
From Bernoulli to Laplace and Beyond
Abstract. Reviewing Laplace’s equation of gravitation from the perspec-
tive of D. Bernoulli, known as Poisson-equation, it will be shown that
Laplace’s equation tacitly assumes the temperature T of the mass sys-
tem to be approximately 0◦K. For temperatures greater zero, the grav-
itational field will have to be given an additive correctional field. Now,
temperature is intimately related to the heat, and heat is known to
be radiated as an electromagnetic field. It is shown to take two things
in order to get at the gravitational field in the low temperature limit:
the total square energy density of the source in space-time and a (mass-
less) field, which defines interaction as quadratic, Lorentz-invariant, and
U(4)-symmetric form, that restates the equivalence of inert and gravi-
tational energy/mass in terms of absolute squares. This field not only
necessarily must include electromagnetic interaction, it also will be seen
to behave like it.

1. Problem Statement
A system of N particles in spacetime in Newtonian mechanics is a system
that is to be defined by 3N location coordinates qk as well as a common time
coordinate and their associated 3N momentum coodinates pk as a function
of time. Mostly these systems are stably confined to a fixed region in space
over time like a drop of water or a stone. So, there will be many equations
of confinement, and to simplify the mathematical model, Bernoulli changed
that model by replacing the particles’ position with a spatial mass density
ρ(t) : R3 3 ~x 7→ ρ(~x(t)) ≥ 0. Laplace then took over that model and showed
that the gravitational force of a mass density ρ could be expressed as Poisson
equation ∆Φ = 4πGρ of a potential function Φ, the gravitational field and
the gravitational constant G, ∆ := ∂2

1 + ∂2
2 + ∂2

3 being the Laplace operator.
That marked the introduction of field as a concept into physics. What made
it both bold and dubious, was that it said that the field was to be the sheer
equivalent of the mass distribution. It was soon found out that the field was
to be an harmonic function of the space coordinates, which led to the famous
Laplace demon problem, and another problem then showed to be the lack
of Lorentz covariance, giving evidence that the Laplace field of gravitation
cannot be correct.
However, there is much more to it: Both, Bernoulli and Laplace took it as
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evident that a (smooth) mass distribution ρ(x) of N particles, which is con-
fined to a bounded region K ∈ R3 (for all times t), could be resolved at each
given time t into N disjoint bounded regions K1, . . . ,KN , containing a unique
particle, if only the particles would stay apart from eachother. With that, it
should be possible to replace ρ with the sum

∑
k ρk of smooth, non-negative

functions ρk of disjoint support and compact support, each (which means,
they all vanish outside a bounded set, e.g. K, and if one is greater zero at
some point x, then all the others must vanish at this point x). If so, the above
Poisson equation could be rewritten as a sum

∑
k ∆Φk =

∑
k 4πGρk of N

independent gravitational equations for each and every particle.
And indeed, mathematics proved this to be possible, now known as the par-
tion of unity (see e.g. [2, Ch.16]). That, on one side, means that even if all
particles are pointwise in nature, we can approximate these particles through
Bernoulli’s ingenious replacement of mass position by smooth mass densities.
On the downside, that shows that Laplace’s theory of gravitation must lack
generality, because in it, all the particles of a body are independent from
eachother: they just add up individually!
And this is incorrect, because it disregards the body’s kinetic energy:

The mass m of a body B at rest is to be defined to be equal to the total
energy of B. Now, if B was simply the sum of N individual oscillating particles,
then the total energy E is to be the square root of

∑
1≤k≤N m

2
kc

4 +(cmkvk)2,
where c is the speed of light, mk are the individual masses, and the vk are
the mean speeds of these masses, so kinetic energy, a.k.a. ”heat”, always will
add to the the total mass of B!

So, ρ has to become a 4-vector j = (j0, . . . , j3) of functions jk in time
and space, such that

< j(t), j(t) >:= ‖j(t)‖ :=
∫
R3
|j0|2 (t, ~x) + · · ·+|j3|2 (t, ~x)d3x

equates (locally) to the square of energy, which then becomes the square
of the total energy of B, i.e. up to c2 is equal to the square of the inert mass m
of B. (So, j can be conceived as the macroscopically composed superposition
of local quantum states, which approximates the system’s particles.)

(Because under relativistic conditions there is no single eigentime for
an object of diameter d > 0, one should include include integration over a
time interval t, though, but, as this is the conventional and simpler way, we’ll
follow that line.)

In all, the appropriate model for discussing gravity of particle systems
is that of time curves Ω : R 3 t 7→ Ω(t) := jt := (j0,t, . . . , j3,t), where the jµ,t
are to be smooth functions with compact support in space R3 for each µ and
t, such that their absolute squares,

∣∣jµ,t∣∣2, are the intensities of smooth, local
energy-momentum packages of the particles in space and time, as sketched
below:
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Having Ω : t 7→ jt ∈ L2(R3)4 in place, we can state:

Proposition 1.1. The total energy square of a system Ω : t 7→ jt at time t0,
which is at rest at t0, is given by E2 =< jt0 , jt0 >=

∑
µ

∫
R4

∣∣jµ,t0(x)
∣∣2 d3x.

2. Deriving gravity
It now shows up that there is nothing else than this notion of Ω needed to
discuss gravity:
If instead of inert masses mk, the system was made of electric charges, or
even hadronic baryons, or whatever could be idealistically thought of to re-
sult in massy particles, the energy-momentum distribution is already put as
a quadruple jt of complex-valued states, the absolute squares being their in-
tensities. (We’ll shortly see, why this is the case, but for the moment you
might look that up from any standard text on quantum field theory.)

The covariant Maxwell equations rewrite into:
< jt0 ,�A >= Const < jt0 , jt0 >= Const E2, (2.1)

where � := ∂2
0−· · ·−∂2

3 is the wave operator, A the electromagnetic 4-vector
field, and Const a constant, which in Gaussian units is identically 1 along
with c.

Let’s now choose that constant differently, to be Const = −4πG, where
G is the positive gravitational constant, such that∑

µ

< jµ(x),�Aµ(x) >= −4πGE2. (2.2)

Equation 2.2 then states nothing but the equivalence principle: It says that
Ω : t 7→ jt has included into the jt a gravitational interaction potential, which,
when squared and summed up, is to be proportional to E2 and is contracting
(due to negative sign of −4πG).

Theorem 2.1 (U(4)-Invariance). We now are in the position to explain, why
Ω : t 7→ jt suffices to describe gravitational interaction:
Because equation 2.2 becomes U(4)-invariant, with U(4) being the group of
unitary 4 × 4-matrices, just by letting the bra vector < jt| be the complex
adjoint of its ket vector |jt >. (This is also how we get at the non-negative
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square E2 =< jt, jt >.) And, U(4) is reducible decomposes into a product of
subgroups U(4) = U(2)×U(2)× SU(3), where in turn U(2) = U(1)× SU(2)
is the product of the phase symmetry group U(1) and the spin group SU(2).
So, U(4) is a super group of Standard Model (with its 12 generators). That
means that all energy coming from Standard Model should be accounted for
within that U(4)-invariant model.

As another consequence, we get:

3. Charge Inversion and Parity Invariance
Naively, we can define C : jt := (j0

t ,~jt) 7→ (−j0
t ,~jt) and P : (j0

t ,~jt) 7→
(j0
t ,−~jt) as charge inversion C and parity P. With it, the square < jt, jt >

becomes invariant w.r.t. C and P, i.e. both are non-trivial inversions on
the quadrupel of functions jt = (j0

t ,~jt). What makes these insufficient from
scratch, is that these antisymmetric operators are missing their symmetric
counterparts: Given two oppositely charged particles like an electron and a
proton, we may add these to an hydrogen atom, which is neutral, but not
uncharged: if we invert the charges of that atom, we’d get out not zero, but
another neutral object, which - as to its neutral overall charge - is the very
same as the hydrogen atom before. And the analogous observation can be
made as to parity. Because jt is a quadrupel, we can represent it based on
the four possible states of charge inversion and parity, which both are ±1.
With it, C becomes the permutation of the eigenspaces for the spectrum
{+1,−1}. We may then define j to be (purely) charged, if j0

t anti-commutes
with C, and it is neutral, if C leaves j invariant. Let’s concentrate on the
neutral states j: Because these are C-symmetric, we can drop the symmetric
anti-charge pair, and we are left with the pair of functions of either positive
and negative parity.
Now, it will be superficial to attribute quantum mechanical spin to these
states that would cancel out: parity comes into play, whenever the flux ~jt
(and not its absolute square) contributes to the energy, which here is obvi-
ously the case: when we take its square, add it to

∣∣j0
t

∣∣2, and take the square
root, whether sign of parity the state takes, its absolute value is the kinetic
energy.
And now, given that for a neutral system of particles, its gravitational inter-
action is not depending on momentum of its constituents, we get: The kinetic
energy of a neutral system of particles subjected only to its own gravitational
field, must be an invariant!

We derive two statements fom this:
First, defining heat as the kinetic energy of a neutral particle system, that
heat may freely move to external systems, which will leave the system with
heat loss in a bounded state.
And, secondly, leaving out that invariant heat, the pair of parity-dependent
equations for the neutral particle system now becomes a single one, namely:
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�Φ(t, ~x) = (Const)ρ(t, ~x), where ρ is the neutral rest energy density, and
we’ll define this rest energy as rest mass.
Note that this equation is relativistically invariant, it is the simple relativistic
extension of Laplace’s equation of gravity, −∆Φ = (Const)ρ, and it relies on
temperature near zero as in Laplace’s model.
Let’s drill into that:

4. Gravitational Interaction
Head on, we are to solve the equation �Φ(x) = −4πGδ(x)) with x = (t0, ~x)
being the 4-vector of space-time coordinates. And the solution would be what
would be called the Green’s function. It would mean to integrate over R4,
which historically is felt to be awkward.
Instead, historically, the ”small solution” is taken:

�Φ = (4πG)δ(t2 − ~x2), (4.1)

which seemingly separates t from r2 = ~x2 and basically makes it possible to
express the inner product of the states in terms of L2(R3) with an internal
time parameter t.
Let’s go with that:
We know that −∆ 1

|~x| = 4πδ(~x), and we have

δ(t2 − r2) = δ(t+ r)
2r + δ(t− r)

2r . (4.2)

As is common, the convolution operator δ(t−r)
4πr is called ”retarded”

(wave) propagator S+(t), while δ(t+r)
2r is termed advanced propagator S−(t).

So, 4πδ(t2 − r2) = (1/2)S−(t) + (1/2)S+(t), (see e.g.: [1][Ch. 21-3]).
It is now commonly postulated that the advanced propagator S− was to be
neglected, as it was representing waves coming in from future to the past,
which was anti-causal, so that only the retarded propagator S− was to exist,
and even Feynman himself granted the advanced propagator only a virtual
role as it came to relativistic particle physics. So, (1/2)S−(t) + (1/2)S+(t) is
replaced by S+(t), which out of the sudden raises major problems and might
not have been the best idea:
What about reversibility? Since the time inverse maps the retarded prop-
agator into the the advanced propagator, this turns time inversion into an
anti-causal, not permitted operation - just to name one of the problems. (An-
other one would be the production of radial halos for particles at the origin
at retarded times, which obviously do not exist.) So, we need the advanced
propagator in order to cancel the halos, and we need it in order to sustain
time-reversibility. On the other hand, given time-reversibility, S− is in sym-
metry with S+, and we should be able to replace S− with S+. What’s going
wrong?
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One point of mention is the innocently appearing usage of space and
time coordinates: Given a mass distribution ρ(t, ~x) at time t = 0, both S+
and S− convolute over the space coordinates, and these space coordinates
are taken at Euclidean right angles of the local Euclidean time axis t at
~x = 0: i.e.: the local observer A at (t = 0, ~x = 0), say, declares his own
local time as universal time, although not even being able to observe another
(t = 0, ~y) at the very same time! That’s not a failure, though: Given that
A sees only objects on the retarded cone, as is commonly postulated, A
record his observations for some time span and replay them backwards in
time. But, when playing back in time, the objects are now positioned on
the advanced light cone, and because of time-reversibility, A will see the
same objects for each ~x ∈ R3 on either cone. So, the orthogonal projections
(±|~x| /c, ~x) 7→ (0, ~x) deliver the same result. And that projection is smart,
because invariant w.r.t. time inversion, and above that, A needs a hyperplane
of sources, not just a single point, in order to capture the wave front entirely.

That said, given a mass distribution ρ(t = 0, ~x) for ~x ∈ R3, the grav-
itational field is emitted independently at the speed of light at each (0, ~x),
and they simply superimpose (i.e. add) at later ”local world time” t > 0.
We can therefore restrict consideration to the origin (t = 0, ~x = ~0), while
the the generalization to all ~x ∈ R3 follows by integration over the location
coordinates ~x ∈ R3.

δ(t±r)
2r themselves are no functions, but distributions, and we get func-

tions of these by integrating over the time t: Let’ put

W (t) :=
∫ t

−∞

δ(t′ − r)
2r dt′ = 1

2r |r=t, (4.3)

which is defined for all t 6= 0, where integration from the negative t through
0 to the positive t is defined as boundary value from negative t to −0 :=
lim−ε→0 and from +0 := limε→0 to the positive endpoint, and the boundary
values cancel. So, W (t) =

∫ δ(t−r)
2r dt is the time integral of ± δ(±t′−r)

2r dt,
known as principal function: in particular, we have dW (t)/dt = δ(t−r)

2r dt

for t 6= 0. Wρ(0,~0) describes the spreading of the field for the source ρ at
the origin (0,~0) in terms of the Euclidean local (world) time (at least for
increasing t > 0), and to get it for the spatially neighboured locations ~y at
the very same Euclidean time, where ρ(0, ~y) is the source, we would need to
displace W (t) spatially, which will give a function W~y(t) to be superimposed
with W (t). We’ll do that later. For now, it is important to see what happens,
when we square Wρ(0,~0) up to W 2(t)ρ2(0,~0) = ρ2(0,~0)

4r2 |r=t:
Its integral over the 2-dimensional sphere r = t for t 6= 0 is πρ2(0,~0) which
is constant in time, and we conclude that this must hold for t = 0, either.
And now, given that ρ(0, ~x) vanishes outside a bounded region of space and
is sufficiently smooth to be integrated, we can integrate over space the result
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of all displaced sources at Euclidean world time to give:
< W (t, ·)ρ(0, ·),W (t, ·)ρ(0, ·) >= π < ρ(0, ·), ρ(0, ·) > .

In other words, the operator
W̃ (t) : ρ(0, ·) 7→ π−1/2W (t, ·)ρ(0, ·) (4.4)

is a unitary representation of the 1-dimensional group of time-translation.
Consequently, W̃ (0)∗W̃ (0) = W̃ (t)−1W̃ (t) is the identity 1, and therefore
W̃ (0) = eiλ1 for some arbitrary phase factor eiλ.
Also, dW̃ (t)

dt equals S+(t) for t > 0 and it is equal to −S−(t) = S+(−t) for
t < 0. (The reason for the sign twist is the unfortunate twist of direction of t in
S− along |t| instead of t for t < 0.) That said, by extending S+ to the negative
time axis by S+(t) := −S+(−t), we can replace all occurrences of S−(t) with
S+(−t), and the advanced wave propagator again is seen to exist for time-
inversion symmetry and not for any unknown reasons of complementarity.
With that S+ = π1/2 dW̃ (t)

dt - up to the constant factor π1/2 - is dynamically
the generator of time translation, where the unitarity of time-translation
expresses the homogeneity of time in the energy conserving dynamical system.

Let’s now put it together:
Instead of trying to find a linear solution of the gravitational field problem,
let’s go for a quadratical one: Given a free mass density ρfree(t) : R3 3 ~y 7→
ρfree(t, ~y) ∈ C, which is smooth in ~y and of compact support for each t, to
solve is:

< ρ(t), ρ(t) >=< ρfree(t), ρfree(t) > − < ρfree(t), V 2ρfree(t) >, (4.5)
where −V 2 is a negative (possibly linear) operator, representing the gravita-
tional interaction, and because gravitation is to be independent of the motion
of the masses, we can drop all motion from the right hand side; the above
equation then becomes
< ρ(t), ρ(t) >=< ρfree(0), ρfree(0) > − < ρfree(0), V 2ρfree(0) > . (4.6)

We now put ρ(t) := (1+S+(t))ρfree(0, ·). Then< ρ(t), ρ(t) >=< ρfree(0, ·), (1+
S+(t))∗(1 + S+(t))ρfree(0, ·). But S+(t)∗ = −S+(t), so (1 + S+(t))∗(1 +
S+(t)) = (1 + S+(t))(1 + S+(t)) = 1 − S2

+(t). Therefore, ρ(t) := (1 +
S+(t))ρfree(0, ·) solves the equation 4.6 with V 2 = S2

+; moreover, S+(t) goes
to the classical gravitational potential in the non-relativistic limit (i.e. letting
the velocity of light become infinite).

So, dropping the bra side, we get ρ = (1 +S+)ρfree, which converges to
the classical gravitational problem in the non-relativistic limit.
Several notes are to be made:

Remark 4.1 (Boundedness and Temperature Independence of Gravity). It
should be remarked that the replacement S+ → S− is an invariant of the
steps above, in other words: the equations are time-inversion invariant: if
particles attract gravitationally, then their time inverses attract either. So,
how can gravitational attraction happen?
Summarizing the basic steps from above, it rests on 4 pilars:
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(1) Independence of gravity from the speed/momentum of the particles
(2) Boundedness of the gravitationally interacting system
In free system of n elementary particles, each of these maintain their energy,
such that their absolute square, and therefore the sum of these is maintained
over time. That system of particles may stay together at whole, but any
addition of kinetical energy makes it unstable. When that free system starts
an attracting interaction, i.e. some of these particles begin sticking together,
then the kinetic energy of that system, which always is positive, increases. So,
the square of the kinetic energy increases, but then the complementary rest of
the system’s square energy must decrease, and when that additional kinetic
square energy transfers to an exterior system (which is possible because of
(1)), a bounded system results, and the total energy square of it will be
smaller than it was in its free state. Conversely, a bounded system needs a
positive kinetic energy to be transformed into a free system again.
(3) The interaction evolves radially from the particle sources itself at the
speed of light,
and finally
(4) The strength of the gravitational field is to be proportional to what is
called the gravitational masses of the particle sources.
So, it is irrelevant whether the potential energy is positive or negative, as long
as the square of the potential energy is negative in the sum of energy squares
of the system: what counts is that the particles in the bounded system stick
together.

Remark 4.2 (Complex Conjugation and Phase Invariance). Either by going
through the above or by Fourier transforming δ(t−r)

r and δ(t+r)
r it follows that

S+ and S− are complex conjugates of eachother, and the interaction was writ-
ten as (Hermititian or complex) square: < ρ(0, ·), ρ(0, ·) >. The complex con-
jugated bra side, < ρ(0, ·)| can therefore be interpreted as the time-inverted
ket-side |ρ(0·) >. And indeed, given two distinct particles, any interaction at
the speed of light mandates it to happen on the light cone, where one particle
is advanced w.r.t. the retarded partner. As long as time-reversibility is valid,
noone can tell which is the advanced an which is the retarded one, but we
can deliberately make the choice: the advanced ones go to the bra-side, while
the retarded one goes to the ket-side. So, the bra-particle interacts with the
ket-sided one backwards in Euclidean time (in line with S−), while the ket-
particle interacts along the positive Euclidean time (according to S+).
(In line with this, if the interaction between particles happens at the speed
of light, then that means that interaction between particles on the light cone
is instantaneos. And that implies that noone can tell whether that interac-
tion happens forward or backwards: it just happens at the very instance of
relativistic time.)
There is another take-away from that: if we take the (Euclidean) time-
direction of light as our base, then we know what our advanced bra-particles
are, but then its complex conjugate will generally differ from its non-conjugated
ket-particle! Shouldn’t it be the same, i.e. only represented by real functions?
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Well, it is phase symmetry, that is needed to be able to identify a state with
its complex conjugate, and it is just what quantum theory does! And that
means mathematically that the gravitational theory is to be a U(1)-theory,
because a circle in terms of complex numbers is the set of z ∈ C, for which
z̄z = Const.
This is important, when it comes to electrodynamics:

5. Electrodynamics
Electrodynamics differs from a gravitationally interacting particle system in
two important aspects: charge inversion and space inversion (a.k.a. parity),
and both are no symmetries, but anti-symmetries:
In electromagnetism, the energy density function is a 4-vector j = (j0,~j),
where j0 is called charge density and ~j the flux. With this, these inversions
express into C : j 7→ −j and P : j 7→ (j0,−~j), and neither one has a non-
trivial invariant subspace. Now, we want to come up with a Hermititian
quadratic form < j, j > which allows to express < j, Cj > and < j,Pj > as
interaction of j with its charge and parity inverts. The charge inversion is not
a problem, it’s just a factor −1, but parity is: as was even clear to Maxwell
in his time, it needs 2× 2-spin matrices σ1 . . . , σ3, then called ”quaternions”
q1 = iσ1, . . . , q3 = iσ3, which are anticommuting and satisfy σ2

1 = · · · =
σ2

3 = 1. With it, the interchange operator P : (λ1, λ2) 7→ (λ2, λ1) maps
σ1j1 + · · ·+ σ3j3 to −σ1j1 − · · · − σ3j3, which allows us to map the 4-vector
j bijectively to ij0 + σ1j1 + · · · + σ3j3, where P and C are well-defined as
operators on the ket (and bra) vectors. Now look what happens, when we
apply the commuting product PC to the ket-vectors: we get −ij0 +~σ ·~j, and,
assuming the jk to be all real-valued, then PC turns out to be the complex
conjugation, which from the section above was identified as the time-inversion
T . So, we get the TCP-theorem

T = PC, (5.1)

and we see, what it is that needs the phase symmetry in order to ensure time-
inversion invariance: these are the charges, not the neutral masses! Sofar, the
electromagnetism is a pure SU(2)-theory built entirely on the real vector field
generated by the spin-matrices, and it enforces ij0 to be purely imaginary.
But what about the neutral particles? As to pure electrodynamics, these don’t
count: they mapped to zero as being ”chargeless”. And to include these, all
it needs is to factor this SU(2)-theory with the U(1)-theory of gravitation,
independent from electrodynamics, because the latter is purely symmetric
w.r.t. time and charge inversion, and then it even must be symmetric w.r.t.
parity. In all, that gives a U(2) = SU(2)×U(1)-theory as the simplest model
to unify electromagnetism and gravity into a single theory.
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6. Conclusion
It was shown that gravity can be derived from the electromagnetic field. It
can be equated to the maximal amount of heat which the body can stably
contain.
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