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Abstract

We prove that a partial sum of ζ(2) − 1 = z2 is not given by any

single decimal in a number base given by a denominator of its terms.
This result, applied to all partials, shows that there are an infinite

number of partial sums in one interval of the form [.(x− 1), .x] where
.x is single decimal in a number base of the denominators of the terms

of z2. We show that ζ(2) − 1 is contained in an open interval inside
[.(x − 1), .x]. As all possible rational values of ζ(2) − 1 are in these
intervals, z2 must be irrational.

1 Introduction

Beuker gives a proof that ζ(2) is irrational [5]. It is calculus based, but
requires the prime number theorem, as well as subtle ε − δ reasoning. Here
we give a simpler proof that uses just basic number theory.

2 Bertrand

Our aim in this section is to show that the reduced fractions that give the
partial sums of zn require a denominator greater than that of the last term
defining the partial sum. Restated this says that partial sums of zn can’t be
expressed as a finite decimal using for a base the denominators of any of the
partial sum’s terms.

The first lemma is a little more difficult than an exercise in Apostol’s
Introduction to Analytic Number Theory [2, p. 23, problem 30], its inspira-
tion.
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Lemma 1. The reduced fraction, r/s giving

sm
k =

k
∑

j=2

1

jm
=

r

s
(1)

is such that 2m divides s.

Proof. The set {2, 3, . . . , k} will have a greatest power of 2 in it, a; the set
{2m, 3m, . . . , km} will have a greatest power of 2, ma. Also k! will have a
powers of 2 divisor with exponent b; and (k!)m will have a greatest power of
2 exponent of mb. Consider

(k!)m

(k!)m

k
∑

j=2

1

jm
=

(k!)m/2m + (k!)m/3m + · · · + (k!)m/km

(k!)m
. (2)

The term (k!)m/2ma will pull out the most 2 powers of any term, leaving a
term with an exponent of mb − ma for 2. As all other terms but this term
will have more than an exponent of 2mb−ma in their prime factorization, we
have the numerator of (2) has the form

2mb−ma(2A + B),

where 2 - B and A is some positive integer. This follows as all the terms in
the factored numerator have powers of 2 in them except the factored term
(k!)m/2ma. The denominator, meanwhile, has the factored form

2mbC,

where 2 - C . This leaves 2ma as a factor in the denominator with no powers
of 2 in the numerator, as needed.

Lemma 2. If p is a prime such that k > p > k/2, then pm divides s in (1).

Proof. First note that (k, p) = 1. If p|k then there would have to exist r such
that rp = k, but by k > p > k/2, 2p > k making the existence of a natural
number r > 1 impossible.

The reasoning is much the same as in Lemma 1. Consider

(k!)m

(k!)m

k
∑

j=2

1

jm
=

(k!)m/2m + · · · + (k!)m/pm + · · · + (k!)m/km

(k!)m
. (3)
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As (k, p) = 1, only the term (k!)m/pm will not have p in it. The sum of all
such terms will not be divisible by p, otherwise p would divide (k!)m/pm. As
p < k, pm divides (k!)m, the denominator of r/s, as needed.

Theorem 1. If

sm
k =

1

2m
+

1

3m
+ · · · +

1

km
=

r

s
, (4)

with r/s reduced, then s > km.

Proof. Bertrand’s postulate states that for any k ≥ 2, there exists a prime p
such that k < p < 2k [10]. If k of (4) is even we are assured that there exists
a prime p such that k > p > k/2. If k is odd k−1 is even and we are assured
of the existence of prime p such that k− 1 > p > (k− 1)/2. As k− 1 is even,
p 6= k − 1 and p > (k − 1)/2 assures us that 2p > k, as 2p = k implies k is
even, a contradiction.

For both odd and even k, using Bertrand’s postulate, we have assurance
of the existence of a p that satisfies Lemma 2. Using Lemmas 1 and 2, we
have 2mpm divides the denominator of (4) and as 2mpm > km, the proof is
completed.

So, for z2, we have the following.

Definition 1.

Dk2 = {0, 1/k2, . . . , (k2 − 1)/k2} = {0, .1, . . . , .(k2 − 1)} base k2

Corollary 1.

s2

n /∈
n

⋃

k=2

Dk2

Proof. Immediate.

3 Cantor

The result of applying Corollary 1 to all partial sums of z2 is given in Table 1.
The table shows that adding the numbers above each Dk2 , for all k ≥ 2 gives
results not in Dk2 or any previous rows such sets. So, for example, 1/4+1/9
is not in D4, 1/4+1/9 is not in D4 or D9, 1/4+1/9+1/16 is not in D4, D9,
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+1/4
+1/9 +1/4 +1/4 +1/4 +1/4 . . . +1/4
/∈ D4 +1/9 +1/9 +1/9 +1/9 . . . +1/9

/∈ D9 +1/16 +1/16 +1/16
...

/∈ D16 +1/25 +1/25
...

/∈ D25 +1/36
...

/∈ D36

+1/(k − 1)2

+1/k2

/∈ Dk2

. . .

Table 1: A list of all rational numbers between 0 and 1 modified to exclude
them all via partial sums of z2.

or D16, etc.. Can we conclude that z2 is irrational? The table should remind
readers of Cantor’s diagonal method. The catch with this conclusion is that
we are not working with a single decimal system and verification via decimal
notation is wanting.1 We can, however, build a proof using the property that
this table indicates.

Lemma 3. For every natural number k greater than 1, there exists a natural

number Nk such that

s2

n ∈ ((x− 1)/k2, x/k2) (5)

for all n > Nk.

Proof. We know 0 < z2 < 1. For a given k, we can partition the interval
[0, 1]:

k
⋃

j=1

[

j − 1

k2
,

j

k2

]

= [0, 1].

Also, as no partial equals an endpoint and s2
n is a strictly increasing, conver-

gent sequence, there will be an endpoint that separates those intervals with

1Earlier drafts stopped here. The list of rationals are unambiguous and exhaustive and

partials go through points moving further into the Southeast section of the table. Precision

must increase implying an irrational number. Theorem 2 develops this idea conclusively.
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a finite number of partials in it from the one with an infinite number, a tail
of the series. This interval is the one of (5), establishing the theorem.

4 Knopp

In this section we develop an upper bound for z2 based on the treatment of
this subject given in Knopp [11, p. 260].

Lemma 4.

z2 < s2

n +
1

n
(6)

Proof. As (n + 1)2 > n(n + 1)

1

(n + 1)2
<

1

n(n + 1)

As

z2 − s2

n =

∞
∑

j=n+1

1

j
,

z2 − s2

n <
1

n(n + 1)
+

1

(n + 1)(n + 2)
+ . . . . (7)

Now
1

n(n + 1)
=

1

n
−

1

n + 1
,

so the series in (7) telescopes to 1/n giving (6), as needed.

5 Proof for z2

In this section,

Sn =

n
∑

m=2

1

m2
.

Lemma 5. For every natural number k > 2, there exists x ∈ {1, 2, . . . , k}
and N such that for all n > N

[

Sn, Sn +
1

n

]

⊂

(

x − 1

k2
,

x

k2

)

(8)
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Proof. The left endpoint. As partials Sn never go through dots on Ck2 circles,
if k < n, we know there is a N such that

Sn ∈

(

x − 1

k2
,

x

k2

]

for all n > N . A last radii crosses through a dot and the remaining radii are
counter-clockwise of that rational boundary.

The right endpoint. We use that Sn + 1/n is a decreasing sequence con-
verging to z2 [11]. First if Sn + 1/n = x/k2, then

Sn+1 +
1

n + 1
∈

(

x − 1

k2
,

x

k2

)

and the Lemma is established. Next, suppose there exists n∗ > N such that

x

k2
< Sn∗+j +

1

n∗ + j
< Sn∗ +

1

n∗

for all natural number j > 0, then the interval [x/k2, (x + 1)/k2] would be
the unique interval for k2 that has an infinity of points in it, a contradiction.
So there must be j such that

Sn∗+j +
1

n∗ + j
<

x

k2

and thus the right hand limit is established by taking N large enough. The
lemma, (8), is established.

Theorem 2. z2 is irrational.

Proof. Suppose to obtain a contradiction that z2 = a/b. Then, using Lemma
5, z2 ∈ [Sn, Sn + 1/n], and all possible fractions for z2 are endpoints of
intervals of the form [(x− 1)/k2, x/k2], we have a contradiction.
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