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Abstract

We prove that a partial sum of ζ(2) − 1 = z2 is not given by

any single decimal in a number base given by a denominator of its
terms. This result, applied to all partials, shows that there are an

infinite number of partial sums in one interval of the form Xk2 =
[.(x − 1), .x] where .x is a single, non-zero decimal in a number base

of the denominators of the terms of z2, here k2. Using this property
we show that z2 is contained in an open interval inside Xk2 . As all
possible rational values of z2 are the endpoints of these Xk intervals,

z2 must be irrational.

1 Introduction

Beuker gives a proof that ζ(2) is irrational [3]. It is calculus based, but
requires the prime number theorem, as well as subtle ε − δ reasoning. Here
we give a simpler proof that uses just basic number theory.

We use the following notation: for n > 1,

zn = ζ(n) − 1 =

∞
∑

j=2

1

jn
.

2 Decimal intervals

Our aim in this section is to show that the reduced fractions that give the
partial sums of zn require a denominator greater than that of the last term
defining the partial sum. Restated this says that partial sums of zn can’t be
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expressed as a finite decimal using for a base the denominators of any of the
partial sum’s terms.

The first lemma is a little more difficult than an exercise in Apostol’s In-
troduction to Analytic Number Theory [1, p. 23, problem 30], its inspiration.
We prove the general case.

Lemma 1. The reduced fraction, r/s giving

sm
k =

k
∑

j=2

1

jm
=

r

s
(1)

is such that 2m divides s.

Proof. The set {2, 3, . . . , k} will have a greatest power of 2 in it, a; the set
{2m, 3m, . . . , km} will have a greatest power of 2, ma. Also k! will have a
powers of 2 divisor with exponent b; and (k!)m will have a greatest power of
2 exponent of mb. Consider

(k!)m

(k!)m

k
∑

j=2

1

jm
=

(k!)m/2m + (k!)m/3m + · · · + (k!)m/km

(k!)m
. (2)

The term (k!)m/2ma will pull out the most 2 powers of any term, leaving a
term with an exponent of mb − ma for 2. As all other terms but this term
will have more than an exponent of 2mb−ma in their prime factorization, we
have the numerator of (2) has the form

2mb−ma(2A + B),

where 2 - B and A is some positive integer. This follows as all the terms in
the factored numerator have powers of 2 in them except the factored term
(k!)m/2ma. The denominator, meanwhile, has the factored form

2mbC,

where 2 - C . This leaves 2ma as a factor in the denominator with no powers
of 2 in the numerator, as needed.

Lemma 2. If p is a prime such that k > p > k/2, then pm divides s in (1).
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Proof. First note that (k, p) = 1. If p|k then there would have to exist r such
that rp = k, but by k > p > k/2, 2p > k making the existence of a natural
number r > 1 impossible.

The reasoning is much the same as in Lemma 1. Consider

(k!)m

(k!)m

k
∑

j=2

1

jm
=

(k!)m/2m + · · · + (k!)m/pm + · · · + (k!)m/km

(k!)m
. (3)

As (k, p) = 1, only the term (k!)m/pm will not have p in it. The sum of all
such terms will not be divisible by p, otherwise p would divide (k!)m/pm. As
p < k, pm divides (k!)m, the denominator of r/s, as needed.

Theorem 1. If

sm
k =

1

2m
+

1

3m
+ · · · +

1

km
=

r

s
, (4)

with r/s reduced, then s > km.

Proof. Bertrand’s postulate states that for any k ≥ 2, there exists a prime p
such that k < p < 2k [4]. If k of (4) is even we are assured that there exists
a prime p such that k > p > k/2. If k is odd k−1 is even and we are assured
of the existence of prime p such that k− 1 > p > (k− 1)/2. As k− 1 is even,
p 6= k − 1 and p > (k − 1)/2 assures us that 2p > k, as 2p = k implies k is
even, a contradiction.

For both odd and even k, using Bertrand’s postulate, we have assurance
of the existence of a p that satisfies Lemma 2. Using Lemmas 1 and 2, we
have 2mpm divides the denominator of (4) and as 2mpm > km, the proof is
completed.

So, for z2, we have the following.

Definition 1.

Dk2 = {0, 1/k2, . . . , (k2 − 1)/k2} = {0, .1, . . . , .(k2 − 1)} base k2

Corollary 1.

s2

n /∈
n

⋃

k=2

Dk2

Proof. This is an immediate consequence of Theorem 1.

3



+1/4
+1/9 +1/4 +1/4 +1/4 +1/4 . . . +1/4
/∈ D4 +1/9 +1/9 +1/9 +1/9 . . . +1/9

/∈ D9 +1/16 +1/16 +1/16
...

/∈ D16 +1/25 +1/25
...

/∈ D25 +1/36
...

/∈ D36

+1/(k − 1)2

+1/k2

/∈ Dk2

. . .

Table 1: A list of all rational numbers between 0 and 1 modified to exclude
them all via partial sums of z2.

The result of applying Corollary 1 to all partial sums of z2 is given in
Table 1. The table shows that adding the numbers above each Dk2 , for all
k ≥ 2 gives results not in Dk2 or any previous rows’ such sets. So, for example,
1/4+1/9 is not in D4, 1/4+1/9 is not in D4 or D9, 1/4+1/9+1/16 is not in
D4, D9, or D16, etc.. That’s what Corollary 1 says. Note that every rational
a/b ∈ (0, 1) is included in at least one Dk2 . For example, ab/b2 = a/b, a < b
and so a/b ∈ Db2 .

3 Lower bounds

In consideration of Table 1, all partials from some point on are in an interval
that partitions [0, 1].

Lemma 3. For every natural number k greater than 1, there exists a first

natural number Nk such that

s2

n ∈ ((x− 1)/k2, x/k2) (5)

for all n > Nk.
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Proof. We know 0 < z2 < 1. For a given k > 1, we can partition the interval
[0, 1]:

k
⋃

j=1

[

j − 1

k2
,

j

k2

]

= [0, 1].

Also, as no partial equals an endpoint and s2

n is a strictly increasing, conver-
gent sequence, there will be an endpoint that separates those intervals with
a finite number of partials in it from the one with an infinite number, a tail
of the series. The lemma is thus established.

Definition 2. For a given k, the interval that satisfies Lemma 3 is Xk.

4 Upper bounds

In this section

Ξn =
n

⋃

j=2

Dj2 .

and Sn = s2

n.

Lemma 4. For Sn and k < n there exists a minimum x/k2 such that Sn <
x/k2.

Proof. Using Theorem 1, Sn /∈ Ξn and the result follows.

Lemma 5. For every k there exists an x/k2 such that for all n > max{Nk, k}
[Sn, x/k2] is an interval.

Proof. This follows from Table 1 and Theorem 1.

5 z2 is irrational

Theorem 2. z2 is irrational.

Proof. The following is a nested sequence of intervals:

[S2, x4/4] ⊃ [S3, x9/9] ⊃ · · · ⊃ [Sn, xn2/n2] ⊃ . . . ,

where the right endpoints represent the best approximations in Ξn as given
by Lemma 5.

The intersection of these intervals gives z2 [2]. As all right endpoints are
excluded, z2 must be irrational.
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6 Conclusion

This result for the irrationality of z2 can be generalized; Theorem 1 gives
a result for the general case; Corollary 1 and Table 1 and the subsequent
lemmas can be easily modified for any n > 2.
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