. J. Lahtic. Time observables in quantum theory. Physics Letters A, 191(6),
1994.

[17] J. Kijowski. Comment on the “arrival time” in quantum mechanics. Phys. Rev. A, 59, 1999.

[18] L. Nanni. A new derivation of the time-dependent Schrödinger equation from wave and matrix mechanics.
Advances in Physics Theories and Applications, 43, 2005.

[19] M. Bauer. A dynamical time operator in Dirac’s relativistic quantum mechanics. International Journal of
Modern Physics A, 54(6), 2014.

[20] C. Kinyanjui and D. S. Wamalwa. On the existence of a non-relativistic hermitian time operator. Interna-
tional Journal of Pure and Applied Mathematics, 110(3), 2016.

[21] S. Khorasani. Time operator in relativistic quantum mechanics. Communications in Theoretical Physics,
68(1), 2017.

[22] M. Bauer. On the problem of time in quantum mechanics. European Journal of Physics, 38(3), 2017.

[23] J. Leon and L. Maccone. The Pauli objection. The Foundations of Physics, 47(12), 2017.

[24] E. H. Kennard. Zur quantenmechanik einfacher bewegungstypen”. Zeitschrift für Physik, (44):326–352,
1927.

[25] de. L. Broglie. Waves and quanta. Nature, 112(540), 1923.

[26] de. L. Broglie. Recherches sur la thorie des quanta. PhD Thesis (Paris), 1924.

[27] E. G. Haug. Better quantum mechanics ? thoughts on a new definition of momentum that makes physics
simpler and more consistent. http://vixra.org/pdf/1812.0430 , 2018.

[28] G. Amelino-Cameliaa, B. J. Ellisc, N. Mavromatosa, D. Nanopoulosd, and S. Sarkar. Potential sensitivity
of gamma-ray burster observations to wave dispersion in vacuo. Nature, 393, 1998.

[29] C. M. Reyes, S. Ossandon, and C. Reyes. Higher-order Lorentz-invariance violation, quantum gravity and
fine-tuning. Physics Letters B, 746, 2005.

[30] A. Hees and et al. Tests of Lorentz symmetry in the gravitational sector. Universe, 2(4), 2017.

[31] E. G. Haug. Planck quantization of Newton and Einstein gravitation. International Journal of Astronomy
and Astrophysics, 6(2), 2016.

[32] M. E. McCulloch. Gravity from the uncertainty principle. Astrophysics and Space Science, 349(2), 2014.

[33] M. E. McCulloch. Quantised inertia from relativity and the uncertainty principle. EPL (Europhysics
Letters), 115(6), 2016.



8

Appendix A:

This is almost the same derivation as in section 2. However, here we will complete the derivation without initially
decomposing the mass:

�x�p � h̄

lp�p � h̄

lp
mvq
1� v2

c2

� h̄

vq
1� v2

c2

� h̄
lpm

v2⇣
1� v2

c2

⌘ � h̄2

l2pm2

v2  h̄2

l2pm2

✓
1� v2

c2

◆

v2  h̄2

l2pm2
� h̄2

l2pm2

v2

c2

v2 +
h̄2

l2pm2

v2

c2
 h̄2

l2pm2

v2
✓
1 +

h̄2

l2pm2

1
c2

◆
 h̄2

l2pm2

v2 
h̄2

l2pm
2

⇣
1 + h̄2

l2pm
2

1
c2

⌘

v2  1
l2pm

2

h̄2 + 1
c2

v2  c2

l2pc
2m2

h̄2 + 1

v  cq
l2pc

2m2

h̄2 + 1

v  cr
m2

h̄2

l2pc2

+ 1
(20)

and since h̄
lp

1
c is equal to the Planck mass, mp, we can also write this as

v  cq
1 + m2

m2
p

(21)

Which is naturally the same formula we derived earlier since

m2

m2
p
=

�
h̄
�̄

1
c

�2
⇣

h̄
lp

1
c

⌘2 =
l2p
�̄2

(22)

Similarly, if we had derived it this way from the Kennard version of the Heisenberg uncertainty formula we
would have gotten

v  cq
1 + 4m2

m2
p

(23)

It is also worth pointing out that if we look at Newton’s gravitational constant as a composite constant,

G =
l2pc

3

h̄ , as previously suggested by Haug [5, 7, 31], then we can write the maximum velocity as follows, when
using the original Heisenberg uncertainty formula



9

v  cq
1 +

l2pc
2m2

h̄2

v  cp
1 +Gmm

ch̄

(24)

It is worth mentioning that [32] has derived Newton’s gravitational formula based on Heisenberg’s uncertainty
principle; see also [33]. This illustrates that there could be a connection between Heisenberg’s uncertainty
principle and gravity. One might think that cosmological phenomena have nothing to do with Heisenberg’s
uncertainty principle, which comes out of quantum physics. However, if the Planck length plays an important
role in gravity, then this could actually make sense.

When using the Kennard version of the Heisenberg uncertainty formula we will have

v  cq
1 + 4Gm2

ch̄

(25)

Further, many will recognize Gm2

ch̄ as the small gravitational coupling constant, ↵g. So, we can also write
the maximum limit on velocity simply as

v  cp
1 + ↵g

(26)

These di↵erent ways to write the maximum limit on the velocity are essentially the same, except for a
small di↵erence that will emerge depending on whether we derive it from the original Heisenberg uncertainty
formulation, or from the Kennard formulation.

Solved with respect to big G we get

v  cp
1 +Gmm

ch̄

v

r
1 +G

mm
ch̄

 c

v2
⇣
1 +G

mm
ch̄

⌘
 c2

G
mm
ch̄

 c2

v2
� 1

G  ch̄
mm

✓
c2

v2
� 1

◆
(27)

The above can only be true when v = cr
1+

l2p
�̄2

; this gives

G =
ch̄
mm

0

BB@
c2

c2

1+
l2p
�̄2

� 1

1

CCA

G =
ch̄
mm

0

B@
1
1

1+
l2p
�̄2

� 1

1

CA

G =
ch̄
mm

✓
l2p
�̄2

◆

G =
ch̄

h̄
�̄

1
c
h̄
�̄

1
c

✓
l2p
�̄2

◆

G =
l2pc

3

h̄
⇡ 6.67384⇥ 10�11m3 · kg�1 · s�2 (28)

Naturally, we are simply getting back to what we started with. Still, this mathematical relationship between
the maximum velocity from Heisenberg’s uncertainty principle combined with the composite view of the gravita-
tional constant indicates that gravity might be related to the potential maximum speed of elementary particles.
Alternatively, one might look at this last part, including big G, as merely mathematical “manipulation”.
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7 Appendix B: Maximum velocity from the Kennard version

based on momentum

The Kennard version of the momentum position Heisenberg uncertainty principle; when assuming the minimum
uncertainty in the position is the Planck length this gives

�x�p � h̄
2

lp�p � h̄
2

lp
mvq
1� v2

c2

� h̄
2

lp
h̄
�̄

1
c vq

1� v2

c2

� h̄
2

1
c vq
1� v2

c2

� �̄
2lp

vq
1� v2

c2

� �̄
2lp

c (29)

Solved with respect to v this gives

v2

1� v2

c2

� �̄2

22l2p
c2

v2  �̄2

4l2p
c2

✓
1� v2

c2

◆

v2
✓
1 +

�̄2

4l2p

◆
 �̄2

4l2p
c2

v2 
�̄2

4l2p
c2

⇣
1 + �̄2

4l2p

⌘

v  cq
1 + 4

l2p
�̄2

(30)

For example, for an electron this would mean a speed limit of

v  cr
1 + 4

l2p
�̄2
e

⇡ c⇥ 0.99999999999999999999999999999999999999999999649

Formula 30 is structural di↵erent from the speed we get from the Kennard principle when using energy and
time, see section 3 and 5.


