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Abstract  

A triangular plate-bending element with a new multi-resolution analysis (MRA) is proposed and 

a novel multiresolution element method is hence presented. The MRA framework is formulated 

out of a displacement subspace sequence whose basis functions are built out of scaling and 

shifting on the element domain of basic full node shape function. The basic full node shape 

function is constructed by means of extending the shape function triangle domain for a split node 

at the zero coordinates to the hexagon area enclosing the zero coordinates. As a result, a new 

split-full node notion is presented and a novel rational MRA concept together with the resolution 

level (RL) is constituted for the element. Via practical examples, it is found that the traditional 

triangular plate element and method is a mono-resolution one and also a special case of the 

proposed element and method. The meshing for the monoresolution plate element model is based 

on the empiricism while the RL adjusting for the multiresolution is laid on the rigorous 

mathematical basis. The analysis clarity of a plate structure is actually determined by the RL, not 

by the mesh. Thus, the accuracy of a structural analysis is replaced by the clarity, the irrational 

MRA by the rational and the mesh model by the RL that is the discretized model by the integrated. 

The continuous full node shape function unveils secrets behind assembling artificially of 

node-related items in global matrix formation by the conventional FEM. 

Keywords: Triangular Plate-bending Element; Split Node; Full Node; Analysis Clarity; Displacement 

Subspace Sequence; Rational Multiresolution Analysis; Resolution Level 

 

1. Introduction 

Multi-resolution analysis (MRA) is a popular technique that has been applied in 

many domains such as the signal and image processing, the damage detection and 

health monitoring, the differential equation solution, etc. Herein, MRA is referred to a 

method by which the amount of exposed details (nodes) over a concerned area can be 

modulated freely in a certain manner at a request. Meanwhile, finite element method 

(FEM) [1] is also a robust numerical analysis tool that has been widely applied in the 

differential equation solution, the engineering structural analysis, the thermodynamics 

etc. In fact, FEM has always employed the MRA technique to deal with practical 

problems indiscernibly. As what is commonly known, when encountering a practical 

engineering problem, the selection of an appropriate meshing scheme (a node 

distribution pattern) will be a time-consuming task for even an experienced design 

engineer. He or she will have to make a selection trial many times before ideal 

sufficient accuracy can be reached. The deficiency of the FEM becomes much explicit 

in the accurate computation. 

The problems stem from the theoretical drawbacks of the FEM, which embody two 



major aspects. One is as follows, a single element defined domain of a node shape 

function contains only a portion of a full node shown in Fig.1, that means the 

construction process of a shape function in the traditional FEM can be viewed as a 

procedure in which a full node is broken up into split nodes, resulting in splitting all 

full nodes over a structural domain in meshing step and discretizing a whole structural 

domain. Another is that a mesh generation is usually an arbitrary operation based on 

the empiricism without a solid mathematical foundation to support, which could bring 

about a random node distribution over a structural domain. Thus, it is called an 

irrational MRA when the random node layout is allowed. The theoretical deficiencies 

of the standard FEM come from the element split node and the irrational MRA.    

The great efforts have been made over the past thirty years to tackle the pitfalls of 

the FEM. The solutions were found and tracked in two trends. In order to make the 

meshing more efficient and accessible, the various improved FEM have been 

proposed, such as the automatic adaptive FEM [2, 3], the multigrid FEM [4, 5], etc. 

However, the source of the problems still remains. For eliminating the grid, 

investigators have come up with many fresh methods, such as the wavelet finite 

element method (WFEM)[6, 7], the meshfree method (MFM)[8, 9], the natural 

element method (NEM)[10, 11] and isogeometric analysis method (IGAM) [12, 

13],etc, which are featured with the full node shape function and the integrated 

structural computational model. Compared with the conventional FEM, these 

meshless methods have an advantage not to mesh over a structural domain. Therefore, 

these methods have illustrated their powerful capability and computational efficiency 

in dealing with some problems. However, they always have such major inherent 

deficiencies as the complexity of full node shape function construction by 

tensor-product or polynomial coefficient numerical simulating technique, the absence 

of the Kronecker delta property and the lack of a rigorous mathematical basis for node 

distribution over a structural domain (an irrational MRA), which make the treatment 

of boundary condition complicated and the selection of node layout empirical, that 

substantially reduce computational efficiency. Hence, these meshless methods have 

never found a wide application in engineering practice just as the FEM.  

The drawbacks of all those above-mentioned methods can be eliminated by the 

introduction of a new multiresolution element method in this paper. With respect to 

the plate element in the finite element stock, a new multiresolution triangular 

plate-bending element is formulated by a new MRA, which is constituted by scaled 

and translated version as subspace basis functions of a basic full node shape function. 

The basic full node shape function is then constructed from making a series of 

parallelograms to superimpose identical triangle-defined domains around the origin of 

coordinates. As we can see, the full node shape function is quite simple, clear and has 

the Kronecker delta property. The mesh over a structural domain can be deleted and 

the node layout of uniform distribution pattern can be reasonably defined because the 

proposed method possesses the rational MRA based on a simple, clear and rigorous 

mathematical basis, which endows the proposed element with the resolution level (RL) 

that can be modulated to freely change the node number and position at a request, 

adjusting structural analysis clarity accordingly. As a result, the proposed element 



method can bring about substantial improvement of the computational efficiency in 

the structural analysis when compared with the corresponding FEM or other meshless 

methods. 

2. Basic full node shape function 

As shown in Fig.1., an arbitrary triangle plate element is set against a Carstesian 

coordinate system with the geometric configuration of the bottom sideline length as a, 

the height as h. Obviously, The analytical functions for the bottom sideline in the 

coordinate system can be written in dimensionless quantity as 

0
y

h
                                                             （1） 

For the other sideline (not one that goes through the coordinate origin) is assumed as 

1
x y

a b
                                                           （2）  

Where a,b are denoted as the horizontal and the vertical intercepts respectively. 

For the third is determined as 
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        a. A triangular plate                     b Mid-plane of the plate 

Fig 1. A triangular plate-bending element 

 Afterward, the transverse displacement 
ew  in z axis direction at an arbitrary point 

within the triangular plate element can be defined as 
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where iw , xi ,
yi  are the transverse, rotational displacements at node i of the element 
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respectively in the Carstesian coordinate system. 
iN ，

xiN ， yiN are the conventional 

shape functions at the node i ( i =1,2,3)，which are defined on the domain D1 as 

follows 
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Based on the analytical functions for the three triangle sidelines obtained above, the 

following relationship can be gotten: 
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Obviously, there exists relationship L1 +L2+L3=1 

 

Fig 2. The extended hexagon domain enclosing a node at the coordinate origin 

As we can see in Fig.1, the supporting domain (shaded area D1) of the triangular 

element contains only a part (blackened portion) of a full node, that means a full node 

is broken up into split nodes in the process of the traditional node shape function 

construction and all full nodes within the structural domain are thus discretized by 

meshing. In order to formulate a full node shape function or constitute an integrated 

computational model, the single triangle-defined domain for the split node should be 

extended to the hexagon area by means of successively building up a series of 

parallelograms to superimpose identical triangle-defined regimes around the 

coordinate origin. Subsequently, the node at the coordinate zero is enclosed by the 

hexagon domain (shaded area) as shown in Fig.2. The basic shape function for the full 

node (blackened node) at the coordinate origin can be defined as following: 
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where
iN ，

xiN ， yiN are the shape functions at the node i ( i =1,2,3)，which are defined 

on the domains of D1， 2D ， 3D ， 4D ， 5D ， 6D
 
corresponding to six split nodes around 

the coordinate origin respectively. 

  In light of the regular node shape function construction method by area coordinates 

for a triangular plate element, the six split node shape functions can be founded by the 

analytical functions for the six sidelines of the hexagon in the Carstesian coordinate 

system. Based on the analytical functions for three triangular sidelines (1), (2), (3), the 

three upper hexagon sideline functions are easily written as 
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Therefore, the three lower hexagon sideline function expressions can be easily 

obtained by shifting each upper sideline a distance along x,y axis respectively, that is 
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As a result, based on the hexagon sideline analytical functions, the split node shape 

functions on the domains of 2D ， 3D ， 4D ， 5D ， 6D  can be founded respectively as   
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in which there all exist relationships 1 2 31 0, 1 0, 1 0L L L      ,

1 2 3 1L L L   for the various domains of 1D ， 2D ， 3D ， 4D ， 5D ， 6D  respectively. 

Up to now, the basic full node shape functions  ,x y ,  ,x x y ,  ,y x y can be 

graphed respectively in Fig.3. 

 

a.
 

 ,x y
                                 

b.  ,x x y  

-2

-1

0

1

2

-2

-1

0

1

2
0

0.2

0.4

0.6

0.8

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1

0

1

2

-0.4

-0.2

0

0.2

0.4



 

c.  ,y x y  

Fig.3.The basic full node shape functions  ,x y ,  ,x x y ,  ,y x y at the coordinate origin  

It is evident that the basic full node shape functions  ,x y ,  ,x x y ,  ,y x y are 

continuous and possess the Kronecker delta property as follows： 
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3. Displacement Subspace Sequence 

In order to carry out a MRA of a thin plate structure, the mutual nesting 

displacement subspace sequence for a plate element should be established. In this 

paper, a totally new technique is proposed to construct the MRA which is based on the 

concept that a subspace sequence (multi-resolution subspaces) can be formulated by 

subspace basis function vectors at different resolution levels whose elements-scaling 

function vector can be constructed by scaling and shifting on the domain  of the 

basic full node shape functions. As a result, the displacement subspace basis function 

vector at an arbitrary resolution level (RL) of 
1

2
(𝑚 + 1) × (𝑚 + 2) for a triangular 

plate-bending element is formulated as follows: 
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parameters in x ,y directions respectively. r, s as the positive integers, the node 

position parameters, that is 0,1,2,3r m  , 0,1,2,3s m  , Here, m r s  ，
 

   ,mx ra a a  
，
   ,my sh h h    , 1,x y D . 

It is seen from Eq. (12) that the nodes for the scaling process are equally spaced on 

the triangle domain 1D in x ,y directions respectively 

Scaling of the basic full node shape function on the domain of    , ,a a h h     

( precisely on the domain of 
, ,

a a h h

m m m m

   
     
    ) and then shifting to other nodes 

a h s
r s h

m b m

  
  

  
, within the element domain 1D  m r s   will produce the various 

full node shape functions.. 

As shown in the fig.4., for a full node within the triangular element domain, a 

scaled and shifted version of the basic full node shape function is adopted; For a 1/2 

full node denoted as B on the triangular element boundary, a half of the scaled and 

shifted version is employed (the other half out of the triangular element domain is 

deleted); For a split node denoted as T on the tip, only 1 split node shape function in 

the scaled and shifted version is applied (the other 5 splits out of the triangular 

element domain are cancelled).   

 

Fig.4.The node partition for a triangular element when the RL=25 (m=3) 



Since the elements in the base functions are linearly independent with the various 

scaling and the different shifting parameters, the subspaces in the subspace sequence 

can be established, thus formulating a MRA framework, that is 

 1... ....m i mV V VW                                            (13a) 

 : :i iV span i Z Ψ                                                (13b) 

If 2I i , then i IV V                                            (13c) 

Thus, it can be found that the displacement subspace sequence mW can be taken for 

a solid mathematical foundation for the MRA framework and 1V  is equivalent to the 

displacement field for a traditional 3-node plate-bending triangular element that is the 

reason why the traditional triangular plate element is regarded as a mono-resolution 

one and also a special case of the multiresolution triangular. 

Based the MRA established, the deflection of the triangular plate element in the 

displacement subspace at RL of 
1

2
(𝑚 + 1) × (𝑚 + 2) can be defined as follows  

e e

m m mw Ψ a                                                     (14) 

 where 00 00 00, , ... , , ... , ,
T

e

mn x y rs xrs yrs mn xmn ymnw w w                  
a , , ,rs xrs yrsw   are 

the transverse and rotational displacements respectively at the element node

 
a h s

r s h
m b m

  
  

  
, . 

It is obvious that the proposed multi-resolution element is a meshfree one whose 

nodes are uniformly scattered, node number and position fully determined by the RL. 

When the scaling parameter m=1(RL=
1

2
(2) × (3) = 1 × 3), that is a traditional 

3-node triangular plate-bending element, eq. (14) will be reduced to eq. (4). 

 

4 Multiresolution triangular plate element  

The generalized function of potential energy in a displacement subspace at the 

resolution level of  
1

2
(𝑚 + 1) × (𝑚 + 2) for a triangular plate-bending element can 

be defined as  

      
1 1

1

2

T e e

m b m i mim mD D
i

V D dxdy qw dxdy Q w             (15) 
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



, E  is 

the material Young modulus, t  the thickness of the element,   the Poisson’s ratio, 

q distributed transverse loadings, Q  the lump transverse loadings elastic modulus. 

    00 , , e

rs mm mm
B B B    a                                 (16) 
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Substituting (14) into (15) and consolidating, we get 

 
1

2

eT e e eT e eT e

p m m m m m m m mV   a K a a f a F                            (17) 

in which e

mK  is denoted as the element stiffness matrix; e

mf as the element 

distributed equivalent node force vector; e

mF  as the element concentrated equivalent 

node force vector. 

 According to the principal of minimums potential energy   0p mV  , the 

following element equilibrium equations can be obtained 

=e e e e

m m m mK a f F  



where 
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in which the superscript denoted as the row number of the matrix and the subscript as 

the aligned element node numbering (r, s). In terms of the properties of the extended 

shape functions, we have 

,

1

1

, 0, 1, 1

rs

rs cd rs

c r

d s

rs

rs cd rs when c r d s

 

 

 




     

k k

k k

                               (18) 

in which 
,cd rsk is the coupled node stiffness matrix relating the node (c, d) to (r, s). 

1

,

b

cd rs cd rs

D

dxdy k B EB                                         (19) 
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                         (20) 

where ix , iy is the local coordinate at the locations the lump loading acting on. 

5.Transformation Matrix 

In order to carry out structural analysis, the element stiffness and mass matrices e

mK

the loading column vectors e

mf , e

mF  should be transformed from the element local 

coordinate system (xoy) to the structural global coordinate system (XOY). The 

transforming relations from the local to the global are defined as follows:     

               
i e T e e

m m m mK T K T                             (21) 

i eT e

m m mf T f
 
                                (22) 

i eT e

m m mF T F                                  (23) 

where i

mK is the element stiffness matrix, i

mf , i

mF  the element loading column vectors 

under the global coordinate system. e

mT  is the element transformation matrix defined 



as follows； 
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 

λ  

where   is the intersection angle between the local and the global coordinate axes .  

The structural global stiffness, mass matrix mK , the global loading column vectors mf , 

mF can be obtained by splicing 

6. Numerical Example and Discussion  

6.1 Numerical Example  

Example 1.  A simply supported square plate with the geometric configuration of 

length L, the thickness t, the Poisson’s ratio   and subjected to the uniform loading q. 

Evaluate the deflection and the bending moment at the center point of the plate. 

                 

(a) The multiresolution element model      (b) The monoresolution element model 

(an integrated model by RL)           (a discretized model by mesh) 

Fig.5. Finite element models for the square plate 

  The problem is usually tackled with regular meshes typified by that shown in 

Fig.5(b) These meshes are built of two-triangle rectangular mesh units and identified 

as Nx×Ny , which denote the number of subdivisions in the x and the y dimensions. 

The solution can also be found by the multiresolution triangular membrane elements 

typified by that shown in Fig.5(a). These nodes are uniformly scattered in the two 

multiresolution triangular elements ①,② denoted by the RL, which represents the 

density of node uniform distribution. In the analysis process, these two 

multiresolution elements are spliced together along the common intersection  

The displacement responses and moments are evaluated by the proposed 

multiresolution element method, the traditional monoresolution element method. The 

central deflections and the bending moments for the plate with the boundary 

conditions as simply supported four edges (SS) and the clamped four edges (SC) 



under the different RLs and meshes are displayed in Table 1. The RL of the proposed 

and the corresponding meshes of the conventional are compared. It can be seen that 

Table.1.the Central deflection and the Bending moment for the plate under different RLs and 

meshes 

 

RL/elem 

 

Mesh 

Central deflection(ql
4
/100 Db ) Bending moment (ql

2
/10) 

SS SC SS (central) SC(side middle) 

Multi Mono Multi Mono Multi Mono Multi Mono 

23 22 0.3950 0.3950 0.0998 0.0998 0.5026 0.5026 -0.3551 -0.3551 

35 44 0.4039 0.4039 0.1194 0.1194 0.4880 0.4880 -0.4761 -0.4761 

59 88 0.4058 0.4058 0.1249 0.1249 0.4824 0.4824 -0.5028 -0.5028 

917 1616 0.4062 0.4062 0.1262 0.1262 0.4800 0.4800 -0.5104 -0.5104 

Analytical[14] 0.4062 0.1265 0.4789 -0.5133 

the analysis accuracies with the proposed and the conventional are gradually 

improved respectively with the RL reaching high and the mesh approaching dense. 

However, the RL adjusting is more rationally and efficiently to be implemented than 

the meshing and remeshing to modulate element node number because the RL 

adjusting is based on the MRA framework which is constructed on a rigorous 

mathematical basis while the meshing or remeshing, which resorts to the empiricism,  

has no MRA framework. Thus, the computational efficiency of the proposed element 

method is higher than the traditional one. In this way, the proposed element exhibits 

its strong capability of accuracy adjustment and its high power of resolution to 

identify details (nodes)of deformed structure by means of modulating its resolution 

level, just as a multi-resolution camera with a pixel in its taken photo as a node in the 

proposed element. There appears no mesh in the proposed element just as no grid in 

the image. Hence, an element of superior analysis clarity surely has more nodes when 

compared with that of the inferior just as a clearer photo contains more pixels. Due to 

the basic full node shape function, the stiffness matrix and the loading column vectors 

of a proposed element can be automatically acquired through quadraturing around 

nodes in the element matrix formation step while those of the traditional plate element 

obtained through complex artificially reassembling of the element matrix around the 

node-related elements in the re-meshing process for their  split nodes in a 

conventional element, which contributes a lot to computation efficiency improvement 

of the proposed method. Moreover, since the multiresolution triangular plate element 

model of a structure usually contains much less elements than the traditional element 

model, thus requiring much less times of transformation matrix multiplying, the 

computation efficiency of the proposed method appears much higher than the 

traditional in the step of element matrix transformation. In addition, because of the 

simplicity and clarity of a full node shape function formulation with the Kronecker 

delta property and the solid mathematical basis for the new MRA framework, the 

proposed method is also superior to other corresponding MRA methods in terms of 

the computational efficiency, the application flexibility and extent. Hence, taking all 

those causes into account, the conclusion can be drawn that the multi-resolution 

triangular plate-bending element method is more rationally, easily and efficiently to 

be executed, when compared with the traditional triangular plate element method. 



 

Example2. As shown in Fig.6, a two opposite edge simply supported and other two 

free 60
0 

skew plate with the geometric configuration of length L and the Poisson’s 

ratio 0.3   is subjected to the uniform transverse loading of magnitude q. Evaluate 

the deflection at the center point of the plate. 

L

L

60°

  

Fig. 6.  A skew plate 

         

l(a) The multiresolution integrated model    (b) The monoresolution discretized model 

Fig. 7 The finite element model for the skew plate  

 

The problem is usually tackled with regular meshes typified by a discretized model 

(split node) shown in Fig.7(b) These meshes are built of two-triangle rectangular 

mesh units and identified as Nx×Ny , which denote the number of subdivisions in the x 

and the y dimensions. The solution can also be found by the multiresolution 

triangular-bending elements typified by an integrated model (full node) shown in 

Fig.7(a). These nodes are uniformly scattered in the two multiresolution triangular 

elements ①,② denoted by the RL, which represents the density of node uniform 

distribution. In the analysis process, these two multiresolution elements are spliced 

together along the common intersection boundary and the analysis clarity can be 

modulated by means of adjusting the RL. In addition, the wavelet model (full node) is 

made up of one 2D BSWI (B-spline wavelet on the interval) element of the jth 

scale=3, the mth order =4 are also employed abbreviated as BSWI43 with the DOF of  

1111. The results are summarized in the table2.It can be seen that the conventional 

and the proposed element methods exhibit identical monotonic increasing 

 

 



Table.2. the center point deflection (αqL
4
 /100D0 ) 

Element type 

Deflection(α) The proposed 

RL/RL/elem 

The conventional 

 (mesh) 

99/59 88 0.7920 

1313/713 1212  0.7937 

1717/917  1616  0.7930 

One BSWI [7] 0.7925 

Analytical [15] 0.7945 

convergence to the ’exact’ value with consistent mesh refinement and corresponding 

RL adjustment respectively. 

Although the BSWI43 is of high accuracy, when compared with the proposed, the 

deficiencies of the BSWI element are obvious as follows. In light of tensor product 

formulation of the multidimensional MRA framework, the DOF of a 

multi-dimensional BSWI element will be so drastically increased from that of a 

one-dimensional element in an irrational way, resulting in complex shape functions 

and substantial reduction of the computational efficiency. Secondly, due to the 

absence of Kronecker delta property of the tensor-product constructed shape functions, 

the special treatments should be taken to deal with the element boundary condition, 

which will bring about low computational efficiency. Thirdly, there exists no such a 

parameter as the RL with a clear mathematical sense. In addition, the RLs of the 

proposed and the corresponding meshes of the conventional are displayed in Table1. 

It can be found that the analysis clarities with the proposed and the conventional are 

gradually improved respectively with the RL reaching high and the mesh approaching 

dense. However, the RL adjusting is more rationally and efficiently to be implemented 

than the meshing and the re-meshing for the following two reasons. Firstly, the RL 

adjusting is based on the MRA framework that is constructed on a solid mathematical 

basis while the meshing or remeshing, which resorts to the empiricism, has no MRA 

framework. Secondly, the stiffness matrix and the loading column vectors of the 

proposed element can be obtained automatically around the nodes while those of the 

traditional triangular plate elements obtained by the artificially complex reassembling 

around the elements. Thus, the computational efficiency of the proposed element 

method is higher than the traditional one. In this way, the proposed plate element 

exhibits its strong capability of accuracy adjustment and its high power of resolution 

to identify details (nodes) of deformed structure by means of modulating its resolution 

level, just as a multiresolution camera with a pixel in its taken photo as a node in the 

proposed element. There appears no mesh in the proposed element just as no grid in a 

photo. Thus, an element of superior analysis accuracy surely has more nodes when 

compared with that of the inferior just as a clearer photo contains more pixels.  

 

Example 3. A circular slab is subjected to the uniform transverse loading q with its 

boundary conditions as: the edge is free or is fully clamped, and its geometry and 

physical parameters as: the radius r, the thickness t, the elasticity modulus E, the 

Poisson’s ratio  =0.3. Find the displacement and bending moment at the central point 



of the slab.  

 

                               

a  A.multiresolution integrated model        b  A monoresolution discretized model 

Fig.8. The finite element model for the 1/4 circular slab 

To calculate the displacement responses, symmetry conditions are exploited and The 

solution is done on the quadrant of the circular plate. the mutiresolution integrated 

model is herein composed of two multiresolution triangular plate-bending elements 

①,②with each element RL of 25, hence the 1/4 slab RL of 44, as shown in Fig. 

8a., and the monoresolution discretized one composed of the mesh of 36 displayed 

in Fig.8b. In the analysis process, these two multiresolution elements are spliced 

together along the common intersection boundary and the analysis clarity can be 

modulated by means of adjusting the RL. With respect to the conventional 

monoresolution, the structure is meshed into a group of monoresolution elements and 

the analysis accuracy is improved only by means of re-meshing. It can be seen that the 

RL adjusting is more rationally and easily to be implemented than the re-meshing 

because the proposed multiresolution element model of the circular plate structure 

contains much less elements than the monoresolution, hence requiring much less 

times of the transformation matrix multiplying, which results in much higher 

computational efficiency for the proposed element method than that for the traditional 

element method. The maximum displacement is summarized in Table.3.  

Table.3.the Central deflection and Bending moment for the circular plate 

 

RL/elem 

 

Mesh 

Central deflection (αql
4
/100 D0 ) Bending moment (βql

2
/10) 

SS SC SC (central) 

Multi Mono Multi Mono Multi Mono 

25 36 0.0145 0.0145 0.0638 0.0638 0.2103 0.2103 

47 713 0.0153 0.0153 0.0637 0.0637 0.2073 0.2073 

Analytical[16] 0.0156 0.0637 0.20625 

 

6.2 Discussion 

The RL can be referred to an ability to distinguish the magnitude difference in a 

distance between two points that is measured at a lengthy measurement, such as meter, 

centimeter or Nano scales etc. respectively. The process of differential equation 

solution can be seen as one of structure node (detail) exposition. In the numerical 

analysis field, the node number a large-sized element contains could be adjusted 



respectively in various manners by different methods. Those approaches can be 

classified into two categories，one is the discretized model method, featured with split 

node shape functions, such as the traditional FEM, the multigrid FEM, the adaptive 

refinement FEM, etc., another is the integrated model approach, characterized by full 

node shape functions, such as the wavelet FEM (WFEM), the traditional meshfree 

method (MFM), the traditional natural element method (NEM), isogeometric analysis 

method (IGAM) and the proposed multiresolution element method (MEM) etc. FEM 

applies the scheme of meshing and re-meshing, which is mainly relied on the 

empiricism, to adjust the element node number in a rough way, thus performing an 

irrational MRA; WFEM adopts the technique of cubic B-spline function tensor 

product to form the full node shape functions that are complicated to be numerically 

integrated and to be utilized to treat boundary conditions. MFM and NEM employ the 

strategy of prior artificial-selected element node layout which is also largely 

dependent on the empiricism. IGAM has some pitfalls like WFEM. In a word, all 

those above or other methods are short of the parameter-resolution level (RL) with a 

clear mathematical sense that can be easily used to fully alter total element node 

number and locate element node because they do not have a simple, clear and solid 

mathematical basis. However, MEM has such a simple, clear and rigorous 

mathematical basis that brings about the parameter RL to freely adjust total node 

number and locate nodes within the element. Hence, it can be said that WFEM, MFM, 

NEM, IGAM etc are the intermediate products in the transition of the traditional FEM 

from the monoresolution (discretized model) to the multiresolution (integrated model) 

and MEM consolidates all these irrational MRA approaches. 

7. Conclusion and Prospective 

A new multiresolution element method that has both high power of resolution and 

strong flexibility of analysis clarity is introduced into the field of numerical analysis. 

The method possesses such prominent features as follows: 

1. A new split-full node notion is presented and a novel technique is proposed to 

construct a simple and clear basic full node shape function for a triangular 

plate-bending element, which unveils the secrets behind assembling artificially of 

node-related items in global matrix formation by the conventional FEM.  

2. A mathematical basis for the MRA framework, that is the displacement subspace 

sequence, is constituted out of the scaled and shifted version of the basic full node 

shape function, which brings about the rational MRA concept together with the RL 

that defines a node uniform distribution pattern. 

3. The traditional 3-node triangular plate element method is a monoresolution one 

and also a special case of the proposed. An element of superior analysis clarity surely 

contains more nodes when compared with that of the inferior.  

4. The RL adjusting for the multiresolution triangular plate-bending element model 

is laid on the rigorous mathematical basis while the meshing or remeshing for the 

monoresolution is based on the empiricism. Thus, the proposed element method is an 

rational MRA approach and can consolidate all corresponding irrational MRA 



approaches. As a result, selection of an appropriate RL is a time-saving task while 

selection of an appropriate meshing scheme time-consuming. The accuracy of a plate 

structure analysis is replaced by the clarity, the irrational MRA by the rational, the 

mesh by the RL that is the discretized model by the integrated. 

5. The structural analysis clarity is actually determined by the RL, not by the mesh.  

6. With advent of the new finite element method 
[17,18,19]

, the rational MRA will find 

a wide application in numerical solution of engineering problems in a real sense.  

The upcoming work will be focused on the treatment of interface between 

multiresolution elements of different RL. The interface may be extended to the 

bridging domain in which a transitional element could be used just as PS images of 

different RL. The transitional element could also be constructed by the technique of 

scaling and shifting of the basic full node shape function to virtual or real nodes. 
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