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Abstract

We prove that partial sums of ζ(n) − 1 = zn are not given by any
single decimal in a number base given by a denominator of their terms.

This result, applied to all partials, shows that partials are excluded
from an ever greater number of rational, possible convergence points.

The limit of the partials is zn and the limit of the exclusions leaves
only irrational numbers. Thus zn is proven to be irrational.

1 Introduction

Apery’s ζ(3) proof is the only proof that a specific odd argument for ζ(n) is
irrational. Even arguments are a natural consequence of Bernoulli formula
[2] for ζ(2n).

Beuker, based on the work of Apery, gives a proof that ζ(2) is irrational
[3]. These proofs for ζ(2) and ζ(3) require the prime number theorem, as
well as subtle ε − δ reasoning. The puzzle is, then, if you can use Apery’s
idea for an easier, as it turns out case, that of ζ(2), why can’t you generalize
Apery’s idea to the general ζ(n) cases? Both the evens and odds?

Proving the general case using Apery’s [1] central idea seems hopelessly
elusive. It is not for a lack of trying. Apery’s and other ideas can be seen
in the very difficult results of Rivoal and Zudilin [7, 10]. Their results, that
there are an infinite number of odd n such that ζ(n) is irrational and at least
one of the cases 5,7,9, 11 likewise irrational, seem less than encouraging.

Another idea comes from Sondow’s very easy geometric proof of the irra-
tionality of e [9]. This proof uses what could be called an eliminate as you

define idea. You build a number by a geometric process that eliminates other
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numbers (other rational numbers) from being possible convergence points. In
the case of e there is a clear and easy connection between terms. Each term
is a proportion of the previous and moves and squeezes partials from the left
and right in a neat, orderly fashion. Trying the same trick with ζ(2), the
right boundary doesn’t necessarily contract in from a single boundary. Here’s
the key: it doesn’t contract from a single boundary, but it does from a set
of boundaries. For ζ(2), for example, 1/4 + 1/9 is neither at .x base 4 or .y
base 9. Continuing 1/4+1/9+1/16+1/52 +1/62 +1/72 = 282/551 which is
between 1/4s and 1/9s, but not between, any more, 1/4 and 1/2 and 3/9 and
4/9; it has blown passed these multiples of 1/4 and 1/9, but is still between
some such multiples – implying not equal to any such multiples! In fact: in
any number base, as the base is used to express a series, eventually decimal
digits become fixed. For ζ(2) − 1 in base 10, we can say .6 < ζ(2) − 1 < .7.
In another base, larger than 10, similar boundaries, fixed, will have to exist
for sufficiently large upper limits of partials and will have to move in from .6
and .7, base 10. This is the idea we pursue in this paper.

This is an open number theory problem, so, for those that like challenges,
I’ll give here a sequence of problems to solve. I.e. see if you can do it before
you read about how it was done. We will need two definitions:

zn = ζ(n) − 1 =
∞∑

j=2

1

jn
and sn

k =
k∑

j=2

1

jn
.

Show that every rational number in (0, 1) can be written as a single decimal
using the denominators of the terms of any zn. Next show the partial sums,
sn

k , can’t be expressed as a single decimal in any of the terms of sn
k . This

implies that the precision of sn
k increases. This is unlike something simple like

1/4+1/4 = 1/2 – the precision or fineness of terms is 1/4 and that of the sum
is 1/2, less precision – wider decimal intervals: base 2 versus base 4. Note
that if a series converges to a rational number, its partials will get close to a
number of less precision, in this sense. For example, .1 base 4 converges to
.1 base 3. So, having shown the denominators of the terms cover all rational
possible convergence points and that the partials escape their terms, show
that the partials can’t converge to a number with finite precision and hence
must converge to an irrational number.
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2 Terms cover rationals

We start with something relatively easy.

Definition 1. A decimal set, base jn, is defined by

Djn = {1/jn, . . . , (jn − 1)/jn} = {.1, . . . , .(jn − 1)} base jn.

That is Djn consists of all single decimals greater than 0 and less than 1 in

base jn.

Definition 2.
k⋃

j=2

Djn = Ξn
k

Lemma 1.

lim
k→∞

Ξn
k =

∞⋃

j=2

Djn = Q(0, 1)

Proof. Every rational a/b ∈ (0, 1) is included in at least one Djn . This
follows as abn−1/bn = a/b and as a < b, per a/b ∈ (0, 1), abn−1 < bn and so
a/b ∈ Dbn.

Note: Sondow’s e is irrational proof gives this same idea. To wit, given a
rational 0 < p/q < 1

p

q
=

p(q − 1)!

q!
.

That is the denominators of the terms of e taken as number bases express
all rational numbers in (0, 1).

3 Partials escape terms

Our aim in this section is to show that the reduced fractions that give the
partial sums of zn require a denominator greater than that of the last term
defining the partial sum. Restated this says that partial sums of zn can’t be
expressed as a finite decimal using for a base the denominators of any of the
partial sum’s terms.

We will use z2 to motivate the development. The partials of z2, as they
include all even k2 in their denominators, will have a reduced form that has
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a greater power of two in the partial’s denominator. This result is given
in Lemma 2; it is similar to Apostol’s chapter 1, problem 30. See [5] for
a solution to this problem. Next, if we can show that there is at least one
prime that does not recur in the k2 denominators, then that prime will occur
in the partial sum’s reduced fraction. This result is given in Lemma 3. Such
a prime does exist: Lemma 4, Bertrand’s postulate.

The idea is simple. Consider 1/4 + 1/9 + 1/16 + 1/25. There will be a
power of 2 and of a relatively large prime in the denominator of the reduced
sum. Indeed, the sum is 1669/3600 and the denominator of this reduced form
has the prime factorization of 243252; it has relatively large power of 2 and
prime 5. The prime is between 3 and 6 as Bertrand’s postulate stipulates.
As twice this prime exceeds the largest denominator in this partial sum, the
partial sum can’t be expressed as a single decimal in any of the denominators
of the terms of the partial.

Lemma 2. If sn
k = r/s with r/s a reduced fraction, then 2n divides s.

Proof. The set {2, 3, . . . , k} will have a greatest power of 2 in it, a; the set
{2n, 3n, . . . , kn} will have a greatest power of 2, na. Also k! will have a
powers of 2 divisor with exponent b; and (k!)n will have a greatest power of
2 exponent of nb. Consider

(k!)n

(k!)n

k∑

j=2

1

jn
=

(k!)n/2n + (k!)n/3n + · · · + (k!)n/kn

(k!)n
. (1)

The term (k!)n/2na will pull out the most 2 powers of any term, leaving a
term with an exponent of nb−na for 2. As all other terms but this term will
have more than an exponent of 2nb−na in their prime factorization, we have
the numerator of (1) has the form

2nb−na(2A + B),

where 2 - B and A is some positive integer. This follows as all the terms in
the factored numerator have powers of 2 in them except the factored term
(k!)n/2na. The denominator, meanwhile, has the factored form

2nbC,

where 2 - C . This leaves 2na as a factor in the denominator with no powers
of 2 in the numerator, as needed.
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Lemma 3. If sn
k = r/s with r/s a reduced fraction and p is a prime such

that k > p > k/2, then pn divides s.

Proof. First note that (k, p) = 1. If p|k then there would have to exist r such
that rp = k, but by k > p > k/2, 2p > k making the existence of a natural
number r > 1 impossible.

The reasoning is much the same as in Lemma 1. Consider

(k!)n

(k!)n

k∑

j=2

1

jn
=

(k!)n/2n + · · · + (k!)n/pn + · · · + (k!)n/kn

(k!)n
. (2)

As (k, p) = 1, only the term (k!)n/pn will not have p in it. The sum of all
such terms will not be divisible by p, otherwise p would divide (k!)n/pn. As
p < k, pn divides (k!)n, the denominator of r/s, as needed.

Lemma 4. For any k ≥ 2, there exists a prime p such that k < p < 2k.

Proof. This is Bertrand’s postulate [4].

Theorem 1. If sn
k = r

s
, with r/s reduced, then s > kn.

Proof. Using Lemma 4, for even k, we are assured that there exists a prime
p such that k > p > k/2. If k is odd, k − 1 is even and we are assured of
the existence of prime p such that k − 1 > p > (k − 1)/2. As k − 1 is even,
p 6= k − 1 and p > (k − 1)/2 assures us that 2p > k, as 2p = k implies k is
even, a contradiction.

For both odd and even k, using Lemma 4, we have assurance of the
existence of a p that satisfies Lemma 2. Using Lemmas 1 and 2, we have 2npn

divides the denominator of r/s and as 2npn > kn, the proof is completed.

Corollary 1.
sn

k /∈ Ξn
k

Proof. This is a restatement of Theorem 1.

One can get a geometric like idea similar to Sondow’s. The partial sn
k

resides between decimal points in all the decimal sets in Ξn
k . Unlike the case of

e, the intervals don’t nest neatly. In fact, they migrate and overlap. Consider
that z2 has partials in the interval [1/4, 2/4], but as z2 = .6 · · · > 2/4, partials
don’t stay in this interval. But they do stay in some interval of the form

5



[.(x − 1), .x] of D4. Although D4 and D16 overlap, in this sense, s2
k will not

be at any endpoint of D16.
What happens when decimals become fixed? In every base they will

become fixed. Eventually they all nest and like Sondow’s e proof get trapped
between all possible rational convergence points.

4 A Suggestive Table

+1/4
+1/9 +1/4 +1/4 +1/4 +1/4 . . . +1/4
/∈ D4 +1/9 +1/9 +1/9 +1/9 . . . +1/9

/∈ D9 +1/16 +1/16 +1/16
...

/∈ D16 +1/25 +1/25
...

/∈ D25 +1/36
...

/∈ D36

+1/(k − 1)2

+1/k2

/∈ Dk2

. . .

Table 1: A list of all rational numbers between 0 and 1 is given by the number
sets along the diagonal. Partials of z2 are excluded from sets below and to
the upper left of the partial.

The result of applying Corollary 1 to all partial sums of z2 is given in
Table 1.1 The table shows that adding the numbers above each Dk2 , for
all k ≥ 2 gives results not in Dk2 or any previous rows’ such sets. So, for
example, 1/4+1/9 is not in D4, 1/4+1/9 is not in D4 or D9, 1/4+1/9+1/16
is not in D4, D9, or D16, etc.. That’s what Corollary 1 says.

Lemma 1 says that for all the series zn the denominators of their terms
cover the possible rational convergence points and Corollary 1 says the partial
sums of zn escape their terms. As all rational numbers between 0 and 1 are

1Table 1 might remind readers of Cantor’s diagonal method. We don’t pursue this idea
in this article. See [6].

6



in Ξn
k for some k sufficiently large this says partials are being, so to speak,

chased out of the Ξn
k park – possible rational convergence points. Where

could they go but to the irrational zoo, sorry!

5 A Simple Proof

We will designate the set of rational numbers in (0, 1) with Q(0, 1), the set
of irrationals in (0, 1) with H(0, 1), and the set of real numbers in (0, 1) with
R(0, 1). We use R(0, 1) = Q(0, 1) ∪ H(0, 1) and Q(0, 1) ∩ H(0, 1) = ∅ in the
following.

Theorem 2. zn is irrational.

Proof. Corollary 1 implies sn
k ∈ R(0, 1) \ Ξn

k . As limk→∞ sn
k = zn, using

Lemma 3, we have

zn ∈ R(0, 1) \ Q(0, 1) = H(0, 1). (3)

That is zn is irrational.

Some mathematicians, including the author, find this proof unsatisfac-
tory, but it is simple. I suggest that mathematicians have been trained to be
unduly suspicious of proofs like the above. Consider that the above is just
the same as

lim
n→∞

(−1/n, 1/n) = ∅,

where (−1/n, 1/n) designates an open interval. I’m with you in wanting to
viscerally feel a squeeze at work, so here’s another proof.

6 Towards greater precision

We drop the n subscript used previously with zn and slightly modify such
use of subscripts and superscripts in this section. The context should make
meanings clear. In that regard, we use the bases k as a fill in for base kn, to
further simplify notation.

Definition 3. Let Dεk

k be the set of all Dk decimal sets having an element

within εk of sk.
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Lemma 5. Let z be the convergence point of the series with partials sk. Then

z is irrational if there exists a monotonically decreasing sequence εk such that

lim
k→∞

εk = 0,

and
∞⋂

k=2

Dεk

k = ∅. (4)

Proof. We use proof by contraposition: p ⇒ q ⇔ ¬q ⇒ ¬p. Suppose z is
rational then z ∈ D∗

k, a specific decimal set. Define

εm = z − sm

and set
εk = 2εm.

Then

D∗

k ⊂
∞⋂

k=2

Dεk

k ,

so the intersection is not empty.

Definition 4. The precision of a decimal base, b, is 1/b.

Lemma 6. Given any ε there exists a decimal base b of greater precision

than ε; that is
1

b
< ε.

Proof. This is the Archimedean property of the reals [8].

Theorem 3. zn is irrational.

Proof. We need to define a sequence εk. Let

ε∗k = min{|x− sk| : x ∈ Ξk
2}.

We know by Corollary 1 that ε∗k > 0. We proceed inductively. For the first
iteration, let ε3 be a number such that ε3 < ε∗3. This excludes the decimal
sets of Ξ3

2 at this our first iteration. Assume we can generally do this for the
kth iteration. For the k + 1st iteration, using Lemma 6, there exists a base

8



in Ξk+r
2 , for some r such that ε∗k+r < εk/2. Set εk+1 = ε∗k+r. The procedure

gives ε values that exclude ever more decimal sets from Dεk

k . Regroup the
series. By Lemma 1, the exclusions are exhaustive, so

∞⋂

k=2

Dεk

k = ∅,

as needed.

Conclusion

The alternate proof definitely has a squeeze action to it and is more satisfying.
It seems like Sondow’s e proof with epsilon reasoning added.

Now that you are loaded up with all these decimal sets and the like, you
should be able to comprehend a yet shorter and more Sondow like (as in
geometric) proof. For any interval [.(y − 1), .y] containing z2 in some base b,
there is an interval of the form [.(x−1), .x] of Dr where r is the denominator
of some distant (r much greater than b) s2

k. Now suppose this .(x−1) decimal
is fixed in the approximation of z2 in base r. This means z ∈ [.(x − 1), .x]
but .(y − 1) and .y are not equal to either .(x− 1) or .x because they are in
Ξ2

k and, per Corollary 1, s2
k /∈ Ξ2

k. So .y can’t be z2. But this excludes all
candidate rational numbers. This is a translation into math of the idea that
an irrational number goes towards rational numbers of ever greater precision.
Once you have a fixed decimal in a base there is an interval containing z,
but there is a greater base of arbitrary precision yielding a similar interval
nested inside. This is like the picture of Sondow’s e proof. Greater precision
is needed for better approximations.

One more angle of interest. Consider .1 base 4. The partials all have
finite decimals when bases are powers of 4. That is there exists a sequence of
bases that give exact values of partials – no intervals. The equivalents for z
are partials with bases the denominators of sk. But the prime factors of these
bases vary – new primes are introduced via Bertrand’s postulate of Theorem
1. Now assume z is rational, say p/q, after a large upper limit of the partial
the decimal approximation in base q should be of the form .xq − 1. But this
approximates only one number. It is not possible for this to approximate
the infinite number of different numbers given by sk values. The q − 1 must
stop and different fixed decimals must occur. Otherwise the uniqueness of
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decimal representations is violated. We have then a contradiction. Your
finite alphabet won’t spell an infinite number of words – given you are just
repeating one letter!

By contradiction. Say z = p/q, then in base q the decimal representation
of z must be .(p−1)q − 1. Now represent sk values using base q. These have
primes not shared by q and there are an infinite number of such partial sums.
The representation of z in base q is impossible.
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