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Abstract

We prove that partial sums of ζ(n) − 1 = zn are not given by any
single decimal in a number base given by a denominator of their terms.

This result, applied to all partials, shows that partials are excluded
from an ever greater number of rational, possible convergence points.

The limit of the partials is zn and the limit of the exclusions leaves
only irrational numbers. Thus zn is proven to be irrational.

1 Introduction

Apery’s ζ(3) proof is the only proof that a specific odd argument for ζ(n) is
irrational. Even arguments are a natural consequence of Bernoulli formula
[2] for ζ(2n).

Apery also showed ζ(2) is irrational, and Beuker, based on the work of
Apery, simplified both proofs [3]. These proofs for ζ(2) and ζ(3) require the
prime number theorem, as well as subtle ε−δ reasoning. The puzzle is, then,
if you can use Apery’s idea for an easier, as it turns out case, that of ζ(2),
why can’t you generalize Apery’s ideas to the general ζ(n) cases? Both the
evens and odds?

Proving the general case using Apery’s [1] central idea seems hopelessly
elusive. It is not for a lack of trying. Apery’s and other ideas can be seen
in the very difficult results of Rivoal and Zudilin [7, 10]. Their results, that
there are an infinite number of odd n such that ζ(n) is irrational and at least
one of the cases 5,7,9, 11 likewise irrational, seem less than encouraging.

In this paper we explore a wholly different direction. Sondow gives a
very easy geometric proof of the irrationality of e [9]. This proof uses what
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could be called an eliminate as you define idea. You build a number by a
geometric process that eliminates other numbers (other rational numbers)
from being possible convergence points. In the case of e there is a clear
and easy connection between terms. Each term is a proportion of the pre-
vious and moves and squeezes partials from the left and right in a neat,
orderly fashion. Trying the same trick with ζ(2), the right boundary doesn’t
necessarily contract in from a single boundary. Here’s the key: it doesn’t
contract from a single boundary, but it does from a set of boundaries. For
ζ(2), for example, 1/4 + 1/9 is neither at .x base 4 or .y base 9. Continuing
1/4 + 1/9 + 1/16 + 1/52 + 1/62 + 1/72 = 282/551 which is between 1/4s
and 1/9s, but not between, any more, 1/4 and 1/2 and 3/9 and 4/9; it has
blown passed these multiples of 1/4 and 1/9, but is still between some such
multiples – implying not equal to any such multiples! In fact: in any number
base, as the base is used to express a series, eventually decimal digits become
fixed. For ζ(2)−1 in base 10, we can say .6 < ζ(2)−1 < .7. In another base,
larger than 10, similar boundaries, fixed, will have to exist for sufficiently
large upper limits of partials and will have to move in from .6 and .7, base
10. This is the idea we pursue in this paper.

This is an open number theory problem, so, for those that like challenges,
I’ll give here a sequence of problems to solve. I.e. see if you can do it before
you read about how it was done. We will need two definitions:

zn = ζ(n) − 1 =
∞∑

j=2

1

jn
and sn

k =
k∑

j=2

1

jn
.

Show that every rational number in (0, 1) can be written as a single decimal
using the denominators of the terms of any zn. Next show the partial sums,
sn

k , can’t be expressed as a single decimal in any of the terms of sn
k . This

implies that the precision of sn
k increases. This is unlike something simple

like 1/4 + 1/4 = 1/2 – the precision or fineness of terms is 1/4 and that of
the sum is 1/2, less precision – wider decimal intervals: base 2 versus base
4. Note that if a series converges to a rational number, its partials will get
close to a number of less precision, in this sense. For example, .1 base 4
converges to .1 base 3 – less precision than base 4. So, having shown the
denominators of the terms cover all rational possible convergence points and
that the partials escape their terms, show that the partials can’t converge
to a number with finite precision and hence must converge to an irrational
number.
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2 Terms cover rationals

We start with something relatively easy.

Definition 1. A decimal set, base jn, is defined by

Djn = {1/jn, . . . , (jn − 1)/jn} = {.1, . . . , .(jn − 1)} base jn.

That is Djn consists of all single decimals greater than 0 and less than 1 in

base jn.

Definition 2.
k⋃

j=2

Djn = Ξn
k

Lemma 1.

lim
k→∞

Ξn
k =

∞⋃

j=2

Djn = Q(0, 1)

Proof. Every rational a/b ∈ (0, 1) is included in at least one Djn . This
follows as abn−1/bn = a/b and as a < b, per a/b ∈ (0, 1), abn−1 < bn and so
a/b ∈ Dbn.

Note: Sondow’s e is irrational proof gives this same idea. To wit, given a
rational 0 < p/q < 1

p

q
=

p(q − 1)!

q!
.

That is the denominators of the terms of e taken as number bases express
all rational numbers in (0, 1).

3 Partials escape terms

Our aim in this section is to show that the reduced fractions that give the
partial sums of zn require a denominator greater than that of the last term
defining the partial sum. Restated this says that partial sums of zn can’t be
expressed as a finite decimal using for a base the denominators of any of the
partial sum’s terms.

We will use z2 to motivate the development. The partials of z2, as they
include all even k2 in their denominators, will have a reduced form that has
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a greater power of two in the partial’s denominator. This result is given
in Lemma 2; it is similar to Apostol’s chapter 1, problem 30. See [5] for
a solution to this problem. Next, if we can show that there is at least one
prime that does not recur in the k2 denominators, then that prime will occur
in the partial sum’s reduced fraction. This result is given in Lemma 3. Such
a prime does exist: Lemma 4, Bertrand’s postulate.

The idea is simple. Consider 1/4 + 1/9 + 1/16 + 1/25. There will be a
power of 2 and of a relatively large prime in the denominator of the reduced
sum. Indeed, the sum is 1669/3600 and the denominator of this reduced
form has the prime factorization of 243252; it has a relatively large power of
2 and the prime 5. The prime is between 3 and 6 as Bertrand’s postulate
stipulates. As 2252 exceeds the largest denominator in this partial sum, the
partial sum can’t be expressed as a single decimal in any of the denominators
of the terms of the partial. Simply put: 2 times something past the middle
exceeds the last.

Lemma 2. If sn
k = r/s with r/s a reduced fraction, then 2n divides s.

Proof. The set {2, 3, . . . , k} will have a greatest power of 2 in it, a; the set
{2n, 3n, . . . , kn} will have a greatest power of 2, na. Also k! will have a
powers of 2 divisor with exponent b; and (k!)n will have a greatest power of
2 exponent of nb. Consider

(k!)n

(k!)n

k∑

j=2

1

jn
=

(k!)n/2n + (k!)n/3n + · · · + (k!)n/kn

(k!)n
. (1)

The term (k!)n/2na will pull out the most 2 powers of any term, leaving a
term with an exponent of nb−na for 2. As all other terms but this term will
have more than an exponent of 2nb−na in their prime factorization, we have
the numerator of (1) has the form

2nb−na(2A + B),

where 2 - B and A is some positive integer. This follows as all the terms in
the factored numerator have powers of 2 in them except the factored term
(k!)n/2na. The denominator, meanwhile, has the factored form

2nbC,

where 2 - C . This leaves 2na as a factor in the denominator with no powers
of 2 in the numerator, as needed.
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Lemma 3. If sn
k = r/s with r/s a reduced fraction and p is a prime such

that k > p > k/2, then pn divides s.

Proof. First note that (k, p) = 1. If p|k then there would have to exist r such
that rp = k, but by k > p > k/2, 2p > k making the existence of such a
natural number r > 1 impossible.

The reasoning is much the same as in Lemma 1. Consider

(k!)n

(k!)n

k∑

j=2

1

jn
=

(k!)n/2n + · · · + (k!)n/pn + · · · + (k!)n/kn

(k!)n
. (2)

As (k, p) = 1, only the term (k!)n/pn will not have p in it. The sum of all
such terms will not be divisible by p, otherwise p would divide (k!)n/pn. As
p < k, pn divides (k!)n, the denominator of r/s, as needed.

Lemma 4. For any k ≥ 2, there exists a prime p such that k < p < 2k.

Proof. This is Bertrand’s postulate [4].

Theorem 1. If sn
k = r

s
, with r/s reduced, then s > kn.

Proof. Using Lemma 4, for even k, we are assured that there exists a prime
p such that k > p > k/2. If k is odd, k − 1 is even and we are assured of
the existence of prime p such that k − 1 > p > (k − 1)/2. As k − 1 is even,
p 6= k − 1 and p > (k − 1)/2 assures us that 2p > k, as 2p = k implies k is
even, a contradiction.

For both odd and even k, using Lemma 4, we have assurance of the
existence of a p that satisfies Lemma 2. Using Lemmas 1 and 2, we have 2npn

divides the denominator of r/s and as 2npn > kn, the proof is completed.

Corollary 1.
sn

k /∈ Ξn
k

Proof. This is a restatement of Theorem 1.

One can get a geometric like idea similar to Sondow’s. The partial sn
k

resides between decimal points in all the decimal sets in Ξn
k . Unlike the case of

e, the intervals don’t nest neatly. In fact, they migrate and overlap. Consider
that z2 has partials in the interval [1/4, 2/4], but as z2 = .6 · · · > 2/4, partials
don’t stay in this interval. But they do stay in some interval of the form
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[.(x − 1), .x] of D4. Although D4 and D16 overlap, in this sense, s2
k will not

be at any endpoint of D16.
What happens when decimals become fixed? In every base they will

become fixed. This means zn ∈ (.(x − 1), .x) where single decimal digits
are indicated. These intervals narrow as the precision of the decimal base
increases. Eventually they all nest and like Sondow’s e proof zn gets trapped
between all possible rational convergence points. The details are coming.

4 A Suggestive Table

+1/4
+1/9 +1/4 +1/4 +1/4 +1/4 . . . +1/4
/∈ D4 +1/9 +1/9 +1/9 +1/9 . . . +1/9

/∈ D9 +1/16 +1/16 +1/16
...

/∈ D16 +1/25 +1/25
...

/∈ D25 +1/36
...

/∈ D36

+1/(k − 1)2

+1/k2

/∈ Dk2

. . .

Table 1: A list of all rational numbers between 0 and 1 is given by the number
sets along the diagonal. Partials of z2 are excluded from sets below and to
the upper left of the partial.

The result of applying Corollary 1 to all partial sums of z2 is given in
Table 1.1 The table shows that adding the numbers above each Dk2 , for
all k ≥ 2 gives results not in Dk2 or any previous rows’ such sets. So, for
example, 1/4+1/9 is not in D4, 1/4+1/9 is not in D4 or D9, 1/4+1/9+1/16
is not in D4, D9, or D16, etc.. That’s what Corollary 1 says.

1Table 1 might remind readers of Cantor’s diagonal method. We don’t pursue this idea
in this article. See [6].
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Lemma 1 says that for all the series zn the denominators of their terms
cover the possible rational convergence points and Corollary 1 says the partial
sums of zn escape their terms. As all rational numbers between 0 and 1 are
in Ξn

k for some k sufficiently large this says partials are being, so to speak,
chased out of the Ξn

k park – possible rational convergence points. Where
could they go but to the irrational zoo, sorry!

5 A Simple Proof

We will designate the set of rational numbers in (0, 1) with Q(0, 1), the set
of irrationals in (0, 1) with H(0, 1), and the set of real numbers in (0, 1) with
R(0, 1). We use R(0, 1) = Q(0, 1) ∪ H(0, 1) and Q(0, 1) ∩ H(0, 1) = ∅ in the
following.

Theorem 2. zn is irrational.

Proof. Corollary 1 implies sn
k ∈ R(0, 1) \ Ξn

k . So, taking limits,

lim
k→∞

sn
k ∈ R(0, 1) \ Ξn

k ,

and, using Lemma 3 and limk→∞ sn
k = zn, this gives

zn ∈ R(0, 1) \ Q(0, 1) = H(0, 1).

That is zn is irrational.

Some mathematicians, including the author, find this proof unsatisfac-
tory, but it is simple. I suggest that mathematicians have been trained to be
unduly suspicious of proofs like the above. Consider that the above is just
the same as

lim
n→∞

(−1/n, 1/n) = ∅,

where (−1/n, 1/n) designates an open interval. I’m with you in wanting to
viscerally feel a squeeze at work.

Another suggestive table

We can make a table, Table 2, that orients us to the various issues involved
with the proof just given. As with Table 1, we focus on the z2 case. This table
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D4 D9 D16 . . . Dk2 . . .
s3 ε4,3 ε9,3 ε16,3 . . . εk2,3 0
s4 ε4,4 . . . 0
... . . . . . . 0
sk

...

Table 2: The epsilon values give the minimum distance of partials to elements
of decimal sets.

gives the minimum distance between partial sums of z2, sks, and decimal sets.
So, for example, ε4,4 gives

ε4,4 = min |s4 − x|,

where x ∈ D4. As s4 =
∑

4

j=2
1/j2 = 61/144 and the minimum of

{|61/144 − 1/4|, |61/144 − 2/4|, |61/144 − 3/4|}

is |61/144 − 2/4| = 11/144, we have ε4,4 = 11/144.
We can witness certain properties of this situation. As each partial is a

fraction and the fractions cover, per Lemma 3, all rationals, there will be a
first zero in each row. We agree to exclude repetitions of fractions in decimal
sets, so there is one zero. Also this 0, per Corollary 1, occurs to the right of
the last decimal set used in forming the partial. This follows as the decimal
sets contain terms of the partials and partials escape their terms. Within a
single row, before the zero, epsilon values may get large and small, but there
will always be an epsilon value below and to the right that will be smaller.
This follows as the precision given by decimal sets grows with the base used.
This follows from observing that in any base, powers of the base are also bases
and have more precision; any number can be written as an infinite decimal.
We can then construct a descending sequence of epsilon values proceeding
from the upper left to the lower right; in fact sk with Dk2 will form such a
descending sequence – with different primes in k showing the convergence
point is not getting close to any rational. The convergence point is not in
any decimal set on the upper row eventually, so the convergence point must
be irrational.
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It is instructive to make tables for other series. For example, a table for .1
base 4 converges to 1/3. Placing D3 in the top row, the decreasing gradient
of epsilon values goes to the upper left – convergence is to a rational. In this
example the terms don’t cover the rationals. The telescoping series

∞∑

j=2

1

j
−

1

j + 1

has terms that cover the rationals, but the partials don’t escape their terms
consistently; 0 values move around and don’t progress consistently to the
right. Consider

n∑

k=2

1

k(k + 1)
=

1

2
−

1

n + 1
, if n is odd, say n = 2m + 1

so
1

2
−

1

n + 1
=

m

2(m + 1)

and 2(m + 1) < n(n + 1), the denominator of the last term. Also the terms
of the telescoping series have always even denominators – decimal sets that
contain the convergence point 1/2. The partials are not escaping their terms.

The most telling feature of both of these examples (potentially counter
examples) is that greater precision numbers are getting close to numbers of
less precision. Take precision of a decimal base to be the distance 1/b, where
b is the base. Then, in order for a number to be rational the ever more precise
numbers of the partials has to be getting close to a unique, number of less
precision. In the above examples, powers of 4 bases get close to .1 base 3
or 1/3, a number of finite precision. The telescoping series also gets close to
1/2, .1 base 2, although the partials waver around in precision.

One more time. Consider any rational number in all number bases. It will
have decimal representations of the point 9 repeating variety, pure repeating,
and mixed – when such a number is forced into infinite decimals. But in all
cases partials get ever more precise, but approach a number, the rational, of
less precision. We can tighten up these observations.

6 Towards greater precision

We drop the n subscript used previously with zn and slightly modify such
use of subscripts and superscripts in this section. The context should make
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meanings clear. In that regard, we use the bases k as a fill in for base kn, to
further simplify notation.

Definition 3. Let Dεk

k be the set of all Dk decimal sets having an element

within εk of sk.

Lemma 5. Let z be the convergence point of the series with partials sk. Then

z is irrational if there exists a monotonically decreasing sequence εk such that

lim
k→∞

εk = 0,

and
∞⋂

k=2

Dεk

k = ∅. (3)

Proof. We use proof by contraposition: p ⇒ q ⇔ ¬q ⇒ ¬p. Suppose z is
rational then z ∈ D∗

k, a specific decimal set. Define

εm = z − sm

and set
εk = 2εm.

Then

D∗

k ⊂
∞⋂

k=2

Dεk

k ,

so the intersection is not empty.

Definition 4. The precision of a decimal base, b, is 1/b.

Lemma 6. Given any ε there exists a decimal base b of greater precision

than ε; that is
1

b
< ε.

Proof. This is the Archimedean property of the reals [8].

Theorem 3. zn is irrational.
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Proof. We need to define a sequence εk. Let

ε∗k = min{|x− sk| : x ∈ Ξk
2}.

We know by Corollary 1 that ε∗k > 0. We proceed inductively. For the first
iteration, let ε3 be a number such that ε3 < ε∗3. This excludes the decimal
sets of Ξ3

2
at this our first iteration. Assume we can generally do this for the

kth iteration. For the k + 1st iteration, using Lemma 6, there exists a base
in Ξk+r

2 , for some r such that ε∗k+r < εk/2. Set εk+1 = ε∗k+r. The procedure
gives ε values that exclude ever more decimal sets from Dεk

k . Regroup the
series. By Lemma 1, the exclusions are exhaustive, so

∞⋂

k=2

Dεk

k = ∅,

as needed.

7 Conclusion

The alternate proof definitely has a squeeze action to it and is more satisfying.
It seems like Sondow’s e proof with epsilon reasoning added.

The proof distills to the observation that a series is given as decimals in
any base with partials of ever greater precision. Those partials can approach
a rational number of finite precision or an irrational number of infinite preci-
sion. Show that the partials of zn approach numbers of ever greater precision.

This in turn, I think, is the fundamental reaction to adding a convergent
form of all fractions, one over all natural numbers to a power. The complexity
of the partials and the convergence point must reflect the complexity of the
terms. When I first saw this series I thought that they all – zn in the plural
sense – must converge to irrational numbers. Sure enough half of them
do via Bernoulli’s formula for even ns. How could odds possible not so
converge when they share so much with the evens. There must be a way, I
thought, to strip all the extraneous aspects of these series and find a common
thread. The common thread must be that partials are escaping terms in the
sense of having ever larger denominators. But all series have partials with
denominators that get larger and larger. That is true, but ones converging
to a rational have partials that get close to a fixed rational number with one
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relatively small denominator. If the partials are moving away from all such
rational numbers then by exhaustion they are moving toward an irrational.

One other behind the scenes confession or reflection: looking at Beuker’s
(descendent of Apery’s) and even Bernoulli’s work (easier) on the subject, I
thought their analysis was way too difficult for something so simple. Then I
attempted to read Rivoal and Zudilin on the subject and became convinced
that this problem could not possible be this hard: a totally new angle was
needed.

It struck me that there must be a very simple proof of this, something like
a law of nature idea – rationals added give an irrational. It struck me that
the proof would be something like the evolution of positional notation for
real numbers – so easy, yet so profoundly initially mysterious (even awkward
and annoying), until it becomes totally natural and obviously the only way
to do it. Could it be at some future date, the irrationality of a series becomes
trivial to adduce, that of the square root of 2 harder?
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