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Abstract: In this paper the author gives a simplest elementary mathematics method to solve the
famous Fermat's Last Theorem (FLT), in which let this equation become a one unknown number
equation, in order to solve this equation the author invented a method called “Order reducing
method for equations” where the second order root compares to one order root and with some
necessary techniques the author successfully proved Fermat's Last Theorem.

1. Some Relevant Theorems

There are some theorems for proving or need to be known. All symbols in this paper represent
positive integers unless stated they are not.

Theorem 1.1. In the equation of

Xn + yn — Zn
ged(x,y,z) =1 (1-1)
n>2

X,¥,Z meet XY, X+y>Z andif X>Yythen Zz>X>V.
Proof: Let
X=Y,

we have

2x"=2"
and
Q/§x= yA

Where”\/E is not an integer and X, Z are all positive integers, so X # Y . Since

(X+y) =x"+CX" 'y +..+C )y 4+ y" > 2",

so we get
X+Yy> 2z

Since

so we have

2">x",z2">y"



and get
Z>X>Y

when
X>Y.

Theorem 1.2. In the equation of (1-1), X,Y,Z meet

ged(x, y) =ged(y, z) =ged(x,z) =1.
Proof: Since X" +y"=z", if gcd(x,y)>1 then we have (X1” + ynl)X[ng(X, y)I =2"
which causes gcd(x, Y, Z)>1 since the left side contains the factor of [gcd(x, y)]n then the

right side must also contains this factor but contradicts against (1-1) in which gcd(X,y,z) =1,

so we have gcd(x, y) =1. Using the same way we have gcd(X,z)=gcd(y,z)=1.

Theorem 1.3. If there is no positive integer solution for

when p > 2 isa prime number then there is also no positive integer solution for

K K K
b 07 ().
Proof: Since X +Yy" =2z has no positive integer solution, so there still no positive integer
solution for
kP kY _ (k)P
(cf + P =)
which means there is also no positive integer solution for
K K K
b 7 ().
So we only need to prove there is no positive integer solution for equation (1-1) when n is a

prime number.

Theorem 1.4. In the equation of (1-1), X,Y,Z meet
Xn—i + yn—i > Zn—i

where
n>i>1.
Proof: From equation (1-1), since

Xn+yn=Zn,

let X> Y, sowe have



o [ieg-e]

from Theorem 1.1 we know Z > X > Y, so we have

Xn—i + yn—i > Zn—i

Theorem 1.5. In Figure 1-1, X,Y,Z of equation (1-1) meet

N yn—l _ gt

Xn—2 + yn—z _ an

<1.

2
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n-2 n-1 n

Figure 1-1 Graphfor X"+y"=2"

N yn—l _ gt

n-2

Proof: Obviously the meaning of = y”*Z s

<1 is the slope of AB is not greater

n-1 n-1

+y"t -z

than that of CD and if Xy T2

=1 then the slope of AB equals to that of CD.

n-2

It is necessary to point out that there is a positive real number R that meets equation
dx" N dy" dz"
dN  dN dN

where

xX*Inx+y®Iny=z"Inz,
Obviously the “Slope” of X" + y" equals to that of z" when N =R . There are three cases

for R inFigure 1-1when R<n-2n-2<R<n-1 and R>n-1.1f R<n-2 thenit

n-1

n-1 n-1 n-1 n-1 n-1
—7 -2 .
y — <l If n-2<R<n-1lthen — yn,z —<1is

is very clear that - n=2 n
XTT+y -2 oy




N yn—l _ gt

anz + yn—z _ an

possible  and >>1 is also possible. If R>n-1 " then

N yn—l _ gt

Xn—2 + yn—2 _ Zn— >1'

2

X"ty yn—l _ g1
5 >1 then are three cases have to be considered. The first case (Case 1) is

If
X2 4 y”*Z _7

n—

there is a positive real number O0<r <1 for n—r between Nn—1 and n whose slope equals
to that of AB which means
A L L B (Zl—r _l)zn—l

R 1-r 1-r

-1 n-1 n-
X"y —x

that can be explained by Figure 1-2 where AB// DF .

Y

N yn—l _ gt

anz + yn—z _ an

Figure 1-2 Graph of X" +y"=2" when ->1

and point F is between n-1 and n for Case |

The second case (Case Il) is there is a positive real number O<r <1 for n—r between
n—1 and n—2 whose slope equals to that of AB which means
L L B (1_ Z—r)zn—l

-y — ,
r r

2

-1 n-1 n-
X"y —x

that can be explained by Figure 1-3 where AB// DF .



N
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N yn—l _ gt

anz + yn—z _ zn— > 1

Figure 1-3 Graph of X" +y" =2" when

2

and point F is between n-2 and n-1 for Case Il

The third case (Case I11) is there is a tangent line of curve z" at D thatis D'DF whose slope
equals to that of AB which means

dz"
n-1 n-1 n-2 n-2
X+y =X "=y :dN|N:n—l

that can be explained by Figure 1-4 where AB// D'DF .

Y




N yn—l _ gt

anz + yn—z _ zn— > 1

Figure 1-4 Graph of X" +y"=2" when

2
and D'DF isatangent line of curve z" for Case Il

Case | : In Figure 1-2 we have

1-r
Xn—l + yn—l _ Xn—2 _ yn—2 _ [ /A _lJznl

and

Xn—l + yn—l _ Zn—l _ Xn—2 . yn—Z — ( Zlﬁr _1jznl _ Zn—l — ( Zlﬁr +r— ijnll (1_2)

1-r 1-r
1-r
77" +r-2 . . : : I
If we treat r as constantthen f(z)= B is a “Monotonically increasing function”; if
-r
7" r-2
we treat Z as constant then f(r)= 1— is a “Monotonically decreasing function” that
—-r

can be explained by Figure 1-5.
S

1-r
77 +r-2
Figure 1-5 Graph of f(r) = l— when z=2,3,45
77T +r=-2
The reason why f(r) = 1 is a “Monotonically decreasing function” is because:
—-r



g 77 -2
, 1-r (2 Inz+1)1-r)+ 2" +r -2
fi(r)= = >
dr (@-r)
727" Inz(l-r)+2" -1 [(r-1)Inz+1)"" -1

@-ry ey

For function

N [(r=1)Inz+1]z"" -1
9(2) i1y

it is a “Monotonically decreasing function” since

d{[(r ~1)Inz+1]z"" -1
9'(2)=

horf }(rz_l)z“+(1—r)z‘r[(r—1)lnz+1]
dz B @-ry

=-7"Inz<0.
For function

= [(r=1)inz+1]z"" -1
g(r) i ,

we give the plot of it in Figure 1-6, in which it shows that g(r) =0, g(r) <0 that is because

: r=Dinz+1z -1 . [(r-1)Inz+1]
!'ﬂ{g(r)‘ i—ry R
where
!Lrpo(l— rfz =
!Lrg[(r—l)ln z+1]z =00,
and
d[(r-1)inz+1z
Iim[(r_1)|n22+1]z im dr im zInz o
e (1-rfz" e (1-rfzf o [(1-r)inz-2)1-r)z
dr

which means g(r) has no finite value to intersect axis r and g(r)=0,g(r)<0, since when
0<r<1 thevalueof g(r) islessthanOand g(z) isa“Monotonically decreasing function™,

so f(r) is a “Monotonically decreasing function” when O <r <1(we have to say because we

can not solve “Exponent equation” where the “Exponent” is the unknown number, so the
solutions have to be found in numerical way, which is just “Function plot™ does).
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Figure 1-6 Graph of g(r)=

when z=2,3,4,5100

From (1-2) we know if z (a positive real number) increases then the left side decreases and the
right side also decreases. The minimum value for the right side is

d(z“+r 2)
||m M Zk’lzlim dr Zk’lzlim M Zk’l
r—l 1-r r—l w r-1 -1 '
dr
= Iin?(zl‘r Inz-1)z*" = (Inz-1)z**
since
: 1-r _
|rl_r)T}(Z +r—2)_0
lim(1-r)=0

From Theorem 1.8 we know Z >4, so we get

1-r _
{anijfl—z)f4=(mz—nz“ﬂ>(m4—nx42>9.
r— —-r

From (1-2) we have
(Xn—l i yn—l . Zn—l)_ (Xn—2 n yn—2 _ Zn_z): ( Zl—r +r— ZJZn_l " Zn_z

where both sides plus 2" in Figure 1-2 we know

Xn—l + yn—l _ Zn—l — BD,

Xn—2 + yn—2 _ Zn—2 — AC ,



there must exist a situation in Figure 1-2 when we increase z (a positive real number) that
causes

BD —» AC,BD > AC,r <1,

so the left side is almost O but the right side is bigger than 9+ z" %> (9+4 =13), that is a

contradiction which means there are no positive integer solutions of equation (1-1) at Case 1.
Case Il : In Figure 1-3 we have
2 n-2 Cl"zfr)znfl

Xn—l + yn—l _ Xn— _ y — ,

and

X"y yn—l LS Xn—2 _ yn—2 _ (1_ 2" Jzn—l — 7" (ﬂ}z”_ll (1-3)

1-z27-r . . : . . .
If we treat r as constant then f(z)=————— is a “Monotonically increasing function”; if
r

-r

1-z27 -r | . . .
we treat z as constant then f(r)=——— is a “Monotonically decreasing function” that
r

can be explained by Figure 1-7.
J)

1000000000000
z=10

e

—1—-0.3 -

-r

1-z27 —r
Figure 1-7 Graph of f(r)==———— when z =2,3,4,5,50,1(0"0°0000000000
r

-r

1-z27 -r . ) . o
The reason why f (r) =————— is a “Monotonically decreasing function” is because:
r



1-z7"—r

dl=——=——
, ( r j 7 Inz—r—(1-z"—r) (rinz+1)z" -1
Fn= dr B r? B r? '

For function

rinz+1)z7" -1
9(2) =" ;) ,

it is a “Monotonically decreasing function” since

9'(2)= d{(r " +§)Zir _l} B {r‘ r(rinz +1)}Z—r

r Z
dz r

<0,

2

r r
in which from Theorem 1.8 we know >4, so we have ——r(rlnz+1)<0 where —<r
z z

and r’lnz>0.

(rinz+1)z" -1

r.2

For function g(r)= , we plot the graph of it in Figure 1-8, in which it shows

that g(r)=#0 and g(r) <O thatis because:

. rinz+1)z7" -1 . (rInz+1
Ilm{g(r):( 2) =|Im¥
r—o r r—w r<z"
where
lim(rinz+1)=oco
r—oo
limr?z" = oo,
r—oo
and
d(rinz+1)
i (rinz+1) i ar Inz o
o 2z roe 1% = 2rz" +r°z" Inz
dr

which means g(r) has no finite value to intersect axis r and g(r)=0,g(r) <0, since when
0<r<1 thevalueof g(r) islessthan0Oand g(z) isa “Monotonically decreasing function”,

so f(r) isa “Monotonically decreasing function” when O<r <1.

10
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Figure 1-8 Graph of g(r)= 5 when z=2,3,4,5100
r

From Figure 1-3 we know if z (a positive real number) increases then r also increases. From
(1-3) we have

1-z7"—r
(Xn—l + yn—l _ Zn—l)_ (Xn—z + yn—2 _ Zn—z): Zn—l + Zn—2
r

where both sides plus 2" in Figure 1-3 we know

Xn—l + yn—l _ Zn—l — BD,

Xn—2 + yn—2 _ Zn—2 — AC

there must exist a situation when we increase z (a positive real number) that causes
BD - AC,BD> AC,r »>1r<1,

so the left side is
(Xn—l + yn—l _ Zn—l)_ (Xn—Z + yn—2 _ Zn—2)= O+ > 0'

but the right side is

IimKl_z—_rjz”‘1 + z“‘z} = Iim(— 2" 4 z“‘z): 0 <0,

r-l r r-l
r<1 r<1

which means the right side is less than the left side, so this is a contradiction which means there
are no positive integer solutions of equation (1-1) at Case I1.

Case 111 : In Figure 1-4 we have

11



N
n-1 n-1 n-2 n-2 _ dZ n-

1
=N |N:n71: Inz,

z

and

Xn—l + yn—l _ Zn—l — Zn—l In 7 — Zn—l + Xn—2 + yn—2 — (In 7 _1)Zn—l + Xn—2 + yn—2 ,

that is impossible since for any positive integer solutions of equation (1-1) when 2z increases
then the left side is becoming smaller but the right side is becoming bigger(since from Theorem

1.8 we know z>4, so (In VA —1)> 0) which is a contradiction, so there are no positive integer

solutions of equation (1-1) at Case 1.

N yn—l _ gt

"2 4 ynfz _ g2 >1 s

So from Case I, Case Il and Case Ill we have the conclusion of

N yn—l _ gt

Xn—2 + yn—z _ an

impossible and <1l

2

Using the same way we can prove
n-—j

X"yl z

<
Xn—j—l + yn—j—l _ Zn—j—l _1’

where | is a positive integer that can be explained by Figure 1-9 in whichw=n-j,

w>2, AC>BE, EF >GH .
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-1 w1 -2 | 2 w-1 w  wtl

Y

n-j

X"yl z

Figure 1-9 Graphof X" +y"=2z" when e
X"yt g

— <1 where | isa
n—-j-1

12



positive integer and wW=n-— j

n—j

In Figure 1-9 it is obvious to see that the maximum value of X"/ +y" 1 —z" jsat j=co

n-j

X"yt z
Xn—j—l + yn—j—l —z

<1, and I_im(x”‘j +y" —z”‘j):O, but it is also very clear

since — <
n-j-1 jow

n-j

even the value of X"/ + y”‘j -z when j=n+2 is bigger than that (since there are two

intersections of X" +y",z" although one of them is at j =00, so the curves of X" +y",z" is

n-j

“Closed” like ““Crescent moon” and each X" +y”‘j -z is bigger than 0 when | is

finite), so this is a contradiction which means there are no positive integer solutions for equation
(1-1) (this is also the simplest proof that Fermat forgot to write on his narrow margin book and
which people have being looking for nearly 400 years).

The reason why W > 2 is because there are three equivalent equations

X2 + y2 — 22’
X+y=1z,
X1y y—l _ 2—1’

for Case | or Case Il, one of their BD, AC is a fixed positive integer or rational number, in

order to meet BD = AC (that means BD — AC,BD > AC), z must be a positive integer

or rational number, but we are not sure about whether there exist a “Positive integer or rational

number z” to meet BD — AC,BD > AC or not, but we do sure about when W > 2 there

must exist a positive real number z that meets BD — AC,BD > AC ( for example, paatd ,

what we are sure of is it is a positive real number, if you tell me it is a positive integer or rational
number, then we are not sure about this saying. So it is with the case of a positive real number z

that meets BD — AC, BD > AC, which means there must exist a positive real number z that
meets BD — AC,BD > AC, but we can not say a positive integer or rational number z

must exist to meet BD — AC, BD > AC). On the other hand, since we only consider n> 2

for equation (1-1), so it is not necessary to consider the situation of n=2. And also for “Order
reducing method for equations” that will be explained below, the least number for n is 3.

Theorem 1.6. There are no positive integer solutions for
1"+y"=2".

13



Proof: Since
1=2"—y" = (z-y\2" + 2" 2y + .t 2y" 2 4y )

where

z-y=1
(2" + 2" 2y ok 2y 2y ) =1
that causes z, Y to be non positive integers, so there are no positive integer solutions for

1"+y"=12".

Theorem 1.7. There are no positive integer solutions for
2"+ y"=2".
Proof: Since

2n — Zn _ yn — (Z _ y)(zn—l + Zn_2y+...+ Zyn—2 + yn—l),

z-y=1
anl + Zn72y+”'+ zyn—z + yn—l — 2”
then taking the least value for y =2,z =3, we have

M4 2x3 24 42" 20

when N> 2 thatisimpossible. If
7—y=2'
"y Yy iy =2
i+j=n
i>1

then z>2 and taking the least value of y=2,Z =3, we get

I 42x3 442" > 2
with n>2 that is also impossible, so there are no positive integer solutions for

2"+y"=2".

Theorem 1.8. There are no positive integer solutions for equation (1-1) when n — oo and
X,Y,Z inequation (1-1) meet

14



z <42x,
X> 2,
y>1,
z>3.

Proof: Since X"+y"=2z",let x>V, we get

SRb

since
Z>X>Y,

so we have

Z<Q/§X,

Iim(iJ —(lj —oo>1
n—o X X

which means there are no positive integer solutions for equation (1-1) when n—oo. And

and

according to Theorem 1.1, 1.6 we have Xx>2,y>12>3.

2. Proving Method

In equation (1-1), let

a= Xn—2
b — yn72
C= Zn—2

ax® +by? =cz*
[ = S = (2-1)
a"?x+bn?y=c"?z
Since we reduce the order of equation so the method is called “Order reducing method for
equations”.

Let X>Vy and

{yzx_f. 2-2)

Z=X+¢

From (2-1) and (2-2) we have

15



[N =
am2x+b"2(x—f)=c

ax’ +b(x— f F =c(x+ef
n-1
=c"2(x+e)

and

(a+b—c)x® —2(bf +ce)x+(bf 2 —ce?)=0
n-1 n-1 n-1 ’
am2x+bm2(x— f)-c2(x+e)=0

the roots are

(bf +ce)+/(bf +ce)f —(a+b—c)bf? —ce?)
X= Xn—2 + yn—2 _ Zn—2 ! (2_3)

and

n-1 n-1

ch-2e+hn2 f bfy + cez
X= n-1 n-1 n-1 = n-1 n-1 n-1" (2_4)
X +Yy A

an? 4z _ g2

There are two cases for bf 2, ce? when bf 2 >ce® and bf? <ce?.

Case A: If bf %> ce?, from (2-3) when

(bf +ce)++/(bf +ce)f —(a+b—c)bf? —ce?)
Xn—Z + yn—2 _ Zn—Z !

From Theorem 1.4 we knowa+b—c=x"?+y"?—-2"% >0, so we have

2(bf +ce)
Xn*Z + yn—2 _ Zn*

2

and also from Theorem 1.4 we have X"+ y" ™" —z"" >0, compare to (2-4) we get

bfy+cez  _  2(bf +ce)
anl + yn—l _ anl - anz + yn72 _ Zn*

7

x"L oyt g0t
y 5 <1, so we have

From Theorem 1.5 we know —————————
X" +yTt -2

bfy + cez < 2(bf +ce)

that is impossible since from Theorem 1.8 we know y>2 and z>3.

When

16



(bf +ce)—/(of +ce) —(a+b—c)bf > —ce?)
Xn—Z + yn—Z _ Zn—Z !

we have

bf +ce
Xn—2 + yn—2 _ an

2

compare to (2-4) we get

bfy + cez < bf +ce

Xn—l + yn—l _ Zn—l - Xn—2 + yn—2 _ Zn—2 '

From Theorem 1.5 we have

bfy + cez <bf +ce
that is impossible since from Theorem 1.8 we have already known y>2 and z>3.

Case B: If bf % <ce?, from (2-3) when

(bf +ce)++/(bf +cef +(a+b—c)ce’—bf?)
Xn—2 + yn—Z _ Zn—2 !

we can prove (bf +ce)’ >(a+b— C)(Ce2 —bf 2) since if not we have

(bf +ce)’ <(a+b—c)(ce’ —bf?)
and

[(2b+a)—c]bf 2 + 2bfce + [2c — (a+ b)|ce? < 0
that is impossible since a+b—-c>0 and c¢c>a,c>b,2c— (a + b)> 0. Sowe have

(of + ce)(1+ V2 )

X<
X2 4 yn—z _ g2

compare to (2-4) we get

bfy +cez_ (bf +ce)i+2)

Xn—l + yn—l _ Zn—l Xn—2 + yn—2 _ Zn—2 '

From Theorem 1.5 we have

bfy +cez < (bf + ce)(1+ \/E)< 2.5(bf +ce)

and
bf (x— f) +ce(x +e) < 2.5(bf +ce)

that leads to

17



bf +ce " bf +ce

2 n2 2 h2
2.5(of +ce)+bf?—ce” . ce’—bf }2.5

where possible values for X are 1, 2 but according to Theorem 1.6, 1.7 we know there are no
positive integer solutions.

When

(bf +ce)—/(of +cef +(a+b—c)ce’—bf?)
Xn—Z + yn—2 _ Zn—Z

is not possible since X <0.

Now we have completely solved no positive integer solutions for equation (1-1) when n> 2
using “Order reducing method for equations”.

3. Conclusion

Through the above contents we can see clearly that the proving of Fermat's Last Theorem is just a
problem of elementary mathematics. “Order reducing method for equations” that the author
invented is a very effective method in the proving of Fermat's Last Theorem and the author’s
technique in which lety = x - fand z = x + e is a very important step for solving.

Fermat's Last Theorem is a problem that has lasted for about 380 years. Proving methods are not
important but the theorem’s correctness is very necessary because many useful inferences can be
deduced that are obviously better than “conjectures”.

The author has been working on proving of Fermat's Last Theorem for quite some times (210 days)
without any reference and many methods have been thought about, for example “Method of prime
factorization” but not work. So the author has already known that there are no ways to solve

except “Solving high order equations” which is also an important aspect in solving other
mathematic problems.
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