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Abstract: The general class, A, of Bell hidden variables is composed of two subclasses A, and A
such that A UA=A and A NA,={}. The class A is very large and contains random variables whose

domain is the continuum, the reals. There are an uncountable infinite number of reals. Every instance
of areal random variable is unique. The probability of two instances being equal is zero, exactly zero.
A, induces sample independence. All correlations are context dependent but not in the usual sense.

There is no "spooky action at a distance". Random variables, belonging to A, are independent from
one experiment to the next. The existence of the class A, makes it impossible to derive any of the
standard Bell inequalities used to define quantum entanglement.
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1 Introduction

John S. Bell [1] derived an inequality claiming it holds for all local hidden variable models of
quantum mechanics (of the singlet state). Bell's formulation is incomplete. It does not hold for all
possible hidden variables even though the class, A, of his hidden variables is general. Bell writes

Let this more complete specification be effected by means of parameters A. It is a matter of
indifference in the following whether A denotes a single variable or a set, or even a set of functions,
and whether the variables are discrete or continuous . However, we write as if A were a single
continuous parameter.

Bell does not make use of the properties of continuous hidden variables. Instances of random
variables belonging to the continuum (reals) [2] do not repeat and are members of A . Every instance

of a real random variable is unique. The probability of two instances being equal is zero, exactly zero
[31.

His correlations restrict A to a subset A, consisting of hidden variables that repeat under different
measurement device orientations. That implies Bell's inequality does not govern the behavior of
correlations derived from nonrecurrent hidden variables, A . This suggests Bell's formulation is not

correct for nonrecurrent hidden variables.

Consider experiments. We write the sample average with a bar over variables x (instances of a
random variable X) and note the sample average approaches the theoretical expected value for large
sample size N (law of large numbers')



_ 1 N-1
Xy =— X,

N n=0
lim x, =(X)

When the random variable is a function of nonrecurrent hidden variables the sample average of the k™
experiment is written

- N-1 R
(AB)](,N = EZA(ak’ﬂ'lm )B(bk’ﬂ'kn)
n=0
Due to nonrecurrence each instance has its own unique hidden variable A, specific to the k'
experiment and n' occurrence. An experiment labeled k has measurement device orientations (d, ,l;k)

called the configuration.
In vector notation

(Ak )n = A(dk’ﬂkn )
(B.),= B(b:2,)
The sample average is then the inner product of the two vectors
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AB =—A "B
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The probability density p, (A) specifies hidden variables are nonrecurrent. To take into account
experiment independence write the correlation as

I, = IdﬂpN (/1)141( (51( > /1) B, ([;k s /1)
Each experiment, k, has its own random variables A, and B, satisfying

(44,)=4,
(and similarly for B). The A, are independent of the Aj. Their means are zero and hence their

correlation is zero. This formulation is local. Each function is dependent only on its local orientation
and the hidden variable, A.

1Wikipedia states "A 'law of large numbers' is one of several theorems expressing the idea that as the number of trials of a
random process increases, the percentage difference between the expected and actual values goes to zero."



It appears this formulation is context sensitive, and it is but not in the usually sense. There is no
"spooky action at a distance". Alice's data at the time of recording is not a function of Bob's
orientation and Bob's data at the time of recording is not a function of Alice's orientation. But note,
when the data are correlated they are brought to a common point and the joint orientations are
revealed. An experiment consists of the set of data for which the configuration (joint orientations) is
constant. For example, with the CHSH [4] experiments the configurations consist of

Table 1: CHSH configurations

When Alice collects her data she only knows her own orientations @, a' and similarly for Bob's

orientations b ,b"'. Itis the job of the correlator to segment Alice's and Bob's data into sequences of
constant configuration, K,. That makes the sequences correlation context sensitive, but the data are
unchanged by segmentation only the partitions are created. Hence the label k for the random variables

in this formulation reflects segmentation and not data dependency. The data in each segment are
independent of every other segment when the hidden variables belong to A

2 Inequalities

The existence of the class A, makes it impossible to derive any of the standard inequalities: Bell
[1], CHSH [4], CH [5] or the GHZ [6] constraint, used to define quantum entanglement [7,8]

Quantum entanglement is a physical phenomenon that occurs when pairs or groups of particles

are generated or interact in ways such that the quantum state of each particle cannot be described

independently of the others, even when the particles are separated by a large distance—instead, a

quantum state must be described for the system as a whole.

The class A, generates new predictions as specified in the following table comparing the inequalities

and their equivalent nonrecurrent form. The derivation of each form is presented below.

Table 2: Recurrent vs. nonrecurrent constraints



Recurrent

Bl [i-nlonsI
CHSH | —n,|+|r +r]<2
CH xy-xy+x'y+x'y-x-y<0
GHZ A, (1)=A,(0),A, (7)=-A, (0)
Nonrecurrent
Bell -1+, <1
CHSH |i‘1—r2|+|r3+r4|+r1rz—;3r4 <2
CH XY - XY, + XY+ XY, Xy -y, <1
GHZ A, (z) %A (x)

2.1 Bell's inequality

The Bell inequality is composed of 3 correlations. In Bell's notation the r, correlation is
=P (E ,E) . That correlation never occurs for the class A, because P (1; ,E) is obtained by
assuming the A of A(d,A)B(b,A) is the same as the A for A(d,A")B(¢,A'). That assumption is
false for the class A, since each configuration (a,b) and (a,c) happens at a different time and hence
have different hidden variables. The A's do not multiply to 1 and P ( b,C ) does not occur. The

nonrecurrent inequality holds for all r; and r,. It places no constraint on those correlations.

John S Bell's original inequality [1] is modified for nonrecurrent hidden variables as follows. We
write r, for the correlation of the k™ experiment
1 N-1

rk:N A(a,.4,)B (bk’ﬂ% )
n=0
where each A is unique. Following Bell the difference of two such correlations is written
1 & : -
TN A(d, 4,)B(b, A )__ZA )B(5.4,)
n=0

| S a(a.4)8(5.4,)- (a,,mB(b:,z,.n)}

which in the limit of large N becomes

L= _<Ai(ai)Bi (l;i)_Aj(aj)Bj (51)>
As with Bell factor that expression

i =(4@)8,(5)[1-4(a) B (5)4,(@)8,(5)])
and take the absolute value using

‘Ai (a)B, (Ez)‘ =1
to obtain the inequality

"} _’”j‘ < <‘1_Ai (@)B,(5,)4,(d,)5, (51)




which is
i=nl<1-(4.(a)B.(5)4,(2,)5,(5))).
Now, unlike Bell, the product
Ald,4,)Ald;A4,)
for
a,=d,
is not equal to 1 since, for hidden variables belonging to A,
(i# j) Ay # A4y
That fact is the crucial difference between Bell's A, and A, .  One can say, in general, that Bell's
assumption A(d,4,,) A(ﬁ,/l,-n ) =1 does not hold for hidden variables belonging to A,
For A, different samples are independence and so the expectation of the product equals to the
product of the expectations (a step not true for Bell)
=1 < 1_<1‘¥ (a)B, (l;l)><A; (4,)B, (Bj)>’
or

‘r —rj‘Sl—r.r.,

t tJ
and

i =il <1.

A, leads to an inequality that differs from Bell's. It places no constraints on r, and r. They hold for
all -1 <r,<1land-1< I <1. To show that, define maxij:MAX(ri,rj) and minij:MH\I(ri,rj) and note that
for all r, and I;

0<(1+min,),

0<(1-max,),
and hence

0 < (1+min; ) (1-max,).

Expand that product to give

max,;- ming+ max; * min; <1
which is equivalent to

|y <1
Hence the A, inequality is true for all r; and ;.

Bell's procedure does not bound the correlations formed for nonrecurrent hidden variables.

2.2 CHSH inequality

The CHSH form arises from a double application of the Bell form. It places no constraints on the
correlations r, r,, I3, 1,

The same steps as with Bell can be performed for the derivation of the CHSH [4] inequality which is
written as

|r1 —r2|+|r3 +r4| <2

Start from



| _r2|+|r3+r4|:KAIBI_AZBZ>‘+‘<A3B3+A4B4>‘
AB (1- ABAZB ))+(|4:B, (1+4,B,4,B,)))

<
<(i1-(aB)(4B))+(1+(48,)(A8))
<(1-(AB)(A,B,))+(1+(AB,)(AB,))
<1- < ><AZB )+1+(AB,)(A,B,)
S2-nn 4,
SO
|r1 —r2|+|r3 +r4|+r1r2 -nr, <2
We have already shown that for all r, and r,
|r1 —r2|+r1r2 <1
so correspondingly
"‘3_(_”4)“""3(_"4)31

Hence that inequality holds for all r|, r,, r;, and r,. No constraints are placed on those correlations.

2.3 CH inequality

The CH inequality again assumes the hidden variables recur under different configurations. When
the expressions are written taking into account the independence of each configuration the upper bound
increases to 1. Experiments that violate the upper bound of 0 do not violate the upper bound of 1 and
hence a local model is not ruled out by 0 violation.

Clauser [5] in his "Bells theorem: experimental tests and implications" writes

Following our discussion of §3.3, we assumed that, given A, a and b, the probabilities p (}\a) and

P,(\.b) are independent. Thus we write the probabilities of detecting both components as
pi(A,a,b)=p,(A,a)p,(4.b) (3.15)
The ensemble average probabilities of equations (3.14) are then given by:

p(a)= J- A0 (Aa)dp
()= P, (A.b)dp (3.16)

P, (a,b)= J‘ AP (A.a,b)dp
To proceed, CH introduce the following lemma, the proof of which may be found in their paper
[11]:if x, x', y, v, X, Y are real numbers such that 0<x,x'<X and 0<y,y'<Y, then the inequality
XY <xy-xy+x'y+x'y-Yx-Xy<0 (3.17)
holds. Inequality (3.17) and equation (3.15) yield:
-1< plz(ﬂ"a’b)_plz(l’aab')'F p12(l,a"b)+plz(/laa'ab')_pl(/l’a')_pz(l’b) <0
(3.18)
Integrating inequality (3.18) over A with distribution p, and using equation (3.16), one obtains the
result:
1< p,(a.b) = p,(a.b) + py(a’b)+ py(a’b)—pa) = p,)<O (3
Implicit in the derivation of (3) is the assumption the same A can appear with different
configurations (a,b), (a,b"), (a',b), and (a',b"). That assumption is false for nonrecurrent random
variables. Each configuration has its own unique set of hidden variables. Hence equation (3./8) does



not hold for those hidden variables. That equation lacks generality. If A appears in p ,(,a,b) it does not
appear in any of the other terms. For nonrecurrent hidden variables the context in (3./5) must be
specified. The CH recurrent form (3.77) has 4 variables: x, x', y, y'. The corresponding nonrecurrent
form has 8 variables:

0<x<X,0<y<Y,i=1234

We repeat (3.17) with the recurrent "kernel" specified as

K,=xy-xy'+x'y+x'y-¥Yx- Xy

and then write the corresponding nonrecurrent "kernel"
Ky =xy-%,y, + Xy, +x,y, - Yx; - Xy,
The choice of -Yx,-Xy, is arbitrary. They could just as well have been set to -Yx,-Xy;
in a fifth experiment but we seek the least upper bound and assume the x and y are taken from the
experiments as written. Doing so increases the constraints on the variables. Regroup the nonrecurrent
kernel and write
Ky :(x1 'X)yl "XV, T X (y3 'Y)+x4y4
Each term in that expression is independent of every other term. As such the max of Ky is obtained by
maximizing each term separately.
MAX (K, )=MAX ((x,- X))+ MAX (-x,y,)+ MAX (x,(y,-Y))+ MAX (x,y,)

MAX (K, )=0+0+0+XY = XY

The minimum is likewise determined
MIN (K, )=MIN ((x,-X)y,)+MIN (-x,y,)+ MIN (x,(y,-Y))+ MIN (x,y,)

MIN (K,)=—XY — XY - XY +0=-3XY

Setting XY=1 leads to
-3<K, <1

as compared to
1<K, <0

The upper bound for experimental results is 1 and not 0. Hence any experiment that exceeds 0 does
not imply nonlocality but rather that the hidden variables are nonrecurrent (and local).

A recent paper by Giustina et al. [9] purports to violate the CH-Eberhard upper bound of 0 and
hence simultaneously close several loopholes. The nonrecurrent upper bound is 1 for CH and hence
there is no difficulty explaining those experimental results with a local model. The CH derivation is
invalidated by nonrecurrent hidden variables. In general the CH inequality is false.

2.4 GHZ constraint

The GHZ constraint again assumes the hidden variables recur under different configurations. When
the independence of those configurations is taken into account the GHZ contradiction does not occur
and the EPR [8] program is maintained.

The GHZ [6] paper derives a condition that does not use inequalities. They introduce the
expressions

Ifo+0,—¢,—¢, =0,
then EY (i, i, iy, 1, ) = —1 (10a)
fo+0,-p,—¢,=rx,
then EY (ﬁl,ﬁz,ﬁ3,ﬁ4) =1 (10b)



and then list 4 premises

(i) Perfect correlations: With four Stern-Gerlach analyzers set at angles satisfying the conditions of
either (10a) or (10b), knowledge of the outcomes for any three particles enables a prediction with
certainty of the outcome for the fourth.

(ii) Locality: Since at the time of measurement the four particles are arbitrarily far apart, they
presumably do not interact, and hence no real change can ake place in any one of them in
consequence of what is done to the other three.

(iii) Reality: same as in Sec. II.

(iv) Completeness: Same as in Sec.ll.

We now reproduce their salient arguments with the corresponding nonrecurrent form. Consider the
meaning for A,. Each case is a different configuration. As such each case must be tagged with a

different hidden variable. For notation simplicity we write A, rather than A, ~ We also suppress the
1
arguments of the functions since they are recoverable from the configuration table (see Table 3 below).
They state
fo+¢,-0,-9,=0,

thenAy((p])By(%)Cy(%)Dy(%)=—1 (11a)
fo+0,-¢,—¢,=r,
then A, (¢,) B, (9,)C, (9:) D, (¢,) =1 (11b)

Let us now consider some implications of just one of (11a) and (11b), say, the first. Four
instances of (11a) are

A,(0)B,(0)C,(0)D,(0)=-1 (12a)
AB,C.D, =-1 (N12a)
A,(9)B,(0)C,(4)D,(0)=-1 (12b)
A,B,C,D, =—1 (N12b)
A (#)B,(0)C,(0)D,(g)=—-1 (12¢)
AB,C,D, =1 (N12¢)
A,(2¢)B,(0)C,(¢)D,(9)=-1 (12d)
A,B,C,D, =1 (N12d)

The configurations are specified by the angles used in (12a-d)

Table 3: GHZ Configurations



1

»=(¢.0.9,0)

K, =(0,0,0,0)
K, =(
K, =(¢,0,0,9)
(
(

K, =(24.0.9.9)

4
K, =(0+7,0,0,0) (see below)

From Egs. (12a) and (12b) we obtain
A,(0)C,(00=4,(4)C,(9), (13a)
ABCD, =A,B,C,D, (N13a)
There is no cancellation of factors because the hidden variables are different. The B,(0) and B,(0) do
not cancel nor do the D,(0) and D,(0).
and from Egs. (12a) and (12c) we obtain

A, (¢)D,(#)=A,(0)D,(0). (13b)

ABC,D, =AB,C,D, (N13b)
A consequence of these is

C,(¢)/D,(¢)=C,(0)/D,(0), (14a)

[A,A,B,B,|C,/D,=C,/D, (N14a)
which can be rewritten as

C,(¢)D,(#)=C,(0)D,(0), (14b)

[4,A,B,B,]C,D,=C,D, (N14b)

because Dy( @)==1 and hence equals its inverse, and the same for Dy( 0).
We then obtain from (12d) and (14b)

A, (2¢)B,(0)C,(0)D,(0)=-1 (15)

A,B.C\D, [A2A3BzB4C2C4D3D4] =-1 (N15)

which in combination with Eq. (12a) yields

A, (2¢)=A,(0) = const for all §. (16)
A, (20)=A(0) f (9). (N16)

£(9)=4,(¢) A;(¢)B,(0) B,(0) B, (0) B, (0) €, (0) G, (¢) €5 (0) C, (¢) D, (0) D, (0) D; (¢) D, (¢).-
Equation (16) is a quite surprising preliminary result. By itself, this equation is not mathematically
contradictory, but physically it is very troublesome: For if Ay( @) is intended as EPR's program

suggest, to represent an intrinsic spin quantity, then Ay( 0) and Ay( ) would be expected to have

opposite signs. The trouble becomes manifest, and an actual contradiction emerges, when we use
(11b)--which until now has not been brought into play--to obtain

A,(8+17)B,(0)C,(9) D, (0)=1 (17)

A;(0+7) B (0)Cs(0) Ds (0) =1 (N17)
which in combination with Eq. (12b) yields



A(9+7)=-A(9) (18)
A (0+7)=-A,(8)g(0), (N18)

g(8)=B,(0)B;(0)C,(8)Cs(8) D, (0) D5 (0).

This result confirms the sign change that we anticipated on physical grounds in EPR's program, but
it also contradicts the earlier result of Eq. (16)(let p=n/2,0=0). We have thus brought to the surface
an inconsistency hidden in premises (i)-(iv).

Using the suggested values for ¢ we obtain

A, (7)=A,(0) (16)
A (r)=A(0) f (7) (N16)
A, (7)=-4A,(0) (18)
As(7)=-A,(0)g(0) (N18)

We immediately see that A (m) can not be set equal to A(m). Those functions occur under different

experimental configurations
K,=(7,0,7/2,7/2)
K, =(7,0,0,0)
and hence, for A, they have different hidden values. In general they are not equal. Because they are

not equal there is no contradiction. Because there is no contradiction the premises (i)-(iv) hold.
Because those premises hold the EPR hidden variable program is maintained. Quantum theories based
on hidden variables remain possible.

3 Conclusion

We have presented cases for four inequalities and one condition based on the existence of the
hidden variable class A,, which are capable of violating the inequalities and condition. Experimental

violation does not discriminate between local hidden variable models and standard Hilbert space based
quantum mechanics. The state of the local hidden variable model takes one and only one value at each
point in time. In contrast the state of standard quantum mechanics takes all possible values at each
point in time. Leonard Susskind mentioned in a recent lecture that Richard Feynman said "Hilbert
space is so damn big!". We now see that such excess is unnecessary. Real local single valued hidden
variables can violate Bell's inequalities. Complex nonlocal multivalued quantum mechanics can violate
Bell's inequality. Inequality violation does not determine which model is correct.

The literature is vast on the implications of inequality violation. Much of that literature is made
suspect by the hidden variable class A,

The abstract of the EPR paper [10] says

In a complete theory there is an element corresponding to each element of reality. A suffiient
condition for the reality of a physical quantity is the possibility of predicting it with certainty,
without disturbing the system. In quantum mechanics in the case of two physical quantities described
by non-commuting operators, the kowledge of one precludes the knowledge of the other. Then either
(1) the description of reality given by the wave function in quantum mechanics is not complete or (2)
these quantities can not have simultaneous reality. Consideration of the problem of making
predictions concerning a system on the basis of measurements made on another system that had
previously interacted with it leads to the result that if (1) is false then (2) is also false. One is thus
led to conclude that the description of reality given by a wave function is not complete.

John S Bell states in his paper [1]



THE paradox of Einstein, Podolsky and Rosen [8] was advanced as an argument that quantum
mechanics could not be a complete theory but should be supplemented by additional variables. These
additional variables were to restore the theory causality and locality.

We have presented evidence that Bell's formulation fails for nonrecurrent hidden variables. As such
Einstein's program of completing quantum mechanics with hidden variables remains viable.
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