BAYESIAN TRANSFER LEARNING FOR DEEP NETWORKS

J. Wohlert, A. M. Munk, S. Sengupta, F. Laumann

Technical University of Denmark
Department of Applied Mathematics and Computer Science
2800 Lyngby, Denmark

ABSTRACT

We propose a method for transfer learning for deep networks
through Bayesian inference, where an approximate posterior
distribution g(w|6) of model parameters w is learned through
variational approximation. Utilizing Bayes by Backprop we
optimize the parameters 6 associated with the approximate
distribution. When performing transfer learning we consider
two tasks; A and B. Firstly, an approximate posterior g 4 (w|6)
is learned from task A which is afterwards transferred as a
prior p(w) — ga(w|#) when learning the approximate pos-
terior distribution ¢p(w|#@) for task B. Initially, we consider
a multivariate normal distribution q(w|0) = N (u,), with
diagonal covariance matrix 3. Secondly, we consider the
prospects of introducing more expressive approximate dis-
tributions - specifically those known as normalizing flows.
By investigating these concepts on the MNIST data set we
conclude that utilizing normalizing flows does not improve
Bayesian inference in the context presented here. Further, we
show that transfer learning is not feasible using our proposed
architecture and our definition of task A and task B, but no
general conclusion regarding rejecting a Bayesian approach
to transfer learning can be made.

1. INTRODUCTION

When optimally trained, deep neural networks (DNN) excel
at solving a variety of complex and specialized tasks, such as
style transfer [1] and speech recognition [2], but suffer from
what is known as catastrophic forgetting [3]. The term de-
scribes the inability for classically trained DNNs to remem-
ber previous tasks when exposed to and trained to solve new
ones. Most current methods use what is known as the mul-
titask learning paradigm [4] in order to alleviate the issue
of forgetting. The method involves interleaving data asso-
ciated with different tasks before training. Thus, network
weights are optimized to solve the joint set of tasks. If, on
the other hand, tasks are presented sequentially, training re-
quires task-associated data to be remembered and reused ev-
ery time a new task is presented. This, however, is often un-
desirable for large amounts of tasks as memory requirements
and number of retraining sessions is proportional to number

of tasks. Secondly, this approach arguably does not reflect
true learning of previous learned tasks. The model is simply
retrained to map increasingly complex systems, rather than
dynamically adapt when confronted with a new task. A new
recently proposed strategy allows models to continue learn-
ing through what they present as elastic weight consolidation
(EWCQC) [5]. The method considers data from two different
tasks as independent, and by inferring the posterior weight
distribution for task A p(w|D4), they seek to train a model,
able to solve the second task B when exposed to new data
Dp, while remembering task A. Specifically, p(w|Dy4) acts
as a prior to p(w|D), such that p(w|D4) enforces a regu-
larizer. Consequently, the final weight distribution p(w|D),
where D = D4 U Dp, is learned such as to recognize and be
able to solve both task A and B. In other words, learning was
transferred from task A to B to formulate a complete model.

In this work, transfer learning in conjunction with Bayesian
inference and DNN will be investigated. Thus, a marginaliza-
tion over the weights w is performed, which in turn requires
a posterior distribution - e.g. p(w|D). Drawing inference
through a posterior distribution allows for transfer learning.
The concept of transfer learning, as defined in this project,
will be largely inspired by the main idea from [5]. However,
while [5] tries to address catastrophic forgetting, this project
will not. The difference between the two approaches is subtle
but immensely important. In this project, knowledge between
two different tasks will be transferred, but not in order to
maintain the ability to solve task A, but rather to aid and/or
improve the ability to solve task B. The idea is that task B
is assumed to be similar to task A. Thus, it is hypothesized
that using p(w|D,) as a prior, i.e. p(w) — p(w|D4) when
learning to solve task B results in faster convergence and
potentially achieving a higher accuracy than using a more
standard prior - such as a standard multivariate normal distri-
bution.

Since exact Bayesian inference is generally intractable we
shall utilize variational approximation in order to approximate
the posterior distributions of the weights. To this end Bayes
by Backprop [6] is implemented, which provides a principled
way of performing variational inference on deep networks.

Finally, due to the approximate distribution often not be-

ing expressive enough, i.e. assuming independence between
weights, we consider the prospects of employing a more ex-
pressive approximate distribution. Specifically, we shall in-
vestigate the possibilities of using variational inference with
normalizing flows [7].

2. METHODS

Bayesian inference draws inference about the weight distri-
bution p(w|D), where D = {X,y} defines a data set. Here
X € RV*P and y € RY defines known observations and
labels respectively, N is the number of observations and D is
the number of features defining an observation. Denoting a
new observation with a correspondong label we try to predict
by & and ¢ respectively, a conditional predictive distribution
of g given observation Z is found by means of marginalization
of the weights p(g|&,D) = [, p(9|2, w)p(w|D)dw. How-
ever, this integration is intractable for deep neural networks,
as e.g. [8] shows, and so following Blundell et al. [0] we
employ a variational approximation scheme in order to ap-
proximate p(w|D). In general, we can consider the log distri-
bution of any observed data expressed through the following
decomposition [9, pp. 462-473],

Inp(D) = L(q) + K L(q||p), (1)
= w nLD’w) w
£ = [awipymBoaw. ab)

p(w|D)

KL(allp) = = [atwlo)n 22

where K L(g||p) is the Kullback-Leibler divergence, £(q) is

a lower bound for In p(D) and ¢(w|#) is the variational distri-

bution to p(w|D). We can optimize the parameters 6 by min-

imizing Eq. (Ic). This minimization drives g(w|6) towards

p(w|D), and so minimizes the additional information associ-

ated with the imposed approximation. Denoting the optimal
parameters as 0%, we write

0" = argeminKL((J(U’I@)\IP(U’|D))7 @

dw, (1c)

= argemin K L(q(w]0)|[p(w)) — Ey(we) np(Dlw)],

where p(w) is a fixed prior distribution of the weights and
p(D|w) is the likelihood function. Thus, the cost function is
defined as,

F(D,0) = KL(g(w|0)|[p(w)) = Eq(wo) [Inp(DPlw)]. (3)

As in [6], we refer to the prior-dependent term and the data-
dependent term of Eq. (3) as the complexity cost and likeli-
hood cost respectively.

Due to the general computational infeasibility of perform-
ing the analytical integrations of Eq. (3), we shall turn to
Monte Carlo approximation,

F(D,0) ~ Zlnq(w(i)|9)—1np(w(i))—1np(D\w(i)), 4

i=1

here w(?) is the i’th draw from the variational distribution
¢(w|f) and n is the number of draws. The minimization of
Eq. (4) by use of backpropagation provides an unbiased esti-
mate of the gradient [0] and is known as Bayes by Backprop.
Further considering the application of neural networks in this
work and thus also minibatch optimization, we may seek
to weigh the complexity cost relative to the likelihood cost.
Thus, by partitioning D into M parts, {D;1,Da,..., D},
we define an adjusted cost associated with a minibatch by,

Fi(Di,0) = BiK L(q(w]0)[[p(w)) — Eqeuw|o) [Inp(Di|w)],

where i = 1,2,..., M — 1, M and we consider 3; = ﬁ or
Bi = 2215—:1 such that Zf\il B; = 1. Both weights satisfy
Ey [Zf‘i (D, 9)] = F(D,0) as discussed by [6]. We
shall later determine which form of [3; is most appropriate in
this project.

It should be noted that the minimization of Eq. (2), is sub-
ject to the choice of the approximate distribution. Often ex-
act minimization of Eq. (2) cannot be obtained, as ¢(w|0) is
not expressive enough such that the true posterior is not in
g(w|f). An example of a distribution which may lack suffi-
cient complexity is the multivariate normal distribution where
weights are assumed independent,

q(w|0) = N(p, %), (5)

with p denoting the mean and 3 being a diagonal covariance
matrix, which are optimized, i.e. 0§ = {u, X}.

2.1. Introducing more complex distributions

One approach to introduce a more complex approximate dis-
tribution, would simply be to relax the assumption of inde-
pendent sets of weights between layers - i.e. assuming dense
covariance matrices (for each set of weights between layers),

p(w) = [[p(wr), ©)

where w; refers to weights joining layer [— 1 with layer [
forl =1,..., L with layers L (not counting the input layer).
However, optimizing Eq. (6) where p(w;) are general Gaus-
sian distributions requires O(n;}) computations for each layer,
where n; is the number of weights connecting layer [— 1
to layer . We therefore seek a method that introduces co-
variance and increased complexity, while limiting the num-
ber of computations. Normalizing flows [7] proposes to use
a smooth invertible mapping f : R™ — R™, where f is
constructed such that the determinant of its Jacobian is easily
calculable. If we let zy € R™ be a stochastic variable, its
probability density can be evaluated under the transformation

f(zo) as

Z1 = f(zo)a (7)

-1
det ﬁ , ®)

(=) = a(z0) |det -

where Eq. (7) and Eq. (8) are defined as the flow and nor-
malizing flow respectively. It is straightforward to apply such
transformations sequentially.

zx = fk o fxk—10---0 fao fi(20), 9
Ofr
Zk—1

det
“a

K
Ing(zx) =Ing(z) — Zln , (10
k=1

Each transformation increases the complexity of ¢(zx) and
allows for a multimodal distribution.

Thus, the flow is an attempt to get closer to the true
posterior distribution, i.e. p(w|D) =~ g, where qx =
HZL:1 q(z%) - ie. a flow is made for each inter-layer set
of weights, zk.

Additionally, the matrix determinant lemma allows us to
construct mappings for which the computation of the deter-
minant in Eq. (10) be done in O(n;), and hence also the opti-
mization. This family of transforms take the form

f(z) =z +uh(a®z +b),

where u € R™, a € R™ and b are parameters to be op-
timized between each layer and & is a smooth and invertible
function with derivative h’. Thus the determinant can be com-
puted as

‘detaf =1+ u"HW(a”z + b)w|. an

0z
In order to ensure f(z) to be invertible, we shall use what is
known as Planar flows [7]. Planar flows are defined as fol-
lows,
f(z) = z + a(u,a)h(a” z + b),

where h(z) = tanh(z) and

29
lall

where m(z) = —1 + log (1 + ¢®). Normalizing flows were
originally conceived for deep latent variable models, but in
this project they are introduced in the context of weights as
follows

(u,a) =u+ [m(a"u) —a"u] a

zZ0 ~ N(H'Oa 20)7

w = 2zk,

(12a)
(12b)
3}y is again a diagonal covariance matrix, 4o is a mean vector

(both to be optimized) and 2y is the initial stochastic variable,
which is propagated through the flow Eq. (9).

2.2. Transfer learning

When seeking to perform transfer learning, we do so by con-
sidering a learned approximate posterior g(w|D4) as a prior
when training a network on a data set Dp. Note that the ap-
proximate distribution learned from data set A, is now explic-
itly written as a conditional distribution. As a short-hand no-
tation any approximate posterior distribution conditioned on
data set A will be denoted ¢4 (w), and should be considered
fixed.
In this project transfer learning is defined as follows,

p(w|Dp) x p(Dp|w)p(w), p(w) = ga(w)p(w), (13)

where independence is assumed between the weights and
w = {w,w} - i.e. normalizing flows is not considered when
doing transfer learning as independence cannot be assumed
in this case. The partition p(w) = ga(w)p(w) in Eq. (13)
allows complete control of which parts of the network should
be shared across two domains. Considering the use of fully
connected DNNs, w is considered the weights associated
with the input layer through the last hidden layer and w
is considered associated with the last hidden layer and the
output layer. This specific partition reflects the assumption
that the initial bulk of the network captures general aspect
or features associated with different domains, which could
be transferred across these domains. On the other hand, the
final connection is allowed to be adjusted to the specific data
set. Thus, w is considered independent of D 4, and will be
assumed to be a more typical prior - e.g. p(w) = N(0,I),
where I is the identity matrix.

The benefit of this partition, is that only part of the two
models used to solve task A and B needs to be identical. For
example, by only transferring the weights distribution of the
first few layers, the number of outputs can be made task spe-
cific.

In terms of training, the prior distribution when learning
the approximate distribution for task A is assumed to be a
multivariate normal of the form, p(w) = N (0,I). How-
ever, when learning the approximate distribution related to
task B, only the weights from the final hidden layer to the out-
put layer is a standard multivariate normal p(w) = N(0, I),
and the prior for the remaining weights is the approximate
posterior distribution learned from task A, p(w) = ga(w).
The approximate distributions for both task A and B are as-
sumed to be a multivarite Gaussian distributions, ¢(w;|D;) =
N(pj,%;), with mean p; and diagonal covariance matrix
3, both of which are optimized. Here index j = {A,B}
denotes the association with either task A or B.

3. EXPERIMENTS

The model architecture considered throughout this project is
a DNN with two hidden layers, each with 400 hidden units.

The output layer was defined by whatever task in consider-
ation. Throughout all experiments conducted in this report,
optimization was performed using the Adam optimizer [10]
with a learning rate of 107°. Also all integrals were approxi-
mated using 10 Monte Carlo samples. Our github repository!
contains all necessary code needed to recreate our results.

In terms of priors, when not considering transfer learning
the prior p(w) was a Gaussian distribution such that p(w) =
N(0,I). Regardless of considering transfer learning or not
the approximate distribution was initialized as q(winit|6) =
N (Binit, Zinit)» where each element in 3,5, and p, denoted
>;; and p; respectively, is drawn from a uniform distribution
such that

Hi ~ u(oa 1)7
log¥;; ~U(—a — 8, —8),

(14a)
(14b)

where o = %.

Before evaluating our network on the ability to transfer
knowledge, we wanted to investigate which of the previ-
ously mentioned values for 3; promised the highest accuracy.
To this end, the model was trained and evaluated using the
MNIST data set [| 1]. The data was split into a 60, 000 sized
training set and a 10, 000 sized validation set - i.e. all digits
(0-9) were considered. The data was standardised by dividing
the pixel intensities by 126, similarly to [6]. The approxi-
mate distribution had the form Eq. (5), and the aim was to
reproduce the results obtained in [6].

Using the optimal found form of /3;, experiments were
conducted in order to assess the prospects of introducing
more complex approximate distribution by use of normaliz-
ing flows. To this end, elements in ¥, and gy from Eq. (12)
were also initialized as given in Eq. (14).

Finally, experiments were undertaken to evaluate the
transfer abilities of our model. Again, we turned to the
MNIST data set which was divided into two disjoint sets of
35,000 data points each (30,000 as training data and 5, 000
validation data) - D4 which contained the digits (0, 1, 2, 3,
4), and Dy which contained the digits (5, 6, 7, 8, 9). Thus,
learning to differentiate between the digits in each set de-
fines task A and task B. Furthermore, different fractions of
the training data set associated with task B was considered.
Namely 0.1, 0.5, and 1 were examined to discover any depen-
dencies in this regard. When using a smaller training set the
model would be more likely to over-fit and a good prior can
help alleviate this issue through regularization. If the prior is
close to the true distribution we would expect an introduction
of such a prior to significantly help training a model using
only small training sets. Hence, assuming the approximate
posterior distribution learned from task A indeed could be
transferred as a prior to task B, we hoped to see that the
model associated with task B either converged faster and/or
better than not performing transfer learning. Additionally,

Uhttps://github.com/ammunk/bayes_02456

this effect (if present) might become less noticeable as the
training set increases.

4. RESULTS

Fig. 1 shows the validation accuracy after training three mod-
els for 600 epochs on the MNIST data set using different j3;
values using the approximate distribution Eq. (5). Specifi-
cally we considered 3; = 221\];1—:1 Bi = ﬁ and B; = 0 (in-
cluded as a reference) which would result in maximizing the
likelihood function averaged wrt. the approximate distribu-

tion. We shall refer to each validation accuracy as accgrayes,
aCCBIundell> accyr, for B; = 47, B; = 221134{7:11, B; = 0 respec-
tively.

Clearly, we found accpiundell, 8CCML > 8CCGraves- 1t fur-
ther appeared as if accplundel > accyr, even though both
models seemed to be learning even after 600 epochs and thus
could be reaching a higher validation accuracy if allowed fur-
ther training - but due to [6] only training for 600 epochs
we did the same for the purpose of comparison. To this end
it should further be noted that the accuracy achieved using
Bi = 22,5—:11 is relatively close to the reported accuracy found
in [6], which we denote accpaseline = 98.18%. Specifically
we reached accplunden ~ 96.88%.

Accuracy

— pB=0

g L
— b=

50 100 150 200 250 300 350 400 450 500 550 600
Epochs

Fig. 1. Validation acccuracies as function of number of
epochs. Each line corresponds to a different (3; value. The
models are trained and validated using the MNIST data set
and we considered all digits (0-9)

Due to these results all subsequent experiments were con-
ducted using §3; = 2211;—:1

Next, we turned to the investigation of introducing a more
complex approximate posterior distribution (which allows
weight correlation and a multi-modal distribution), namely
by using normalizing flows. Fig. 2 shows the validation accu-

racy using K = 16 flows of the so-called Planar flows. The

https://github.com/ammunk/bayes_02456

data set used was the MNIST and we considered the digits
(0-9). As a comparison we used the performance achieved
using the approximate distribution of the form Eq. (5) from
the previous experiment. Evidently, we did not achieve better
results using normalizing flows, and we found that using the
otherwise less expressive approximate distribution Eq. (5)
performed better i.e. a relatively more consistent increase in
validation accuracy is seen when not using normalizing flows,
whereas using normalizing flows seemed to be stuck close to
a local minimum.

Accuracy

=
ot

—— Without Normalizing Flows

—— With Normalizing Flows

60 120 180 240 300 360 420 480 540 600
Epochs

Fig. 2. Validation accuracies as function of epochs of two
models trained on the MNIST data set using the digits (0-9).
The green and blue lines corresponds to a trained model with
and without normalizing flows.

Finally, we considered the prospects of performing trans-
fer learning using Eq. (5) as the approximate posterior due
to the previous results. Fig. 3 shows the validation accura-
cies of performing transfer learning, in which experiments
were conducted with the model trained on 10%, 50%, and
100% of the total training data that is associated with task B
- i.e. the digits (5-9). As a reference we trained a correspond-
ing model on the same data sets, but without using transfer
learning. Evidently, when using our model architecture and
definition of task A and task B, transfer learning did not im-
prove either convergence rate (i.e. at least for some significant
amount of epochs the transfer learning model outperforms
the non-transfer learning model) or final performance (after
600 epochs). In fact across all fractions we found that all
models utilizing transfer learning significantly hurt the perfor-
mance, and we were not able to achieve a validation accuracy
z 66.5%.

»*’*M
i,

kT

Without tansfer learning

i)

Fraction: 0.10 —*— Fraction: 1.0
| —*— Fraction: 0.50
|
206 | AR
A alla Al Ar
oo Aulia Al
muk"“‘l*m at

’
T

Al W) "
‘&‘ f Wow i Al b"'
J A With transfer learning

0.2 i —4&— Fraction: 0.10 —4&— Fraction: 1.0
—&— Fraction: 0.50

50 100 150 200 250 300 350 400 450 500 550 600
Epochs

Fig. 3. Validation accuracies (using the digits (5-9) of the
MNIST data set) as function of epochs with and without trans-
fer learning using different fractions of the training data. The
stars and triangles denotes models trained without and with
transfer learning respectively. The line colors are associated
with the fraction of the training data used for training.

5. DISCUSSION AND CONCLUSION

Before discarding our proposed method on how to perform
transfer leaning, we shall discuss possible reasons which may
explain why our results should perhaps only be considered
preliminary.

First of all, we did not perform a thorough exploration
of the hyperparameters, i.e. learning rate, approximate pos-
terior initialization (Eq. (14), Eq. (12)), the form of the prior,
number of flows, number of hidden layers and units etc. Opti-
mally, a cross-validation scheme should have been employed,
however due to the significantly long duration spend on train-
ing every model (~ 6h,~ 34h for non-normalizing flows
and normalizing flows respectively), true cross-validation was
not feasible. Thus, we performed a manual selection of hyper-
parameters, which meant trying a variety of different param-
eter settings and training the models for only ~ 50 epochs.
The setting with the seemingly most promising validation per-
formance was then picked. Consequently, we cannot ensure
our results reflect the maximum potential of performing trans-
fer learning. In fact this may explain why we were not able
to quite reach the performance reported in [6], as we saw in
Fig. 1. Specifically, [6] does not state how they initialized
their approximate posterior, and we found that the perfor-
mance of using Bayesian inference with variational approx-

imation is highly sensitive to the initialization of the approxi-
mate posterior distribution - i.e. Eq. (14).

Secondly, and more specifically why our transfer learning
scheme seemed to fail, one should consider the importance
of the prior when performing Bayesian inference. While a
good prior, which is not too far from the true (unknown) dis-
tribution of e.g. weights, can help find an optimal approxi-
mate posterior, a bad prior will do the opposite. If the prior
is poorly chosen, the available data need to show strong evi-
dence on how the weights ought to be distributed. Thus our
results, as seen in Fig. 3 may just reflect the fact, that using
the approximate posterior from task A as a prior when solving
task B is simply a poor prior, and so we cannot expect good
performances. This seems to be supported by the fact that
when a larger fraction of the training data is used, we are pro-
vided with stronger data-driven evidence on how to distribute
the weights. This would in turn provide a better performance,
as seen.

Why then, is using the posterior as a prior a bad choice?
First of all, the models considered have been simple fully con-
nected deep networks. Our assumption that part of the net-
works captures features shared by both task A and B may sim-
ply be wrong for these features. Instead, one could consider
using convolutional layers, which are known to capture gen-
eral features in images (such as edges and color-opponency)
[12]. In the context of transfer learning, where the data con-
sists of images (like MNIST), it would seem more appropri-
ate that such features are shared. In other words, in order
for transfer learning to work, where a posterior distribution
of weights are used as a prior, the specific architecture of the
used models need to be taken into consideration.

As a final remark regarding as to why transfer learning
appeared to be unsuccessful, one should consider if perhaps
our definitions of task A and task B were too different. As
an analogy, maybe what have been done in this project corre-
sponds to trying to learn how to play soccer using ones ability
to play chess.

For these reasons we do not believe transfer learning,
where a posterior distribution is used as a prior, should be
discarded. Rather, the results achieved in this project hints
at potential shortcomings and thus could be used to narrow
down further investigations.

In conclusion, transfer learning was not successful given
our architecture, choice of hyperparameters and definition of
task A and B. Nonetheless, further investigation is required in
order to generally deem transfer learning, where a posterior
distribution is used as a prior, ineffective or not.

6. REFERENCES

[1] Matthias Bethge Leon A. Gatys, Alexander S. Ecker, “A
neural algorithm of artistic style,” arXiv, 2015.

[2] Case C. Casper J. Catanzaro B. Diamos G. Elsen E. ...
& Ng A. Y Hannun, A., “Deep speech: Scaling up end-
to-end speech recognition,” arXiv preprint, 2014.

[3]1 RM French, “Catastrophic forgetting in connectionist
networks,” Trends in Cognitive Sciences, vol. 3, no. 4,
pp. 128-135, 1999.

[4] Rich Caruana, “Multitask learning,”
learn, pp. 95-133. Springer, 1998.

in Learning to

[5] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A. Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, Demis Hassabis, Claudia Clopath,
Dharshan Kumaran, and Raia Hadsell, “Overcom-
ing catastrophic forgetting in neural networks [arxiv],”
arXiv, pp. 13 pp., 13 pp., 2016.

[6] Charles Blundell, Julien Cornebise, Koray
Kavukcuoglu, Daan Wierstra, and Google Deep-
mind, “Weight uncertainty in neural networks,”
2016.

[7] Danilo Jimenez Rezende and Shakir Mohamed, “Varia-
tional inference with normalizing flows,” arXiv preprint,
2015.

[8] Yarin Gal, Uncertainty in deep learning, Ph.D. thesis,
PhD thesis, University of Cambridge, 2016.

[9] Christopher M. Bishop, Pattern Recognition and Ma-
chine Learning, Springer, 2009.

[10] Diederik Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” arXiv preprint, 2014.

[11] Bottou L. Bengio Y. LeCun, Y. and P. Haffner,
“Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, 86, p. 22782324, 1998.

[12] Matthew D. Zeiler and Rob Fergus, “Visualizing and
understanding convolutional networks,” Lecture Notes
in Computer Science (including Subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), vol. 8689, no. 1, pp. 818-833, 2014.

	 INTRODUCTION
	 METHODS
	 Introducing more complex distributions
	 Transfer learning

	 EXPERIMENTS
	 RESULTS
	 DISCUSSION AND CONCLUSION
	 References

