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In this brief note, we show how to apply Kummer’s and other quadratic transformation

formulas for Gauss’ and generalized hypergeometric functions in order to obtain transfor-

mation and summation formulas for series with harmonic numbers that contain one or two

continuous parameters.

There is an extensive literature on application of Newton-Andrews method for finding identities with

harmonic numbers

Hn =

n∑
k=1

1

k

and generalized Harmonic numbers

H(r)
n =

n∑
k=1

1

kr
.

For a general description of this method and partial overview of the literature one can consult the papers

[3–5]. The aim of this paper is to study transformation formulas that are obtained from quadratic trans-

formations of hypergeometric function by integration using Euler’s integral representation for Harmonic

numbers

Hn =

∫ 1

0

1− zn

1− z
dz. (1)

We will use the standard notation for hypergeometric function

rFs

(
a1, . . . ar
b1, . . . , bs

; z

)
=

∞∑
n=0

(a1)n . . . (ar)n
n!(b1)n . . . (bs)n

zn

where (a)n = a(a+ 1) . . . (a+ n− 1) is the Pochhammer symbol.

Theorem 1. Let a and b be arbitrary complex numbers such that a+b−1/2 is not a negative integer. Then

2

∞∑
n=1

(2a)n(2b)n
n! (a+ b+ 1/2)n

Hn

2n
=

∞∑
n=1

(a)n(b)n
n! (a+ b+ 1/2)n

Hn,

4

∞∑
n=1

(2a)n(2b)n
n! (a+ b+ 1/2)n

H2
n +H

(2)
n

2n
=

∞∑
n=1

(a)n(b)n
n! (a+ b+ 1/2)n

(H2
n +H(2)

n ).

Proof. Starting from the quadratic transformation formula 2.11.2 in [1]

2F1

(
2a, 2b

a+ b+ 1
2

; z

)
= 2F1

(
a, b

a+ b+ 1
2

; 4z(1− z)
)
, Re z <

1

2
, (2)

replace z in equation (2) with z
2 and multiply both sides by (1− z)c−1 to get

∞∑
n=1

(2a)n(2b)n
n! (a+ b+ 1/2)n 2n

(1− z)c−1zn =

∞∑
n=1

(a)n(b)n
n! (a+ b+ 1/2)n

(1− z)c−1
(
2z − z2

)n
,



2

where now z ∈ [0, 1]. This series converges uniformly. Next we integrate this series termwise with respect

to z from 0 to 1. The integral on the LHS is easy to calculate and equals B(c, n+ 1). The integral on the

RHS is ∫ 1

0
(1− z)c−1

(
1− (2z − z2)n

)
dz =

∫ 1

0
(1− z)c−1

(
1− (1− z)2

)n
dz

=

∫ 1

0
zc−1

(
1− z2

)n
dz

=
1

2

∫ 1

0
z

c−1

2 (1− z)n dz

=
1

2
B
(
c+1

2 , n+ 1
)
.

After multiplication of both sides by c we deduce the series transformation

∞∑
n=1

(2a)n(2b)n
n! (a+ b+ 1/2)n 2n

Γ(c+ 1)Γ(n+ 1)

Γ(c+ n+ 1)
=

∞∑
n=1

(a)n(b)n
n! (a+ b+ 1/2)n

Γ( c2 + 1)Γ(n+ 1)

Γ( c2 + n+ 1)
.

Next differentiate both sides of this equation with respect to c at c = 0 using formulas

d

dc

Γ(c+ 1)Γ(n+ 1)

Γ(c+ n+ 1)

∣∣∣∣
c=0

= −Hn,

d2

dc2

Γ(c+ 1)Γ(n+ 1)

Γ(c+ n+ 1)

∣∣∣∣
c=0

= H2
n +H(2)

n ,

from which the results stated in the theorem follow immediately.

Corollary 1. Let ψ(x) = Γ′(x)
Γ(x) denote the digamma function. Then

∞∑
n=1

(n+ 1)(2a)n

(a+ 3
2)n2n

Hn =
(
a+ 1

2

) (
ψ(a+ 1

2)− ψ(1
2)
)
.

Proof. In the first formula of Theorem 1 put b = 1

2

∞∑
n=1

(2a)n(n+ 1)

(a+ 3/2)n

Hn

2n
=

∞∑
n=1

(a)n
(a+ b+ 1/2)n

Hn. (3)

The sum on the left equals

∞∑
n=1

(a)n
(a+ 3/2)n

Hn =
d

dc
2F1

(
a, c

a+ 3
2

; 1

) ∣∣∣∣
c=1

=
d

dc

Γ(a+ 3
2)Γ(3

2 − c)
Γ(3

2)Γ(a+ 3
2 − c)

∣∣∣∣
c=1

= 2
(
a+ 1

2

) (
ψ(a+ 1

2)− ψ(1
2)
)
. (4)

After combining (3) and (4) the proof is complete.

Corollary 2. With the same notations as in Corollary 1 we have

∞∑
n=1

(a)n(1− a)n
(n!)2

Hn

2n
=

√
π

2Γ(1− a
2 )Γ(a+1

2 )
(ψ(1− a

2 ) + ψ(a+1
2 )− ψ(1)− ψ(1

2)).



3

Proof. This formula may be deduced from Theorem 1 as a corollary, but the easiest way to prove it is by

differentiating the summation formula 2.8.51 in [1]

2F1

(
a, 1− a
c+ 1

;
1

2

)
=

Γ
(
c
2 + 1

)
Γ
(
c+1

2

)
Γ
(
c−a

2 + 1
)

Γ
(
c+a+1

2

)
with respect to c at c = 0.

Examples.
∞∑
n=1

(
2n

n

)2 Hn

32n
=

Γ2(1
4)

4
√
π

(
1− 4 ln 2

π

)
(5)

∞∑
n=1

(3n)!

(n!)3

Hn

54n
=

Γ3(1
3)

27/3π

(√
3− 9 ln 3

2π

)
(6)

∞∑
n=1

(
2n

n

)2H2n

32n
=

Γ2(1
4)

8
√
π

(
1− 3 ln 2

π

)
(7)

∞∑
n=1

(3n)!

(n!)3

H3n

54n
=

Γ3(1
3)

27/3π

(
1√
3

+
2 ln 2− 3 ln 3

2π

)
(8)

Series that contain both central binomial coefficients and Harmonic numbers are studied in [6–9], and the

series where additionally the central binomial coefficients are squared or cubed have been studied in [10–17].

Formulas (5),(6) are direct consequences of the Corollary 2. To derive (7) and (8) observe that differen-

tiating Kummer’s summation formula ([1], 2.8.50)

2F1

(
2a, 2b

a+ b+ 1
2

;
1

2

)
=

Γ
(

1
2

)
Γ
(
a+ b+ 1

2

)
Γ
(
a+ 1

2

)
Γ
(
b+ 1

2

)
with respect to b yields the summation formula [18]

∞∑
n=1

(2a)n(2b)n2−n

n!
(
a+ b+ 1

2

)
n

n−1∑
k=0

(
2

2b+ k
− 1

a+ b+ 1
2 + k

)
=

Γ
(

1
2

)
Γ
(
a+ b+ 1

2

)
Γ
(
a+ 1

2

)
Γ
(
b+ 1

2

) ,
from which by specializing a = b = 1

4 one obtains the sum

∞∑
n=1

(
2n

n

)2 4H2n − 3Hn

32n
=

Γ2(1
4)

4
√
π

(
6 ln 2

π
− 1

)
.

Together with (5) this allows to calculate the sum (7). Formula (8) is derived in analogous manner.

Note that the series

∞∑
n=1

(
2n

n

)2 Hn

16n
k2n = K(

√
1− k2) +

1

π
K(k) log

k2

16(1− k2)
,

∞∑
n=1

(
2n

n

)2H2n

16n
k2n =

1

2
K(
√

1− k2) +
1

π
K(k) log

k

4(1− k2)

have closed form in terms of logarithms and complete elliptic integrals of the first kind (see [11] for a

summation equivalent to a certain linear combination of the two formulas above).
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Theorem 2. The following generalization of Corollary 2 holds

∞∑
n=1

(a)n(1− a)n
(n!)2

Hnx
n =

π

2 sinπa
2F1

(
a, 1− a

1
; 1− x

)
+

1

2

(
ψ(1− a

2 ) + ψ(a+1
2 )− ψ(1)− ψ(1

2)− π

sinπa
− log

1− x
x

)
2F1

(
a, 1− a

1
;x

)
. (9)

Proof. The hypergeometric function 2F1(a, b; c;x) satisfies the differential equation ([1], section 2.1.1)

x(1− x)u′′ + (c− (a+ b+ 1)x)u′ − abu = 0.

Let v(x) = − d
dc 2F1(a, 1− a; c;x)

∣∣
c=1

. Then v(x) satisfies the differential equation

x(1− x)v′′ + (1− 2x)v′ − a(1− a)v = f(x), (10)

where f(x) = d
dx 2F1(a, 1− a; 1;x). Note that v(x) is the series on the left side of (9).

The homogeneous equation (10) with f(x) = 0 has two linearly independent solutions 2F1(a, 1− a; 1;x)

and 2F1(a, 1 − a; 1; 1 − x). One can check by direct substitution (for example using computer algebra

systems) that partial solution of the non-homogeneous equation (10) is

v0(x) = −1

2
2F1(a, 1− a; 1;x) log

1− x
x

.

Thus the general solution of equation (10) is

v(x) = v0(x) +A 2F1(a, 1− a; 1;x) +B 2F1(a, 1− a; 1; 1− x).

The coefficients A and B are determined from two conditions

v(0) = 0

v(1
2) =

1

2

(
ψ(1− a

2 ) + ψ(a+1
2 )− ψ(1)− ψ(1

2)
)

2F1

(
a, 1− a

1
;
1

2

)
,

where the second condition is the Corollary 2. The first condition may be replaced by the weaker condition

of the cancellation of the logarithmic singularity at x→ +0. Due to the asymptotics

2F1(a, 1− a; 1; 1− x) =
sinπa

π
log

1

x
+O(1),

the first condition implies that B = π
2 sinπa . A is now easily determined from the second condition.

It is known that when a = 1
r , r = 2, 3, 4, 6 the hypergeometric function 2F1(a, 1 − a; 1;x) is an elliptic

integral ([2], ch. 33). As a result both 2F1(1
r , 1 −

1
r ; 1;x) and 2F1(1

r , 1 −
1
r ; 1; 1 − x) have closed form in

terms of gamma functions when x are certain algebraic numbers, for example

2F1

(
1
3 ,

2
3 ; 1; 3(3−

√
3)

4

)
=
√

3 2F1

(
1
3 ,

2
3 ; 1; 3

√
3−5
4

)
= 33/8(2 +

√
3)1/4 Γ

(
1
4

)2
(2π)3/2

.

Thus Theorem 2 allows one to generate closed form summation formulas with Harmonic num-

bers. Also note that for r = 2, 3, 4, 6 the expression
(1/r)

n
(1−1/r)

n

(n!)2 takes the values

1
16n

(
2n
n

)2
, 1

27n

(
3n
2n

)(
2n
n

)
, 1

64n

(
4n
2n

)(
2n
n

)
, 1

432n

(
6n
3n

)(
3n
2n

)
. It is also worth mentioning the summation formula

∞∑
n=1

(3n)!

(n!)3

H3n

27n
xn =

π

3
√

3
2F1

( 1
3 ,

2
3

1
; 1− x

)
− 2F1

( 1
3 ,

2
3

1
;x

)
log

√
3(1− x)

6
√
x

. (11)

Generating functions similar to (9) but with a sum of digamma functions instead of Hn are considered in

[19] as a special case of more general formulas from [1], ch. 2.3.1.
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Theorem 3. Let Re(a+ b) < 1
2 . Then

∞∑
n=1

(2a)n(2b)n
n! (a+ b+ 1/2)n

Hn

n+ 1
=

(2a+ 2b− 1) sinπa sinπb

(2a− 1)(2b− 1) cosπ(a+ b)

(
ψ(1

2) + ψ(3
2 − a− b)− ψ(1− a)− ψ(1− b)

)
.

Proof. Consider formula 2.11.7 in [1]

2Γ(1
2)Γ(a+ b+ 1

2)

Γ(a+ 1
2)Γ(b+ 1

2)
2F1

(
a, b

1
2

; z2

)
= 2F1

(
2a, 2b

a+ b+ 1
2

;
1 + z

2

)
+ 2F1

(
2a, 2b

a+ b+ 1
2

;
1− z

2

)
.

We take the difference at z = 1 and at z

2Γ(1
2)Γ(a+ b+ 1

2)

Γ(a+ 1
2)Γ(b+ 1

2)

∞∑
n=1

(a)n(b)n
n! (1/2)n

(1− z2n) =

∞∑
n=1

(2a)n(2b)n
n! (a+ b+ 1/2)n

(
1−

(
1− z

2

)n
−
(

1 + z

2

)n)
,

then divide by 1− z2 and integrate. The integral on the LHS is∫ 1

0

1− z2n

1− z2
dz =

n∑
k=1

1

2k + 1
= H2n −

1

2
Hn,

while the integral on the RHS∫ 1

0

(
1−

(
1− z

2

)n
−
(

1 + z

2

)n) dz

1− z2
=

1

2

∫ 1

−1

(
1−

(
1− z

2

)n−1
)

dz

1 + z

=
1

2

∫ 1

0

1− tn−1

1− t
dt =

1

2
Hn−1.

Thus
∞∑
n=1

(2a)n(2b)n
n! (a+ b+ 1/2)n

Hn−1 =
2Γ
(

1
2

)
Γ
(
a+ b+ 1

2

)
Γ
(
a+ 1

2

)
Γ
(
b+ 1

2

) ∞∑
n=1

(a)n(b)n
n! (1/2)n

(2H2n −Hn).

To compute the sum on the RHS one can differentiate Gauss’ summation formula ([1], formula 2.8.46)

2F1

(
a, b

c
; 1

)
=

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

(12)

with respect to c at c = 1
2 to obtain

−
∞∑
n=1

(a)n(b)n
n! (1/2)n

(2H2n −Hn) =
Γ(1

2)Γ(1
2 − a− b)

Γ(1
2 − a)Γ(1

2 − b)
(
ψ(1

2) + ψ(1
2 − a− b)− ψ(1

2 − a)− ψ(1
2 − b)

)
.

After simplifying the product of Gamma functions using Euler’s reflection formula, and after change of

parameters a→ a− 1
2 , b→ b− 1

2 one recovers the formula stated in the theorem.

Summation formulas of the same type as in Theorem 3 were found in [20] by applying Newton-Andrews

method to analogs of Watson’s sum

3F2

(
2a, 2b, c

a+ b+ 1
2 , 2c

; 1

)
=

Γ(1
2)Γ(a+ b+ 1

2)Γ(c+ 1
2)Γ(1

2 − a− b+ c)

Γ(a+ 1
2)Γ(b+ 1

2)Γ(1
2 − a+ c)Γ(1

2 − b+ c)
. (13)
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Two of such analogs can be compactly written as [21]

3F2

(
2a, 2b, c+ ε

2

a+ b+ 1
2 , 2c

; 1

)
=

Γ
(

1
2

)
Γ(c)Γ

(
a+ b+ 1

2

)
Γ(c− a− b)

Γ
(
a+ 1

2

)
Γ
(
b+ 1

2

)
Γ(c− a)Γ(c− b)

+ ε
Γ
(

1
2

)
Γ(c)Γ

(
a+ b+ 1

2

)
Γ(−a− b+ c)

Γ(a)Γ(b)Γ
(
−a+ c+ 1

2

)
Γ
(
−b+ c+ 1

2

) , ε = ±1. (14)

Below we give a sketch of an alternative proof of Theorem 3 using Newton-Andrews method. Differenti-

ating (13) with respect to c at c = 1 yields the sum

∞∑
n=0

(2a)n(2b)n
n! (a+ b+ 1/2)n

(
2

n+ 1
− 2

(n+ 1)2
− Hn

n+ 1

)
in terms of gamma and digamma functions. The first term in the brackets is summed by (13) with c = 1.

The sum with the second term can be expressed as

∞∑
n=0

(2a)n(2b)n
n! (a+ b+ 1/2)n

−2

(n+ 1)2
= − 2a+ 2b− 1

(2a− 1)(2b− 1)
lim
c→0

1

c

(
3F2

(
2a− 1, 2b− 1, c

a+ b− 1
2 , 2c+ 1

; 1

)
− 1

)
.

Now the hypergeometric function is calculated using (14) with ε = −1, therefore it is possible to express

this limit in terms of gamma functions and its derivatives. Hence the sum in Theorem 3 is expressible in

terms of gamma and digamma functions, as required.

Theorem 4. Let Re (a+ b) > 0, then

∞∑
n=1

(1/2)n(a+ b)n
(1 + a)n (1 + b)n

Hn = 4

∞∑
n=1

(1− a)n(1− b)n
(1 + a)n (1 + b)n

(−1)nHn + 3F2

(
1, 1/2, a+ b

1 + a, 1 + b
; 1

)
ln 4.

Proof. In the quadratic transformation formula 4.5.1 from [1]

3F2

(
a, b, c

a− b+ 1, a− c+ 1
;−z

)
= (1 + z)−a3F2

(
a− b− c+ 1, 1

2a,
1
2(a+ 1)

a− b+ 1, a− c+ 1
;

4z

(1 + z)2

)
we put a = 1 and then take the difference at z = 1 and at z to obtain

∞∑
n=1

(b)n(c)n
(2− b)n (2− c)n

(−1)n(1− zn) =

∞∑
n=1

(1/2)n(2− b− c)n
(2− b)n (2− c)n

(
1

2
− 1

1 + z

[
4z

(1 + z)2

]n)
.

After dividing by 1− z and integrating termwise we get the following integral on the RHS∫ 1

0

(
1

2
− 1

1 + z

[
1−

(
1− z
1 + z

)2
]n)

dz

1− z
=

∫ 1

0

(
1

2
− 1 + t

2

(
1− t2

)n) dt

t(1 + t)

=
1

2

∫ 1

0

(
1−

(
1− t2

)n
t

− 1

1 + t

)
dt

=
1

4
(Hn − ln 4).

As a result
∞∑
n=1

(b)n(c)n
(2− b)n (2− c)n

(−1)nHn =
1

4

∞∑
n=1

(1/2)n(2− b− c)n
(2− b)n (2− c)n

(Hn − ln 4).

One can easily bring this to the symmetric form stated in the theorem.
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Theorem 5. Let Re b > 1
2 , then

1

4

∞∑
n=1

(1/2)n(b)n
n! (2b)n

Hn =

∞∑
n=1

(1/2)n(1− b)n
n! (b+ 1/2)n

H2n +
Γ
(
b+ 1

2

)
Γ(2b− 1)

Γ(b)Γ
(
2b− 1

2

) ln 2.

Proof. In the formula 2.11.5 from [1]

(1 + z)−2a
2F1

(
a, b

2b
;

4z

(1 + z)2

)
= 2F1

(
a, a+ 1

2 − b
b+ 1

2

; z2

)

we put a = 1
2 and then consider its difference at z = 1 and at z

∞∑
n=1

(1/2)n(b)n
n! (2b)n

(
1

2
− 1

1 + z

[
4z

(1 + z)2

]n)
=

∞∑
n=1

(1/2)n(1− b)n
n! (b+ 1/2)n

(1− z2n).

After dividing by 1 − z and integrating with respect to z one obtains H2n on the RHS, while the integral

on the LHS was calculated in the proof of theorem 4. Thus

∞∑
n=1

(1/2)n(b)n
n! (2b)n

Hn −
∞∑
n=1

(1/2)n(b)n
n! (2b)n

ln 4 = 4

∞∑
n=1

(1/2)n(1− b)n
n! (b+ 1/2)n

H2n.

Evaluating the second series using Gauss’ sum (12) completes the proof.

When b is a positive integer Theorems 4 and 5 allow one to express the value of an infinite sum with

Harmonic numbers as a finite sum.

Acknowledgements. The author of this paper wish to thank Dr. Wenchang Chu for valuable correspon-

dence and encouragement.
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