
Turbulence as

structured Route of Energy

_fro* Order into Chaos.
(Revised Version).

Udo E. Steinemann
Findeisen-Str. 5/7
71665 Yaihingen an der Enz
Germany
e mail : udo. ste ine mann@t- online. de



Abstract.

A contemptuous attempt to understand the phenomenon of turbulence dated back to a theory of L.
F. RICHARDSON which later became enhanced by A. N. KOLMOGOROV. By the contents of this
theory turbulence is considered as a transfer of energy taking place in forms of cascades between
eddies of various orders of magnitude. The transfer becomes started by unspecified disturbance acting
on eddies in forms of fibres and is further evaluated on account of their stretching. This principally can
explain for eddies of various sizes being created in generations while energy is distributed along these
generations from the largest eddies down to the smallest. But it is impossible to determine a specific
structure of the cascade and its development in details.

In order to step forward this way, this paper will show, when spinning spheres with surface-
tension are models for the eddies and a specifically designed disturbance act on them, eddies of large
size will decay in a eascade of hierarchically structured generations into smaller ones. The dynamics of
this development is due to the balance between the acting force of the disturbance and the reaction
due to sphere-tension on each eddy in a self-organisation mode. All eddies within one step of the
hierarchy will obtain same size, life-time and rotation-phase, for follower-generations these
quantities will be different in a definite way. Each predecessor-generation will double its number of
eddies relative to its follower-generation, while each eddy partitions its rotation-energy for its
followers and those will get increased their surface-energy by disturbance. Finally the whole cascade
will form a structured route of energy from order into chaos similar to many other dynamical systems.

L. Introducti,on.

L. F. RICHARDSON [1] and A. N. KOLMOGOROV [2 , ...,7] conceptually related dissipation with
other macroscopic quantities of a turbulent flow. They started from the idea that a turbulent flow is
fed with energy on large scales, which is transported by decay of eddies through an order of
magnitudes to the smallest eddies where finally it is totally transformed into heat. This process is
called energy-cascade and starts with the following proportionality:

1.1 r . , ' 1. i.".;:.'t't':l

For an appropriate REYNOLDS-number 'r it can be written:

1.2 :., , , , :-,i:,,; ' . l: : ,,, ,:::;.: :',.:i)!.i :

Thus the value of , ," , measures the range of various length-scales within the turbulence. The
KOLMOGOROV-length represents the extent of a smallest eddy in the turbulence.

According to L. F. RICHARDSON, turbulent flows show a hierarchy of eddies, where the larger
ones are built in a preliminary creation-process of the turbulence. Afterward they decay successively
in a sequence of instabilities down to a minimal magnitude , ,' of eddies. Here they finally are
disturbed and their energy is transformed into heat due to viscosity of the turbulent medium. During
this hierarchical process, eddies submit most of their energy to their followers, only a small part each
time is lost through dissipation. The hierarchy ends as soon as f l/becomes comparable with :,.,' which
results in i',', l ,'.

1.3 : ,,,,

1.4

Such an independence of transfer-rate , : from viscosity ', '.' can be explaiued - due to
RICHARDSON - by the stretching of an eddy.

Turbulence in this sense starts with a picture about eddy-fibres in a shear-flow (H. E. Fiedler[8]):
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4.1.1

The smallest swelling-out of a fibre will stretch its length, strengthen its angular-speed , ..,: ' and
shrink its cross-section i appropriately to HtrLMHOLTZ's law:

1.5 u.A= corut.

The stretching-mechanism by itself can be explained in a following way:

4.t.2

Given a fibre in z-direction with a rotation in the (r,y)-plain. As soon as it becomes stretchedirr z-
direction, its cross-section in (r,g)-plain and with it the appropriate rotation lYxw/and intensity

lw2 / willbe enlarged. Such an increase of intensity - on its side - will cause further stretching of the
fibre in the other space-directions. Thus stepping forward this way, the initial swelling-out of the
fibre will finatly have been resulted into an energ.y-cascade filling up the complete fluid-space. Such a
procedure can be visualized qualitatively by the following graph:

4.1.3

All this together will result in angular-speed . and with it to such an extent that the
energy*transfer-rate remains quasi constant. Therefore the energy-cascade is assumed to be quasi
independent from the viscosity ,, of the turbulent medium. For the energy-transfer-rate '" . across

the energy -cascade approximately the following proportionality can be obtained:

1.6 , '.: l
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Compared to equation /1.4/ this will result in:

7.7 u(u^/A)2 - u'll = u' /r"

During the extension of the energy-cascade each eddy partitions its energy /-u' / among the
followers, the energy of the followers therefore must be less than that of their predecessor. The value of
f u2 f decreases permanently in a propagating energy-cascade and in a similar way lll does it too.
Thus finally - in the case of smallesteddies - the product /u.ll willbecome comparablewith f vf :

1.8 Re:u^.xluxL.

The values /X,u,x,r^f of the smallest eddies in the turbulence are called KOLMOGOROV-scales,
they can be summarized in the following way:

1.9 ), * {u3 /e)'/4 - Re 3/4"1

q- {u'e)l/a - 1L-t/+'u,

r^- {uf e)t/2 - Re-t/2.rt.

KOLMOGOROV completed the theory of the energy-cascade, which formally was initiated by
RICHARDSON, with three additional hypotheses.
For eddies of l.\ < r << ll statistical isotropy can be assumed. In addition lr,l of large eddies will show
in comparison with proper values of medium-eddies /r,<< rrf , tlne letter will decay much faster. The
smallest eddies are in a statistical equilibrium. Under these aspects he came to his hvpothesis of the
local isotropy:

H.1 For large REYNOLDS-nu'nLbers turbo-rlent rnoti,ons on smallest scales äre stati,stically
i.sotropi,c and zoill erpi,re i,n stati,sti,cal equili,brdum (unduersal equi,tibriun).

By the next hypothesis KOLMOGOROV expressed his opinion, that:

H.2 Forl,o,rgeRfiYNOLDS-numbersand,l,ength,-scales /r<<ll stati,sticalquanti.tiesuillonly
depend, on three po,rameters - the length*scale /r I itself , the energy*transf er-rate / II /
and the ud,scosity /" / of the turbulent med,iurn..

Eddies of length-scales /l >> ,l - from the so-called Inertial-range - will remain nearly untouched
by viscosity lv / . Those eddies will obtain their energy-influx nearly totally from their larger
predecessors and will deliver it nearly completely to their smaller followers of universal equilibrium.
Thus, for the statistics of these length-scales, energy-transfer is not decisive. In essence of this
KOLMOGOROV formulated his final hypothesis:

H.3 For large REYNOLDS-nunzbers f or scales /l >, , > Äf statisti,cal quanti,ties ruil,l lmue
un'iuersal farms only d,epend:ing on /e / and lr I .

The theory of RICHARDSON enhanced by KOLMOGOROV apparently disclosed some
deficiencies for instance with respect to the number and sizes of followers coming into existence as
consequences of a predecessor's decay, the individual life-times of the various members in the cascade
and last but least a characteristic of the disturbance-signal. This information however is needed in
order to determine an appropriate cascade-structure, which then enables a statement about the roper
development of the turLrulence. The following discussions should be understood to appropriately
enhance the former theory in this way.

Inside a fluid an eddy is now considered as sphere ,', ' with a spin as united angular-
momentum of its particle-set. The form of sphere is chosen because it possesses the smallest surface
for an enclosed volume. A time-dependent force :; , | . 'as disturbance may act on the eddy from
outside trying to deform into another volume with increased surface. This will cause reaction
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, ;: '., , parallel to , : 
i ' r due to the surface -tension (consequence of the fluid-viscosity

4.2.1

The competing forces will influence each other and thus should be considered coupled together in a
self-organizing system, appropriately in the following way:

2.OL dg1/ dt = -^f.8t-a.hz.et
2.o2 dhz/dt -- -6.hr+b-(qr)'

With respect to /q1&) I arrd lh2ft)/ one should make use of the so-called adiabatic approximation (see

H. HAKEN [10]):

2.03 ä >> 7 ---+ d"hrf dt x A,

Due to relation 12.A2l this will result in:

2.O4 hz=ö-"b'{q)z.

Equation /2.04/ can be interpreted as: /h2f must follow f q1f immediately, /hr/ }:,as become enslaved
by /qr/ (H. HAKEN [10]). On the other hand lh2/ will react on lqt/ backagain via equatiot /2.O1/
with the consequence:

2.O5 dqlldt = -1.et- ä-'.a.b.(q1)3.

By equation /2.05 / f.orce f q1f is expressed by the dynamics of a so*called unharmonic oscillator -
which depending on the conditions -:
2.a6 [(r > o)] V [(z < o) fi (ö-'.4.b) > 0]

possesses two qualitatively distinct stability-modes:

2.07 [Po=0] V lPtrz=*(1ry1.6 /(a"b)]1t21.

In the first case stable oscillations are performs with respect to the fix-point /pr/ , in the second case

f psf becornes instable and bifurcates symmetrically into new stable-points f p1n2 f , eachbecoming
the centre for subsequent oscillations. Therefore by the bifurcation of /po/ is expressed, the sphere

l{Sr)rl will be partitioned into smaller follower-spheres /(S'), A (S')r/, a process which can be
explained as follows.

For I qr(t) I from outside I $2)11 - instead of f 7 : constantf - a dampin g of l7{t) I should be
expected , presumably of the following kind:

2.oB [ry'(tr) > 0] ---+ h1(t2) = 0l ---+ [zr(tr) < 0].

---+

---+

d,q1/dt = *j.et-a.hz.et <-- "y, ö = do,mpi,ng-paro,meters

dhz/dt, - -6.hr+b.(qt)' a,b = caupllng-parameters.
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Potential-curves tor lV{q{tr) A l/(qr(t3)/ then qualitatively may be visualized in a following way:

4.2.2

Deformingthepotential-curveontheway:' ,r, -', ,...,',',twillflattentheneighbourhoodof
. ,, , ' steadily, stability accordingly will be reached more slowly and finally will be exchanged by
instability at ,'.', . During this process, which takes a time ,,:,: . force ,'r r ' , will deform ,' ":' ): to a
shape of surface with higher energy. As soon as the surface-energy has become high enough to build
two times the surface of , this will occur at:

Sphere l$')rl will become partitioned symmetrically at /pr A pr/ into spherer /(S*), /\ (SB)u/ eactr
volume of /vz.{Ss)11.

After the split spin l,!11 will have been saved, thus for l{53)2 A (St)r/ following condition must
hold:

2.10 Jt:Jz*Js <- Jz:Js.

Between the rotation-energies /ez,z/ of /(Ss), V (S')r/ and /e 1/ of l{53)rl the following relationship
will exist:

(a/3)-t-(r)Z
* I rruu :rt/(z)

rzvzxO.79.r1 * | (S')rns=S.r.(rzue)
E 15.69.(r1)2

(S2). = 4'rr'(r)2
xL2.57.(r)2

AO x3.12.(r)

2.lL et='/2.0t(wr)

0t= n.(rt)2

4 =t/2.n.(rr)'.(rr)'

<-- 0t=lTlÜtfi,entum
of i.nertia

<- at= angular
aelocity

{-- n = constant
<- ?zrs=momenturnc2v3 -

Y2.026.(u26)2
c2v3 -
a/2. n - (r 2,s)' - (r ru r)'

L2v3 -
rc.0.31.(rr)'.(rrur)'

m.0.31.(rt)'-(ur,r)
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€2r3 = t/2.5,

(rrrr)'= 0.8.(ar1)2
LüzvB x 0.9.tt1
u)zns N 1.8.u.r1

2 xA.62.
c2v3 -L/a.K.

This resulLs in:

2.L2 Jzrs:gzu{azuz ---+ Jzrz= n-(r2r3)2..i.2rs ---+ Jzutx n.O.62.(r)2"0.9.c,,,, ---+ J2,13l- 0.6.J1.

Energy le ^o/ - 
which has to be transferred by /E{t) I in order to enlarge /(S')rl up to an

equivalent of f {52}2ß/-isproportionalto /AA/or /(rr)2/.Thereforeasimilarrelationshipmusthold
for the proper life-time /l((S')r) / (time of (,53)r*existence):

z.tz r((s*)') -{rr)'.

3 . Di stur b ance - M o d el acti,n g on S pher e s o.f F oll otu er - G ener at'ions.

In the preceding discussion a stochastic signal:

3.1 s"(t; - ^tt{t)"ql(t)

lasting for the time: ,

3.2 ,{-((S3)r) =r,
became responsible for the split of sphere /(Sr)tl into l(53)2 A (S')r/. The same procedure is now
assumed to take place in a similar way on spheres of a second generation, where the stochastic signal:

3.3 s'z(t) * ^tzft).q2{t)

within action-time:

3.4 r((s'), V (s',)r) : r,
causes the follower-spheres of first generation to became partitioned into spheres of a third
generation. Generally speaking, any k-th generation will get its specific resonance-term for the splits
of its actual spheres in the following way:

3.5 s'*(t) = l*(t).qu$) -) f k.

Throughout generations of the splitting-process following conditions must hold:

(/e(t') / represent the energy of a signal ld iQ) l).The first condition is due to the fact that spheres of
any predecessor-generation have larger life-times as their followers in next generation. The second
condition takes into consideration that the proper signal for any k-th generation will have to invest
about 25Ta rnore extra-energy than (k*1)-th generation for the increase in surface-sum of its
spheres.

Finally, in order to obtain a suitable concept of the disturbance in total for appropriate actions on
eddies in the current sense, one may consider lS(t) / as a corlsecutive sequences of stochastic signals
/t'r{t) I whose layout wiII be obtained on base of the following considerations.

of Disturbarrce on Course of the Rcyu,te.
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In order to obtain a suitable concept of a disturbance-signal appropriate for actions on eddies in the
current sense, one may start in a following way. At a specific point in the fluid the overall
disturbance- signal /S{t) / is derived frorlrt a series of successive auto- or time-correlations due the
probabilistic velocity la'(t) /:

4.0t S(i): ({o'(0).t"(ro)}fr], {u'(t}.u'{to+rr)}r1, {t,'(i=oIrlr;.r'(;=ol'4 +r2)}i'i,
{u' ( r=oD' t r)' u'(3=oI'r, + r,* 1 ) } 

Ir-'*'1, . . . . . }

where / {.. .}s1 I expresses the mean of a quantity within time-peri od /T / (an appropriate value from
the list of life-times /f */). With each of the partial correlation-functions l{u'(t).a'(t+r)}t"r/ is
associated a stochastic- signal lt'{t) I in form of a probabilistic process with strong periodic
components, and can also be expressed on base of proper correlation-coefficients /R{r) /:

^.4.1 
a,

signal s'(t) with
components

in the following way:

4.02 {(o')'}HA( r) : {u'(t)"u'(t+r)}w.

Further discussion is based on a generalization of FOURIER-analysis.

4.L FOU HI Efu-Erpansi,on of a real .function.

A real function /f(t) /with time-pefiod /1/:
4.03 s[tf(t)d't = o

will be generally expanded into the FOURIER-series like the following:

4.04 /(t)=1u=--1f(o=*)(ao.erp{2ni.kt}l * ([ar=0] A lo*=o*-o],(*- konjugate-compter)).

From the amplitudes f a1-f via PARSEVAL-equation the square mean-value of /f (t) / can be found,
as follows:

4.05 o{1f2{ildt = ft=1»*(2.larl,l.

The various terms of the sum (modes) in equat\on /4.O4/ are orthogonal to each other:

4.06 of' (o*i .a1*.erp{2xi,(x-flt}ld,t : 6 y,.

Although in real turbulence specific frequencies cannot be found, it becomes possible to associate a
certain part of the total fluctuation-energy with a specific frequency in order to perform a harmonic
analysis of fl uctuations.
The spectral decomposition of a time-dependent, stochastic signal , , ,' becomes a generalization of
the FOURIER-decomposition of a deterministic, periodic time-functions .. i | | , | .If an analogous

for a stochastic
strong periodic
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expansion for a stochastic signal /{s'{t)}w: 0/ should be performed, a generalization is necessary
because ls'{t) I is not periodic, it contains the complete set of frequencies, not only the discrete ones. In
addition /t'(t) I is a random function and repetitions of the same flow-experiment will deliver
different results.
Each real stationary process /{s'(t)}tl = 0/ can expanded approximately in a sum of harmonic
oscillations with random and un-correlated amplitudes. Analogous to the equation /4.04/one gets:

4.OT s'(t) = *-1-*1lu="(lz(f ri-Z(f )1.{erp{2trif'!t}l) -- l-tt: f _n<f _n+t1 "..<f ,1f n*,= {4.

For the decomposition of interval ll-fl,{11/ on frequency-axis following conditions must be fulfilled:

4.08 fulf'*1f**r.
Therandomquantities /Z(fr*)-Z(f)/associatedwiththeinterval llfu,f*,)lwillapproximately
comprehend a complex amplitude of aII modes contained in /s'{t) I with frequencies between lf 1, I and
I f n*r l . The random quantiti es I Z (f 1,*r) 

* Z {f *) I contain all information about rand om phases and the
random amplitudes as well of all modes from ls'(t) / .They can be determined by the random function
ls'(t) lin a similar way as the FOURlER-coefficients f auf from /f (t) / . The relations in:

4.09 &*= &*-n

will find an analogy in:

4.7A \Ztf ")-Z(f ') = Z *t*f ')-Z *{-f")) -+ \[f ' < f 'T.

The random amplitudes are not correlated among each otheri r

4.17 f o --- (i +k)
{lz*(f u*)-z*(f il\'lz(f iä-z(f i)l}t'r : I

l%E(f' )ff u*,-,fu) ---+ {i = k)

similar to equation /4.06/. This way specifically it may be written:

4.L2 YzE(f'1,){f e*,-f ) = {lz*{lu*,)-z*(f )l.Lz(f r*}-z(J*)l}E = {lz(f ri-z{f })'}t\.
This is approximateiy the mearr square of the amplitude-sum of ali modes from l"'ft) I whose
frequencies are betwe eL lf r / and /f u*r/; therefore it is a measure for energy of these modes. Equation
/4.OT / in the sense of quadratic deviation will become more accurate the closer tlne lf 1,/ witl be:

4.13 (O-'oo) --+ (nzar{f r*r*fu} * 0) <-- (n -*oo).

For this limiting case it can be written:

4.L4,s'(t) - -*.{* \.*p{zrtft\ld,Z(f)

analogous to equation 14.A4/. Equation lA.LLl will then result in:

4.15 [o -* (f ,+ f)
{dZ*(f)dz("f,ir' = -l

lv,E(f)df -tfr=f)
analogous to equation /4.A5/. From relation /4"ß/one will obtain:

4.16 d,z(f) = dz*(-f)

analogous to equation /4.Ogl. From:

4.L7

{dz*(f)dz(.fr}n =
a'$r* f)

df-
A ldz(f): dzn(-f))
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it can be written:

4.r8 E(-f) : E(f).

Similar to the correlation function l4.AZ l one finds lÜ{f) I as an even function. It is the mean energy
of allmodesfrom /t'{t}lwhosefrequenciesarefrominterval ll-f-d,f ,-fl/ and llf 'f+df1l:
A.Le YzÜ(-f)df +vzÜ(f)d,f : E(f)df -+ [/ > 0]-

According to equations la.Lzl and 1a.17 I it obviously can Lre verified that:

4.2o E(/) > o.

Thus lEtfl / becomes the mean energy-density (energy per frequency, spectral-density) at, /f / on

thefrequency-axis when l{r)'lismeasuredastheenergyof aprocess ls'l.Fromequations 14.1,41

and, 14.17 I can be deduced that the correlation-function I 4.AZ l and the spectral-density lE(f) I arc
FOURIER-transforms of each other. FOuRlER-transformations for f s'f usually are reduced to
cosine-transformations and in this case the WIENtrR-CHINTSCHIN-equations hold:

4.2L {(o')21tr61 r) : o{*lÜ(f}cos{2xfr\ldf
4.22 E (f) : 4 o f 

* 
[{(a')'} E-R(r)cos 

{2 r f r})d,r.

If it becomes f r:0/ in equation /4.22/ due to lR(O) 
* 1l arepresentation can be obtained for the

total energy as the sum (integrat) of all spectral parts /E(f)df / in the form:

4.23 {{u')2}rrt = o{*E(f)df '
analogous to the expression in equation /4.A5 / . Correlations and spectral-densities combined via
FOuRlER-transformations are representations of the same phenomena.

5. Conclu"s'ion.

Due to the theory of L. F. RICHARDSON - successively enhanced by A. N. KOLMOGOROV -
turbulence is characterized as production of eddies in a hierarchical order. Only the largest of them are

created during initialization of the process, but aIIwill successively decay by series of instabilities into
followers on decreasing orders of magnitude. This process transports energy along a cascade nearly
without dissipation. Only eddies on lowest hierarchical level will distinctively be influenced by viscous

dissipation and finally be destroyed by transformation of their energy into heat.
According to this theory the energy*cascade will be started by disturbances on eddies of highest

level which cause them to stretch in all directions. The initial stretching will continually create series
of followers on lower hierarchal levels with decreasing portions of energy. This is the concept of
cascading so far, but this picture lacks on details about decays, like numbers and sizes of followers
coming into existence and individual life-times in any specific case, and on characteristics of
appropriate disturbance-signals as well. This information however is needed in order to determine an
appropriate cascade-structure, which then enables a statement about the proper development of the
turbulence.

In order to enhance the former process with respect to these deficiencies, the model of an eddy in a
fluid will be changed. The existing picture of an eddy is replaced by a spinning sphere whose surface is

exposed to a self-organizing balance between an outer disturbance-signal and a reaction-force of the
sphere due to its surface-tension (on account to the fluid's viscosity). An adiabatic approximation on
the forces damping-parameters makes the disturbance to become the leading-force of the system
while the reaction-force is enslaved and must follow the disturbance immediately. Due to these facts
the behaviour of the self-organizing system at variations of the disturbance could be best described by
the dynamics of an unharmonic oscillator, which is characterized by two different stability- modes.
Depending on the value of the disturbance damping-parameter oscillations with respect to a stable
fix-point bifurcate into a mode where the former fix-point loses its stability and becomes replaced by

Udo E. Steinemann, Turbulence, as structured Route of Energy from Order into Chaos,2310212018.



two other symmetrically positioned staLrle fix* points. The bifurcation of the initial stability mode
with one fix-point into another one with two fix-points has to be interpreted by a split of the initial
sphere into two follower-spheres.

During this splitting-process disturbance transfers energ.y to the surface of the initial sphere -
and thereby deforms it - up to an energy-levels equal to the surface-energies of two follower-spheres
each with a half of the predecessor's volume. Thereby the split will save the initial spin and the
follower-spins of equal lengths will sum-up for the predecessor's spin. The rotation-energy of the
initial sphere will be equally partitioned among the followers which results in individual spin-lengths
of about 60% and phase-velocities of about 1.J.1_% relative to the proper values of the predecessor.
Additionally the proper stochastic signal also will invest about 25To more tension-energy into the
surfaces of the followers and rotation gets nearly doubled its phase-speed. Split-energy of a sphere
(due to enlargement of its surface) and its life-time are supposed to be proportional to the square of
sphere*radii.

A disturbance signal within the model's frame is appropriately be assumed as a list of resonance-
terms (stochastic-signals), each suitable for a split of a proper sphere. Each term is product of a
stochastic function with strong periodic components and an associated time-dependent damping-
parameter; it vanishes by integration over an appropriate time-period (life-time of a proper sphere).
Due to the letter quality it can be decomposed into a FOURIER-series with complex coefficients.
Each coefficient will be derived on base of an individual set of frequency-modes. If the coefficients -
which now principally contain all information about amplitudes and phases of their proper modes -
are formulated in a suitable way, the FOURIER-series - which they belong to - will result in a
function with an associated damping-parameter suitable as split-resonance for spheres of a actual
cascade-generation.

Because each follower-generation on the course of the route will find its prgter resonance-term
for the splits, it can and will go through the same split-procedure with equivalent conditions as its
predecessor did. This means, starting from an initial sphere, a series of subsequent follower-splits will
occur. Each of them haves rotation-energy, nearly doubles phase-speed, shortens life-time by about
a third and increases the tension-energy of surfaces by about a quarter for any follower relative to its
predecessor. This way a picture about an eddy's decay can be drawn as a well structured route of
energy from order into chaos, similar to those of many other dynamical systems too"
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