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Abstract
Using a momentum scale, we construct an n-independent, non-
polynomial, symmetrized finite well, which, with the addition of a delta
potential with n-dependent coupling, becomes quasi-exactly solvable.
Making a polynomial ansatz for the closed-form eigenfunctions, we obtain
a three-term recursion relation, from which the known energies are
derived and the polynomial coefficients are factorized. The coupling is
then written in terms of a continued fraction, which, as n tends to infinity,
reveals a triangular symmetry and converges. Finally, the location of the

closed-form eigenfunctions is determined and the first ones are examined.
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1. Introduction

The search for exact solutions to the Schrédinger equation has resulted in the
discovery of a new class of potentials, for which only a finite part of the energy
spectrum, along with the respective eigenfunctions, can be found in closed-form [1-8].
These potentials are called quasi-exactly solvable and occupy an intermediate place,
between the few which are exactly solvable (such as the harmonic oscillator and the
Coulomb potential), for which the entire energy spectrum and all eigenfunctions are
known, and the many which are non-solvable, for which none eigenvalue and none
eigenfunction can be exactly determined.

Apart from analytic quasi-exactly solvable potentials [1-4], symmetrized (piecewise
analytic) ones have also been proposed and studied [5-8].

In this framework, we introduce the potential

V(x)= —ﬁ—lé’(x),

—+1
%o

where the energy and length scales &, and x, are related to a positive momentum
scale p,, such that

2

&, =P and X, _

m Do

2

For convenience, we write the coupling constant A as , where 4 is now

mx,

dimensionless’, and the potential is then written as

AR*S
v (x)=- |x‘|9° _Ao(x) (1)
M,y mx,
X

* Since j dx&(x) =1, the delta function has dimensions of inverse length, then

the coupling of the delta potential has dimensions of energy times length.

1 }: (PL) _PL

= EL , the new A is dimensionless.
ML

Then, since
mx,



In (1), the first term — % is a symmetric well of finite depth equal to &, and it is

X
u+1
%o
continuous everywhere.
. 5(x) . o .
The delta potential —————= creates, at x =0, a spike of infinite depth, provided
mx,

that 4 >0.

The energy eigenfunctions ,(x) are continuous everywhere [9-12], so that the

v, (x)‘2 is well defined, while the presence of the delta function induces

integral .[ dx

a discontinuity in the first derivatives of y, (x) at zero, equal to —MV/—’“(()) [9, 11],
%o
Le.
. . 22y,(0
! (0)-v (0)=- 220 @
0

Proof of (2)
As an energy eigenfunction of the potential (1), ¥/, (x) satisfies the time-

independent Schrédinger equation
" 2
. ()22, -7 (), (1) =0,

with £, being the energy of the eigenstate described by /, (x) .

If £ >0, then we have

v () 28,7 () (1) =0

T " AR5
= [ x|y, (x)+ 3| E, |§|€0 + mx(’“) v, (x)|=0=
- 7_’_1 0
Xo
t " r 0 21 ¢
:>jdxt//n (x)+ > jd E”+|x| n(x)+x—jdx§(x)l//n(x)—0:>
-& -& 7_{_1 0 -¢




We assume that the eigenfunction ¥/, (x) is also bounded everywhere, so that the

probability density is finite everywhere.

&,
Then the function | E + 0

MH
Xo

v, (x) is continuous and bounded in the

interval [—8, 8] , thus it has 2 maximum and a minimum value in [—8, 8] , which

we denote by a and b, respectively.

Thus

28b<Idx E, +/— |y, (x)<2¢ea

||+1
Xo

Taking the limit & — 07, the previous integral vanishes, and then the last equation

gives
! ! Z«
v, (), (0)+ 22D
X
Thus
o r o 21(//,1 (0)
v, (07)-v, (07)=- .

To find the closed-form eigenfunctions of the potential (1), we use the ansatz"

- Lo 22 o




where a, are dimensionless positive constants, A4 are normalization constants with
. . . ~1/2 . . .
the same dimensions as y, (x), i.e. L, and P,(x) are dimensionless polynomials

of degree n=0,1,...

).

* Since the potential vanishes at infinity, at large distances ¥/, (x) ~ eXp(—k |x

where k depends on the energy and has dimensions of inverse length.

We'll see that the constants @, are energy-dependent.

X
The factor u+l is put in because the potential (1) has a fraction part with the
X

same denominatot.

n

—|j ensures that the eigenfunctions are
Xo

Since a, >0, the exponential term exp[—
square integrable, and thus they describe bound eigenstates.
Since the potential (1) is symmetric, its energy eigenfunctions have definite parity [9,

10], i.e. they are of either even or odd parity.

al’l

: , X
Then, since the functions u+1 and exp| —
Xo Xo

|j are both of even parity, the
polynomials P, (x) have the same parity as the eigenfunctions y, (x).

2. Discontinuity condition

As explained, the eigenfunctions y, (x) must be continuous at zero, while their first

22y, (0) '

Xo

derivatives must have a discontinuity, at zero, equal to —

n

—|j are continuous at zero, from (3) we see

: , X
Since the functions u+1 and exp| —
Xo Xo

that the polynomials P, (x) must be continuous at zero, i.e.

P, (07)=£,(0)

F,(0) (4)

For x <0, from (3) we obtain



v, (x)= AP (x){_iﬂjexp(anxj

Xo Xo

Then, the first derivative in the negative region is

v, (x)=4, (e’(x)[—iﬂj—ie(x)”—"e(x)[—iﬂjjexp[“"x}

X, X, X, X, X,

e[l 2

That is

and

0! (0)- [ S0 (0) ®)

where we also used (4).

For x>0, from (3) we obtain

v,(x)=A4,P, (x)[iﬂj oxp [_ anxj

Xo Xo

Then, the first derivative in the positive region is
' ' x 1 a X ax
x)=A|P (x)| —+1|[+—P (x)——=P (x)]| —+1||exp| ——— |=

/()= 0 2ot oL o) 0 1 o -]

o e

That is

p, (x)=4, H— fc’;f + 1;0“" jf; (x){xioﬂja' (x)jeXp[— ‘;’Cj 6)

! (0) =4[ 2 p 0)er o) o



where we also used (4).

Also, from (3), we obtain
v, (0)=4,F,(0) 8)

By means of (5), (7), and (8), the discontinuity condition (2) is written as

A,{l_a" Pn(0)+Pn'(0+)j—An[a” _1131(0)+131’(o)j:_2’“n—’31(0)

Xo Xo Xo

The normalization constant A4, cannot be zero, because then the eigenfunction is

identically zero, and thus it is linearly dependent, and then it cannot be eigenfunction.

Since A4, # 0, dividing both members of the last equation by 4, , we obtain

l-a

cy a1 s 22P(0

(o) (07)- 2 o) (o) - 220

oy (o 2(1-a,) _ 24R,(0)
:>Pn(0)Pn(0)+—x0 P,(0)= P

’ + r e A l—an
P (0)-2(0 )=_z[x_+ - jpn(o)
Thus
%’(W)—%’(O%—MW@ ©)

The equation (9) is the discontinuity condition of the derivative of P, (x) .

3. The differential equation for the polynomials P, in the region x>0

Using (6), the second derivative of y, (x) in the region x>0 is

v, (x)=4, (— % p (x){_ A +linjf;' (x)+—P' (x)+[i+len" (x)jexp[_ “nxj+

Xo Xo Xo Xo Xo Xo

a ax l-a X ' a,x

Al —— || -2 L P —+1|P —— =
a ax 2-a | X " a,x

=4, (—x”z Pn(x)j{— 2 +x—0an (x)j{ZHJPH (x)jexp[— . j+

0

a’x a’-a ax a ) ax

n Zn Tnip S _Ta | p i
[%3 i Xy’ j n(X)+{ Xy’ xoj ' (X)jexp[ xoj

+




As an energy eigenfunction, y, (x) satisfies the time-independent Schrdédinger

equation

! (x)+ 2 (E (1)), ()0,

with E, being the energy of the eigenstate described by v, (x).
Plugging into the previous equation, the expression of (x) along with the
expressions of y, (x) — from (3) — and the potential — from (1) — and dividing by

a x

n

. . . *
j, we obtain, in the region x>0 ,
%o

A, exp{

* The delta function vanishes in the region x > 0 (and in the region x <0 too).

The last equation is written as

14 ’ 2 E 2
R P (x)+£ —a”x+1—an P’ (x)+ a”2 a”x+an—2 + mz” EA Y . mf‘)
X, X\ X, X, L x, h X, h




To make things easier, we introduce the dimensionless variable

=X (10)
Xo
and we set

k, = ‘/—2’:5” and k, = ‘/—2’;:280

* 1. Since x, >0, Xand x have the same sign, thus X > 0 in the region x> 0.

2. Since V(x) <0, the bound energies are negative, i.e. £, <0.

3. Obsetve that [kn] = [IEOJ =L".

From (10), we obtain

d_ddi_1d

dx didx x, di
and thus

d_dd_1d
dx*  dedx  x, dx

Then, the last differential equation becomes

(F+1) L P’ (§)+ 2 (<a,i+1-a,) P’ (i)+(a—”2(ani+an )k (;c+1)+1€02jp (F)=0

Xo Xo Xo

where now the prime denotes differentiation with respect to x .

The last equation is written as

(F+1) B (5)+2(-a,5+1-a,) B (2)+(a, (4,74, ~2)~ (k) (F+1)+ (R ) | 2 (7) =0

But



Then, we have

a,(a,x+a,—2)—(k,x, )2 (x+1)+ (lgoxo )2 =a,’%+a,(a,-2)—(k,x, )2 x—(k,x, )2 +2=

- (anz —(knxo )2)55+ a, (an —2)+ 2—(knx0 )2

and the last differential equation is written as

(F+1) P (F)+2(-a,+1-a,) B (F)+((a, ~(k,x.) ) +a, (4, =2) + 2= (k3 )" ) B, (F) =0 (1)

The polynomials P, (fc) are dimensionless and the variable X is also dimensionless.

The differential equation (11) is linear and homogeneous, and thus each of the

polynomials P, (fc) is calculated up to a multiplicative constant.

Then, without loss of generality, we can assume that the polynomials Pn(fc) are

monic in the region x >0, i.e.
Pn(i)=2pkik ,with p =1.
k=0

Then, in the left-hand side of (11), we have a polynomial of degree n+1, with the

~n+l

coefficient of its highest term "' being a,” —(k,x, )’

Since the left-hand-side polynomial in (11) equals zero for every x>0, all its

coefficients must be zero, and thus
2 2
a, — (knx0 ) =0
Since a,,k,,x, are positive, we obtain
a, =k x, (12)
By means of (12), (11) becomes

(F+1) B (%) +2(—k, % F+ 1=k, %) B () + (I, % (k,% =2) +2= (k%)) B, () = 0



and thus

(+1)P" (X)+2(~k,x, 5 +1-k,x,) P (X)+2(1-k,x,) P, (X)=0 (13)

Now, the left-hand side of (13) is a polynomial of degree n, with the coefficients of
its highest term X" being

2(~k,x,)n+2(1-k,x,)=2(1-(n+1)k,x, ),

since the coefficient of the highest term "' of P (%) is n, because P. (%) is monic
g n n

in the region x> 0.
The left-hand-side polynomial in (13) equals zero for every x>0, and thus all its

coefficients must also be zero, and then

1-(n+1)k,x, =0

and thus
—— (14)

(n+1)x,
for n=0,1,...

_r . 2mE ) .
Substituting (14) into k, =,/——— and solving for E,, we obtain

h
2

o — (15)

2(n +1)2 mx,’

for n=0,1,...
These are the energies of those eigenstates of the potential (1) which are described by
the closed-form eigenfunctions (3).

Besides, substituting (14) into (12) yields
a =—— (16)

Using (16), the closed-form eigenfunctions (3) and the discontinuity condition (9) are

respectively written as



w,(x)=A4,P, (x)[%ﬂj exp (—(&j (17)

n+l)x0

g’(o*)-g’(o):--(mijg(o) (18)

n+l

for n=0,1,...

Finally, by means of (14), the differential equation (13) becomes, after a little algebra,
(n+1)(x+1)P" (%)-2(5-n) P, (X)+2nP,(%)=0 (19)
for n=0,1,...,and x>0.

4. The recursion relation and the polynomial coefficients

As P (fc) is monic, the coefficients of the terms ¥, with k=0,1,...,n, in the left-

hand side of (19) are, respectively,

2nP, (%) —> 2np,
—2(%-n) P/ (%) > -2(kp, —n(k+1) p,.,)

(4 D)(E+D) B (%) > (4 D) ((k+ D)y +(k+2)(k+1) Py )

Since the polynomial in the left-hand side of (19) equals zero for every x>0, all its

coefficients must be zero, and thus

(n+1)(k(k+1)p,., +(k+l)(k+2)pk+2)—2(kpk —n(k+l)pk+l)+2npk =0=
:>(n+l)k(k+l)pk+]+(n+l)(k+l)(k+2)pk+2—kak+2n(k+l)pk+l+2npk =0=
:>(n+l)(k+l)(k+2)pk+2+(k+l)(k(n+l)+2n)pk+l—Z(k—n)pk =0

Therefore, we end up to the recursion relation
(n+1)(k+1)(k+2) p,., ==(k+1)(k(n+1)+2n) p,,, +2(k—n) p, (20)

which holds in the region x>0, for k=0,1,...,n.
The recursion relation (20) is a three-term recursion relation, which is indicative of a

quasi-exactly solvable potential [4].



For k =n, dropping the coefficients p, ., and p, .,, as their indices exceed the degree
of P,(X), and using that p, =1, we see that (20) holds identically, as expected, since

we used this equation, in the previous section, to fix the constants a, .

Thus, the recursion relation (20) gives » non-trivial — i.e. linearly independent —

equations, for k=0,l,..n—1, which are as many as the unknown coefficients
Pos Dy»--es D,y Of the monic polynomial P, ().

For k=n-1, (20) gives
O:—n((n—l)(n+l)+2n)+2(n—l—n)pn71,
since p, =1 and p,,, =0.

Solving the last equation for p, ,, we obtain

—n(n*+2n-1
=L ; »1) 1)

For n=0, p, , vanishes, as it should, since then the index »n—1 is negative.
For n>1, the index n—1 is non-negative and then the coefficient p, , appears in the
polynomial P, (%), and then, as we see from (21), p,_, is negative, i.e. it has opposite

sign from that of p, .
For k=n-2, (20) gives, by means of (21),

(nJrl)(nl)n—(n1)((112)(11+1)+211)[M}4pn2

Solving for p, , we obtain, after some algebra,

(n=1)n((n* +2n=1)((n=2)(n+1)+2n)=2(n+1))
8

Puz= (22)

For n=0,1, p, , vanishes, as it should, since then the index »n—2 is negative.
For n>2, the index n—2 is non-negative and then p,_, appears in P,(X), and then,
as we can easily derive from (22), p, , is positive, i.e. it has opposite sign from that

of p ..



We observe that (21) and (22) are respectively written as

I 1
_ — |
pn—IZ( 1) n(n2+2n—l) & (lizn,——_l

*| Monic polynomial
of degree 2*1

Dus :%((# +2n—1)((n—2)(n+1)+2n)—2(n+1))=

=% (7 +2n-1)((n=2)(n+1)+2n)-2(n+1)

Monic polynomial of degree 2*2

We’ll show, by induction, that the coefficient p, ,, where k=1,2,...,n, is written as

__()'m
pnk_zkk!(n_k)!f;k(n) (23)

where f,, (7) monic polynomial of degree 2k in n.

For £=1,2, (23) holds, as shown, for
fo(n)=n*+2n—1and f,(n) :(n2 +2n—1)((n—2)(n+1)+2n)—2(n+1)

Assuming that (23) holds for £ and k+1, we have

s i’“)!fm

“ 2k (n—k

)
Po(ksr) = kil (k+1)!(n—(k+l))!fz(k+l) (n) ’

where f,, (n), Sy (n) monic polynomials of degrees 2k and 2(k +1), respectively.

We’ll show that (23) holds for k+2.

For k > n— (k + 2) , the recursion relation (20) is written as

(n+l)(n—(k+2)+l)(n—(k+2)+2)pn7(k+2)+2 =—(n—(k+2)+1)((n—(k+2))(n+1)+2n)pn7(k+2)+1 +
+2(n_(k+2)_n)pn7(k+2)
= (n+1)(n—(k+1))(n—k) p,, =—(n—(k+l))((n—(k+2))(n+l)+2n)pn7(k+l) —2(k+2)P, 1)

=



Substituting p, , and P i) the last recursion relation becomes

(n+1)(n—(k+1))(n- k)zk(kvz%fzk( )=
:_(”_(k+1))((n—(k+2))(n+1)+2n) (=) !

2k+1(k+1)!(n—(k+l))!f2(k+l)(n)_z(k+2) —(k+2)

But
(n—(k+l))(n—k)= 1 (n—(k+1)) _ 1

(n—k)! (n=(k+2))1" (n—=(k+1))! (n—(k+2))1"
and then

(=)' n
(n+1)2kk'(n (k+2)) o (1) =
=—((n—(k+2))(n+1) +2n)2k 1(k+(1_)1v)( n(!k+2))!fz(k+l)(n)_z(k+2)pn(,Hz) =
= 2(k+2)p, 4 =~ kfll')(n ”'k+2)) ((n=(k+2))(n+1)+20) fye.y () -
<(1>1)< (>) )

(1) n!

2k (n—(k+2))! ) uln) =
2“ kil ')(n n'k+2 ) (( —(k+2))(n+1)+2n)f2(k+l)(n)_2kk!((_nlz(kii!2))!(n+1)f2k(n):
( )k 2}’1'

= T k+2)((( n=(k+2))(n+1)+2n) fyy (1) =2(k+1)(n+1) £, (n))

Thus

Pyowea) = 2 K f;;?(n jl(!k+2))!(((n —(k+2))(n+1)+2n) fy) (1) =2(k+1)(n+1) £y (n))

Since  f,, (1), fy4.y(n) are monic polynomials of degrees 2k and 2(k+1),

respectively, the expression



((n—(k+2))(n+1)+2n)f2(k+1) (n)—2(k+l)(n+l)f2k (n)

is a monic polynomial of degree 2(k+1)+2=2(k+2).

Thus, the coefficient Py is written as

k+2)

(_1)k+2 n! f ( )
= n),
pn—(k+2) 2k+2(k+2)'(n_(k+2))' 2(k+2)

where
Sy ()= ((n=(k+2))(n+1)+2n) fyp 0 ()= 2(k+1)(n+1) fir (n)  (24)

a monic polynomial of degree Z(k + 2).

Therefore, (23) holds for k=1,2,...,n.
For k=0, (23) gives

if f,(n) is a monic polynomial of zero degree.

Thus, for f,(n)=1, (23) holds for k=0 too.

The polynomials f,, (n) satisfy the recursion relation (24), with

fo(n)=1and f,(n)=n*+2n-1

Next, we’ll show, also by induction, that

fz(kﬂ)(n)>(n+l)f2k (n)>0 (25)

for n>k+2.

For k=0 and n>2, we have

fi(n)>(n+1) fy(n) & n* +2n-1>n+1<n’ +n-2>0

The last inequality holds for n > 2, since the sequence n° +n—2 is strictly increasing,

and thus, for n>2,

W An-2>4+2-2=4>0



Thus f,(n)>(n+1) f,(n).
Also, (n+1) fy(n)=n+1>0.

Thus, for k=0 and n>2, (25) holds.
Assuming that

fz(;m)(”) >(n+1)ka (i’l) >0,forn>k+2,
we’ll show that

fz(hz) (i’l) > (n +1)fz(k+1) (n) >0, for n>k+3.

Using the recursion relation (24), the inequality fz(hz)(n)>(n+l) fz(kﬂ)(n) is

equivalently written as

((n—(k+2))(n+l)+2n)f2(k+l)(n)—2(k+1)(n+l)f2k (n)>(n+1)f2(k+l)(n)c>
& ((n=(k+2))(n+1)+2n—(n+1)) fyuy (1) =2(k+1) (n+1) £y (n) > 0
& ((n=(k+2))(n+1)+n=1) fypy (n) > 2(k+1)(n+1) £3, (n) (26)

Besides, for n>k+3=n—(k+2)21, and thus, since n+1>0,

(n=(k+2))(n+1)zn+l (n—(k+2))(n+1)+n-12n+1+n—-1=2n22(k+3)>2(k+1)

Thus

(n=(k+2))(n+1)+n-1>2(k+1)>0

Then, since f,., (n)>0 (by assumption),

((n=(k+2))(n 1) +0=1) fy) (2) > 2(k +1) Sy () > 2(k +1) (1) £ ()
Thus

(n=(k+2))(n+1)+n=1) £y () > 2(k+1)(n+1) £ ()

Then (26) holds, and thus fz(,ﬁz) (n) > (n + l)fz(kﬂ) (n) .

Also, since fy ., (n) >0 (by assumption), we have (n+1) Sy (n) >0, and thus



fz(hz) (i’l) > (n +1)fz(k+1) (n) >0, for n>k+3.

Therefore, (25) holds for n>k+2.
Besides, from (23), we have

)
Po(ksr) = kil (k+1)!(n—(k+l))!fz(k+l) (n) ’

and, from (25), fz(k+1) (n) >0,forn>k+2.

k+1

Thus, for £ +1<n-1, the coefficient p, ., is non-zero and it has sign (-1)

k+1
Then, we obtain that p , is negative (k+1=1), p,  , is positive (k+1=2), and so
on, until we reach p, (k+1=n-1).

Including the coefficient p, , which is positive, we see that the coefficients from p,
up to p, are all non-zero and any two successive coefficients have opposite signs,
starting from p, which is positive.

Next, we’ll show that p, is also included in the previous sequence.

For k =0, the recursion relation (20) is written as
2(n+1) p, =—2np, —2np,

Solving the last equation for p,, we obtain
n+l
Po =_(p1 +7p2j (27)

Besides, for k=n—-1 and k=n-2, (23) is respectively written as

P = -l (I’IEI)I')(I’Z i/l('n _1))!](2(;11) (I’l) :(_21—1’1](2(:11) (I’l)

Py = 7n-2 (n _(;;')(n jl('n _2))!f2(nz) (n) = (_1) 2n(’;l _l)n f‘2(n—2) (I’l)

Dividing the second equation by the first, we obtain

Py ()7 (n=1) fyuny (7) oz ()

Py ) (-1 Sy (n) =) Funy ()




Thus

Srn2) (n)

pr==(n1) Srnn (n)

D

Substituting into (27) yields

(n=1)(n+1) Sz (7)
n Srnn (n)

po=—|1- )2 (28)

For n=0, the polynomial P, ()E) is of zero degree and monic, and thus it has only a
constant term, which is 1, i.e. p, =1.

For n=1, the polynomial B (%) is of first degree and monic, and thus p, =1.

Also, for n=1, (28) gives p, =—p,, and thus p, =—-1.

We see that p, and p, have opposite signs.

For n>2, from (25) we obtain, for k =n-2,

ﬂ(n—Z) (n) < 1

0<
f;(r:—l) (n) n+1

(n=1)(n+1)

n

Then, multiplying the previous inequalities by , which is positive for

n>2, we obtain

(n=1)(n+1) Loy (1) -1 1

0<
n f;(r:—l) (n) n n

and thus

(n=1)(n+1) fyzy () 1

>—>0
n f;(r:—l) (n) n

1—

Then, from (28), we see that p, is non-zero, as p, is non-zero, and it has opposite
sign from that of p,.

Therefore, for every n € N, all coefficients of the polynomial P, (fc) are non-zero and
any two successive coefficients have opposite signs, starting from p, , which is

positive.



Also, since the constant term p, of P, (%) is non-zero, P, (%) cannot be of odd parity,

and thus, since it has definite parity, it is of even parity, for every neN.



5. Calculation of the delta potential coupling A

As explained, the polynomials P, (fc) are of even parity, and thus they are written as

P,(2)=py+ |3 +2Pk |’E|k
k=2

with p =1.

Then

f;(x)=po+plm+ipk[|xj (29)

Xo x_o
with p =1.
For n=0, both the series and p, vanish, while for n =1, only the series vanishes.

Since the polynomials P, (x) must be continuous at x =0, (29) holds at x =0 too, and thus it holds for every x e R.

In the region x >0, the constant term of P, (x) (the prime now denotes differentiation with respect to x) is &, while in the region x <0, its

Xo

constant term is —2L , and then Pn' (0*) P and Pn' (0’) __P
%o X0 X

Also, P,(0)= p,, and then the discontinuity condition (18) is written as



ﬂ:_l(,HLjpo,

Xo Xo

where p, —and p, —is non-zero.

Solving the previous equation for 4 yields

,1:_&_L (30)
p, n+l1

By means of (28), (30) is written as

1 n
' - 31
_(n=1)(n+1) Sonay (1) n+1 31)

h A(n—l) (n)

(n=1)(n+1) s (1)
n Srnmry (n)

Using the recursion relation (24), which holds for k+2<n=k<n-2, we can write the expression as a continued

fraction.

For k=n-3, n>3, (24) gives

Frgpoy (1) =((n=(2=3+2))(n+1)+20) £y, ) () =2(n=3+1)(n+1) £,y () = (3n+1) £,y (n) =2(n=2) (n41) £, ()

Thus



(n=1)(n+1) e (1) _ (n=1)(n+1) Saprny (7) _(n=1)(n+1) !
no () o (Bnt1) f () =2(n=2)(n+1) Ly (n)  n(Bntl)  2(n=2)(n+1) Sy (1)
3n+1 fz(H)(

S
~

That is

(n=1)(n+1) Sy (n) _(n=1)(n+1) 1
n ](2(”,1)(”) B n(3n+1) . 2(n_2)(n+1) ](2(,173)(”) (32)

- 3n+1 fz(H) (n)

For k=n-4, n>4, (24) gives

Srnz) (n)= ((” _(”_4+2))(” +1)+2n)ﬂ(n—3) (n)=2(n _4”)(”“)]{2(”74) (n)=(4n +2)ﬂ(n73) (n)=2(n=3)(n +1)ﬂ(n—4) (n)=
= 3((2n41) oy (m)~(n=3)(r+1) £y, ()

Thus

2(n=2)(n+1) fyuz(n) 2(n-2)(n+1) Sonsy (1) _ (n=2)(n+1) ]

3+l fy, (1) 3n+1 2((2n+1)f2(n73)(n)—(n—3)(n+l)f2(n74)(n)) (3n+1)(2n+1)1_(n—3)(n+1)jg(n,4)(n)

20+l fy, (n)

Substituting into (32), we obtain



(n—l)(n+l) fz(n,z) (”l) _ (n—l)(n+l) 1
" Jan (1) aGnrl) | (=2)(nt) i
(3n+1)(2n+1) 1_(,1—3)(;1+1) Sonay (1)
2n+1 fz(H) (n)

(33)

For k=n-5, n>5, (24) gives

Frpy () =((n=(n=5+2)) (n+1)+20) £,y (n)=2(n=5+1) (n+1) 5 (1) = (5+3) fypnyy () =2(n=4) (n+1) £, ) ()

Thus

(n=3)(1+1) Fura (1) _(n=3)(n+1) Froea (7) (n=3)(n+1) 1

20+l fy, 5 (n) 20+l (5n+3) fy, 4 (n)=2(n=4)(n+1) fy, 5 (n) (2n+1)(5n+3)1_2(n—4)(n+1)f2(n,5)(n)
Sn+3 fz(lﬂ)(n)

Substituting into (33), we obtain

(n=1)(n+1) f‘z(n72)(n) _(n=1)(n+1) !
n Sowy(m)  n(3n+1) - (n=2)(n+1) 1 (34)
(Bn+1)(2n+1),  (n=3)(n+1) 1
(2n+1)(5n+3) | 2(n=4)(n+1) S5 (1)
Sn+3 »f‘Z(n—4) (n)

For k=n-6, n>6, (24) gives



Srna (n)= ((” _(”_6+2))(” +1)+2n)ﬂ(n—5) (n)=2(n-6+1)(n +1)A(n—6) (n)=(6n +4)ﬂ(n75) (n)=2(n-5)(n +l)ﬂ(n76) (n)=
= 2((3n+2)ﬂ(n75) (n)_(n —5)(1’1 +1)ﬂ(n—6) (n))

Thus

2(n—4)(n+1) fyus)(n) _2(n—4)(n+1) Sonsy (1) _ (n-4)(n+1) 1

43 Ly (n) 513 2((3n+2) fy g () ~(1=5)(1+1) fy o (1) (13)(3072) | (n=5)(n+1) Loy (1)
3n+2 fz(H) (n)

Substituting into (34), we obtain

(n=1)(n+1) frony(n) _(n=1)(n+1) ! (35)

n fiwny(m)  n(3n+1) 1— (n=2)(n+1) 1
(3n+1)(2n+1) | (n=3)(n+1) 1
(2n+1)(sn+3)_ (n=4)(n+1) 1
(5n+3)(3n+2) 1_(11—5)(n+1) fz(,,,(,)(n)
3n+2 fz(H) (n)

Using (35), we’ll calculate the coupling A for n=2,3,4,5.

(n=1)(n+1)

n

For n=0, (35) is not valid, since the denominator of vanishes.

For n=0, we can calculate the coupling 4 — let us denote it 4, — using (30).

Indeed, for n=0, F,(X)=1, and thus p, =1 and p, =0, and then (30) gives



(n=1)(n+1) f (1)

=0 and then (31) gives
n »fZ(n—l) (n)

For n=1,

For n=2, (35) reduces to

(n—l)(n+1)f2(n,2)(n) (n—l)(n+l)_ 3 3

n fz(m)(”) n(3n+l) _2*7:ﬁ

Then (31) gives

1 2 14 2 42-22 20

=—t=—-= == =0.6061
’121_33113 33 33
14
For n=3, (35) reduces to
(n=1)(n+1) fypy (1) _(n=1)(n+1) ] 8 I 4 1 435 47 28
n Ly (n)  n(Gnt1) | (n=2)(n+1) 3¥10;_ 4 15, 2 1533 333 99
(3n+1)(2n+1) 10*7 35

Then (31) gives



gt 3.9 31 3944-0.7500 = 0.6444
284 71 4

99

For n=4, (35) reduces to

(n=1)(n+1) Ly (1) _(n=1)(n+1) 1 15 1 15 1
n fz(H)(n)_ n(3n+1) L (n-2)(n+1) 1 C4*13,_ 10 1 4%13, 10 9*23
(Bn+1)(2n+1)  (n=3)(n+1) 13%9,_ 5 13%9 202
(2n+1)(5n+3) 9*23
15 115 115 13*101 15 101 15101 1515
_4*13I_QQ_4*131_3§_4*131313—115_71313—115_71198_4792
13 202 13101

Then (31) gives

L 2372 4 | 4623-0.8000 = 0.6623

15157573277 5
4792

A=

For n=5, (35) reduces to



(1=1)(n+1) Sopn (1) _(n=1)(n+1) 1 _ 1
n fz(nfl)(n)_ n(3n+1) (- (n—=2)(n+1) 1 5%16 | _ 3*%6 1
@n+1x2n+nl__(n—3xn+1) 1 16*11,_ 2%6 1
(2n+1)(5n+3) | (n—4)(n+1) U*281_4{;4
(5n+3)(3n+2) 28%17
3 1 3 1 3 1 3 1 ~
52, 3%3 1 T5%2 3%3 1 T5%p . 3%3 1 5%y, 3%3 11235
g*11, 3 28*17 8*11, 3 4*17 8*11,_ 3 2*17 8*112585—102
11*7 470 11 470 11 235
3 1 .3 8%2483  3%4%2483 29796
5%2, 3*3235  5%219864-2115 5*17749 88745
8 2483

Then (31) gives

1 > _B8745 5 | 5055-0.8333=0.6722

|_2979 6 58949 6
88745

A =

Summarizing the previous results, we have

Table I




1 0.5

2 0.6061
3 0.6444
4 0.6623
5 0.6722

The coupling A starts from zero and increases, as n increases, but the difference of the successive couplings decreases indicating that the

sequence of A ’s converges, i.e. 4_<o0.
Next, using (35), we’ll derive the expression of 4.
Taking the limit #n — oo, we have

(n—l)(n+1) _)l

n(3n+l) 3

(1=2)(n+1) 1
(3n+1)(2n+1) 6

(n=3)(n+1) 1

(2n+1)(5n+3) 10




(n—4)(n+1) L

(5n+3)(3n+2) 15

and (35) is written as

lim (I’l—l)(l’l+l) ](2(”,2)(”) :l 1
Y ) T 1
6, 1 i
10, 1 ]
15 1—1lim (l’l—5)(l’l+1) fz(”*é) (I’l)
n—o 3n+2 fz(n 5)(11)
or
—lim (I’l—l)(l’l+1) ](2(,1,2)(”) :_l 1
n—w n fz(H)(”) 3 1_1 1
6, |1 1
1— -
0, 1 i

15 {(n—s)(nﬂ) ]2(116)(”)}

3n+2 fz(H) (n)

We see that, in the limit n — oo, the expression hm((nl)(n+l) fz(H) (n)

" n Srnn (n)

integer part equal to zero, all partial denominators equal to one, and partial numerators being given by the sequence

} is written as an infinite generalized continued fraction with



—ya‘y"%o"%s"""%s+1)(s+2)’ with s =1,2,...,

(n=1)(n+1) fappz) ()
n Srnn (n)

n—o0

and we see that the absolute values of the reciprocals of the partial numerators of lin{ } are all triangular numbers

except 1"

* Indeed, the absolute values of the reciprocals of the partial numerators of —lim
n—>0

[<n1)<n+1) fz(nz>(”)}
n Srnn (n)

a,=3+2+1
a,=a,+3+1

a,=a, +4+1

a,=a_, +s+1

Adding the previous equations, the terms from @, up to a, | are canceled out, and we obtain

a, =3+(2+3+...+S)+(1+1+...+1)=3+—(2+S)2(S_1)+s—1=3+(s—1)(S;2+1j=3+(S—I)S;4 :3+(S_1)2(S+4) _

s—1 terms s—1 terms

_s2+3s—4+6 _s2+3s+2_(s+1)(s+2)
B 2 2 2

That is



(s+1)(s+2)

a, :#, with s =1,2,...
Setting s' =5 +1, the previous sequence is written as
s'(s"+1)
a, =——=,with ' =2,3,...
N 2

These are all triangular numbers except 1.
The first terms of the sequence @, are then

3,6,10,15,21,28,36,45,55,66,78,91,105,...

Besides, in the limit n — o, (31) gives

1

A, = -1 (36)
i [ (1= D) (1) foay (7)
—lim
e n »fZ(n—l) (n)
since lim——=1.
now 41
Substituting into (36) the expression of —lim (n —l)(n +1) fz(H) (n) , we obtain

n—o0

n Srnn (n)



3, 1 1
1——
10, 1 1
15 1 1
1
21,1 1
28, 1

Using Gauss’ notation, we write —lim (n —1)(n +1) fZ(H) (n) as
i n Srnn (n)

=K

§=

n—0

—_
—

hm{(nl)(m) fz(m(n)}
n Sry (n)

and substituting into (36), we write 4_ as

1
/loo_ 2 _1

(37)

(38)



2
= (s+1)(s+2)

We observe that for s=2,3,...,

—_— <l, and thus, from Worpitzky’s theorem [13], the continued fraction K
(s+1)(s+2)| 4 =2 1

2
converges, and then ;O{ (S * 1) (S * 2)

s=1

also converges, and thus 4_ < oo, i.e. the delta potential coupling converges too.

Using the expression (37) or (38), we can make successive approximations to 4.

Thus, we have

s=0,
A, :1—1:0
1
s=1,
A, :L—l=§—l=0.5
1 2
-
3

Observe that the two previous approximations are the exact values of the coupling for n=0,1.

s=2,



Lo re 2
3,1 735 s
6
Thus
2, =2-1=220.66667
33
s=3,
1 1 1 1
/l‘”ﬂ_l_l i i T 127 . 9
3,1 1 110 5 T3m 2
6, 1 69 27
10
Thus
2, =22 1222069231
313

s=4,



1 1 1 1
/7,w+121_1 1 1 1 ‘1_1 1 1 1 11 b1
3,01 3,1 1 3,10 1 U S T PUE 2 S U .
6,1 1 6,_ 115 6,_13 6,_3 625 3%25
10, 1 10 14 2 14 28
15
11 el
13725 25 36
3 61 61
Thus
2, =80 1225069444
36
s=35,
1 1 1 1 1
’1“7”:1_1 1 1 1 ST 1 T T ST
3,1 1 3,1 1 3,1 1 3,01 3,1
6,1 1 6, 1 1 6, 1 I 6, 1100 6. 10
o, 1. 1. 10, 121 10, 17 10 93 93
15,1 15 20 520
21
~ 1 ~ 1 1405
bt b 1166 239
31_1% 31_12 3135
283

683



Thus

/1@:@—1=@:0.69456
239 239
s=6,
1 1 1 1
/7,00-1‘1:1_1 1 _l—l 1 _1_1 1 _1_1 1 =
3. 1 1 3.1 1 3.1 1 3. 1 1
1-— 1-— 1-— 1——
61_i 1 61_i 1 61_i 1 61 1 1
101_i 1 10, 1 1 10, 1 1 10, 13*%27
15,1 1 15, 128 15, 14 15 77
21, 1 2127 327
28
~ 1 ~ 1 ~ 1 - 1 - 1 11 1559
T 1 T 1 S0 1 ST T T 1T 1339 639 920
3.1 ! 31 3211 3,_12%358 3, 358 31559 1559
6,1 1 6,_15%77 6, 177 6 639 3%639
101_ 27 10 358 2 358
5*77
Thus
A _ 159 1—@:0.69456

7920 920



1 1 1
/1w+1_1_1 I _1_1 1 —1_1 1
3, 1 1 3. 1 1 3. 1 1
1- 1- 1-—
6, 1 1 6, 1 1 6. 1 1
1- 1- 1-
10,_1 1 10, 1 1 10,_1
15,1 1 15, 1 1 15, 1 1
21,1 1 21, 136 21,19
28,_ 1 2835 735
36
B 1 B 1 B 1 B 1
1! 1 1! 1 1! 1 -1 1
31 1 3.1 1 321 1 3.1
6,_1 1 6,_1 1 6,1 1 6,1 1
10,_1 1 o,_1 1 10, _13%236 10,1236
15, 17%35 15, 135 15 673 5673
21 236 3236
~ 1 _ 1 1 _ 1 1 13626
L ! R L1 T T TSS85 T 504
3,1 1 3,1 1 3, 12%3129 3,_1043 34542
6, 15%673 6,_ 1673 6 5585 5585
10 3129 23129
Thus

. 13626 5585
* 8041 8041

=0.69456




Summarizing the previous approximations, we have

Table I1

s A,

0 0

1 0.5

2 0.66667
3 0.69231
4 0.69444
5 0.69456
6 0.69456
7 0.69456




6. The location of the known eigenstates

From the expression (35), and the Table I, we see that the coupling A increases as n
increases.

Thus, as n increases, the delta potential becomes more attractive, and then, since the
other term of the potential (1) is n-independent, the negative potential becomes more
attractive too, in a sense the infinite attractive well becomes deeper.

Also, from (15), we see that the energies increase, as n increases.

That is, as n increases, we find eigenstates of deeper wells with higher energies.
These higher energies correspond to higher excited states, otherwise we would have
(at least) two attractive wells with the energy of a lower state of the deeper well being
greater than the energy of a higher state of the shallower well, which is physically
unacceptable.

The higher excited states correspond to closed-form eigenfunctions (17) with more
real zeros [10, 14].

Thus, as n increases, the number of real zeros of the closed-form eigenfunction (17)

Increases.

The zeros of the eigenfunction (17) are the zeros of the polynomial P, (x) , which is of

even parity and thus it has an even number of zeros.

If n increases by one, the degree of P, (x) also increases by one, and since it is of
even parity, its real zeros can increase only by two.

Thus, since an increase in n increases the number of real zeros of P, (x) , an increase
in n by one increases the number of real zeros of P, (x) by two, and the number of
real zeros of the eigenfunction also by two.

For n=0, from (29) we obtain F,(x)=1 and the eigenfunction y,(x) has no real
zeros, and thus it is the ground-state wave function.

Then, w, (x) has two real zeros, and thus it is the second-excited-state wave function,

v, (x) has four real zeros, and thus it is the fourth-excited-state wave function, and so

on.
Therefore, for each value of ne N, (15) and (17) give, respectively, the energy and
the wave function of the 27 th-excited state of the respective potential (1) [10, 14].



7. Examples

We’ll quasi-exactly solve the potential (1) for n=0,1,2,3, and 4.

n=0

For n=0, from (29) we obtain P, (x)=1, and then, from (17),

ol )

which has no real zeros and it describes the ground state of the potential

since A4, =0 (see Table I).

The ground-state energy of the previous potential is given by (15) for =0, i.e.

hz
Ey=-s—
mx,
/] 2 &
Substituting x, =— into E, yields E, =-Lo __% e the ground-state energy
Do 2m 2
lies in the middle of the well V( ) | TO
X
+1
Xo
n=1

The polynomial P]()E) is of first degree and monic, and from (28), we saw that

Do =—p,- Then, since p, =1, p, =-1, and thus, from (29),

Then, from (17) we obtain the eigenfunction

l//l(x)—Al[(xioj }exp[ IIJ



which has two real zeros, at +x,, and it describes the second-excited state of the

potential

P (x) = -0 _0.50°5(x)
MH my
Xo

since 4, =0.5 (see Table I).
The second-excited-state energy of the previous potential is given by (15) for n=1,

Le.

hz
8mx,’

E =

n=

For n=2, (23) is written as

(=2
Pry = 2kk!(2_k)!f2k(2)

with £=0,1,2

Thus, we have

p2:1

P = i £ (=12

with f, (n)=n’+2n-1, and thus f,(2)=7, and then

Py =1
And
ey
Py 222!(2_2)'](4(2)_2](4(2)

For n=2 and k =0, the recursion relation (24) gives

£:(2)=4/(2)-6/,(2)=4*7T-6=22,



since f,(n)=1,and f,(2)="7 from the previous calculation.

Thus

Thus, from (29),
o1
g(x){ij —7i+3

Xo Xo

Then, from (17) we obtain the eigenfunction

R

The polynomial P,(x) has four real zeros.

N : - . 11 . o
Indeed, the discriminant of the trinomial x2—7x+? is positive, and thus the

trinomial has two real zeros, the sum and product of which are both positive, and thus

the two zeros are positive.

Then, P, (x) has two positive zeros and the opposite ones, i.e. four in total.
Therefore, the eigenfunction yjz(x) has four real zeros, and thus it describes the
fourth-excited state of the potential

g, 0.60611°5(x)

=- 5
|)C| mXx,
. 0
Xo

V()

since 4, =0.6061 (see Table I).

The fourth-excited-state energy of the previous potential is given by (15) for n=2,

Le.

n=3

For n=3, (23) is written as



(-1)3!

Psi Zmﬂk (3)

with £=0,1,2,3
Thus, we have
Ds =1

(=13 _ 3
p31—211!(3_1)!f2(3)— 2%2!

3

12(3)=—§fz(3)

with f,(n)=n’+2n-1, and thus f,(3)=14, and then

3!

~1)*3!
Pio = ( ) f4(3)=22_2!

221(3-2)! ﬁ‘(?’):%f“(?’)

For n=3 and k =0, the recursion relation (24) gives
£(3)=((3+1)+6) £,(3)-2*4/,(3) =101, (3) -8/, (3) =10*14-8 =132,

since f,(n)=1,and f,(3)=14 from the previous calculation.

Thus

Ps =%132=3*33:99

And

For n=3 and k =1, the recursion relation (24) gives

£:(3)=((3-(1+2))(3+1)+6) £, (3)-2(1+1)(3+1) £,(3) = 6 £, (3) - 16 £, (3) =
=6*132-16%14=792-224 =568,

where we used that f,(3)=14 and f,(3)=132, from the previous calculations.

Thus



Pis= —%568 =71

Thus, from (29),
3 2
Jg(x){mj —21(ij voolt 71
Xo Xo Xo

Then, from (17) we obtain the eigenfunction

e o] B

The polynomial P, (x) has six real zeros.

Indeed, for the polynomial ¥ —21%* +99%—71, we have
P, (0)=-71<0

P (1)=1-21+99-71=8>0
P,(6)=216-756+594-71=-17<0

and

B ()=0>0

Thus, the polynomial P, (¥) has at least one zero in each of the intervals (0,1), (1,6),

and (6,00) , and since it is of third degree, it has exactly one zero in each of these
intervals.

Then, the polynomial P,(x) has three positive zeros and the opposite ones, i.e. six in
total.

Therefore, the eigenfunction i, (x) has six real zeros, and thus it describes the sixth-
excited state of the potential

g, 0.64441°5(x)

=- 9
|)C| mx,
. 0
Xo

V()

since A, = 0.6444 (see Table I).



The sixth-excited-state energy of the previous potential is given by (15) for n =3, i.e.

hz
- 32mx,’

n=

For n=4, (23) is written as

(-1) 4!

Pis =mfzk (4) (39
with £=0,1,2,3,4

We'llneed 7, (4), 7, (4). £, (4)., and f, (4).

We remind that f, (n)=1, and f, (1n)=n®+2n—1, and thus

£, (4)=16+8-1=23

For n =4, the recursion relation (24) is written as

L (4)=(5(2=K)+8) £y (4) =10(k +1) £, (4) (40)

For k=0, (40) gives

£,(4)=181,(4)~10,(4)=18*23-10 = 404

For k=1, (40) gives
fo(4)=131,(4) =20/, (4)=13%404 -20%23 = 4792

For k=2, (40) gives
fi(4)=81,(4)=30, (4) =8*4792~30*404 = 38336 -12120 = 26216

We are now ready to calculate the polynomial coefficients.

For k=0, (39) gives
p,=1

For k=1, (39) gives

__(=n4 _ _
Pay —mﬂ(4)——2*23——46



For k=2, (39) gives

G ! 12,3
p“2_222!(4—2)!ﬁ‘(4)_222!2!ﬁ‘(4)_§ﬁ‘(4)_5404_606
For k=3, (39) gives

I G PPN IV RSO
Pis = 233!(4_3)!1‘6(4) —;fé (4) -—54792_ ~2396

For k=4, (39) gives

(-1) 41 1

= U r(4)=—26216=1638.5
Pt 244!(4—4)!]%() 16

Thus, from (29),

4 3 2
a(x)z(ij —46[Mj +606[ij 23961 4 1638.5

Xo Xo Xo Xo

Then, from (17) we obtain the eigenfunction

4 3 2
1/14(x)—A{(ij —46[Mj +606(ij 2396M+1638.5}[M+1jexp[ﬂj
X, X, X, X, X, 5x,

The polynomial ¥*—46%° +606%> —2396% +1638.5 has four positive zeros, and thus

the polynomial P, (x) has eight real zeros, which are also the real zeros of y, (x) .

* The zeros of the polynomial X'—46% +606%° —2396X+1638.5 are
approximately at 0.85823, 5.42909, 13.32795, and at 26.38474,

https://tinyurl.com/y7x8xgog.

Thus, the previous eigenfunction describes the eighth-excited state of the potential

()=t ~ 0.66237°5(x)
MH o ’
Xo

since A4, =0.6623 (see Table I).


https://tinyurl.com/y7x8xgog

The eighth-excited-state energy of the previous potential is given by (15) for n=4,
Le.

hz
50mx,’
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