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Abstract. Reviewing Laplace’s equation of gravitation from the perspec-
tive of D. Bernoulli, known as Poisson-equation, it will be shown that
Laplace’s equation tacitly assumes the temperature T of the mass sys-
tem to be approximately 0◦K. For temperatures greater zero, the grav-
itational field will have to be given an additive correctional field. Now,
temperature is intimately related to the heat, and heat is known to be
radiated as an electromagnetic field. It is shown to take two things in
order to get at the gravitational field in the low temperature limit: the
total square energy density of the source in space-time and a (mass-
less) field, which defines interaction as quadratic, Lorentz-invariant and
U(4)-symmetric form. This field not only necessarily must include elec-
tromagnetic interaction, it also will be seen to behave like it.

1. Problem Statement
A system of N particles in spacetime in Newtonian mechanics is a system
that is to be defined by 3N location coordinates qk as well as a common time
coordinate and their associated 3N momentum coodinates pk as a function
of time. Mostly these systems are stably confined to a fixed region in space
over time like a drop of water or a stone. So, there will be many equations
of confinement, and to simplify the mathematical model, Bernoulli changed
that model by replacing the particles’ position with a spatial mass density
ρ(t) : R3 3 ~x 7→ ρ(~x(t)) ≥ 0. Laplace then took over that model and showed
that the gravitational force of a mass density ρ could be expressed as Poisson
equation ∆Φ = 4πGρ of a potential function Φ, the gravitational field and
the gravitational constant G, ∆ := ∂2

1 + ∂2
2 + ∂2

3 being the Laplace operator.
That marked the introduction of field as a concept into physics. What made
it both bold and dubious, was that it said that the field was to be the sheer
equivalent of the mass distribution. It was soon found out that the field was
to be an harmonic function of the space coordinates, which meant that that
field was completely determined by its values on a mass enclosing closed
(smooth) surface. The problem here is, that it needs 3 dimensions to define
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the composite mass distribution of the system. Yet, only 2 dimensions are
necessary to define the field. How then can both, field an mass, be equivalent?

2. Even more problems
Both, Bernoulli and Laplace took it as evident that a (smooth) mass distri-
bution ρ(x) of N particles, which is confined to a bounded region K ∈ R3 (for
all times t), could be resolved at each given time t into N disjoint bounded
regions K1, . . . ,KN , containing a unique particle, if only the particles would
stay apart from eachother. With that, it should be possible to replace ρ with
the sum

∑
k ρk of smooth, non-negative functions ρk of disjoint support and

compact support, each (which means, they all vanish outside a bounded set,
e.g. K, and if one is greater zero at some point x, then all the others must
vanish at this point x). If so, the above Poisson equation could be rewritten
as a sum

∑
k ∆Φk =

∑
k 4πGρk of N independent gravitational equations

for each and every particle.
And indeed, mathematics proved this to be possible, now known as the par-
tion of unity (see e.g. [6, Ch.16]). That, on one side, means that even if all
particles are pointwise in nature, we can approximate these particles through
Bernoulli’s ingenious replacement of mass position by smooth mass densities.
On the downside, that shows that Laplace’s theory of gravitation must lack
generality, because in it, all the particles of a body are independent from
eachother: they just add up individually!

3. Inspection of the Problems
In mechanics, there is a unique N -particle system for which the above condi-
tion of independency of its constituing particles holds: it is the free particle
system, in which each particle moves in a straight line. But if they move
relative to eachother, then the compound system will disperse and cannot
be confined to a bounded region K for all t. So, assuming spatial confine-
ment of the system, it follows that Laplace’s gravitational theory demands
all particles to be at rest with respect to eachother. So, there is an inertial
coordinate system, in which the compound body as well as all its particles
are rest. Equivalently put, the average kinetic energy of the particles is zero,
which means that the system must have the absolute temperature T = 0◦K.

For T > 0 then, the field Φ must be added a non-trivial corrective
ΦT 6= 0, which should converge pointwise to zero as T → 0, and it is to be
hoped, that ∆ΦT likewise will converge to zero as T → 0.
Now, we already have such a field, but it’s the electromagnetic field, although
this field is (surprisingly) not reserved for gravitational purposes, but inter-
acts primarily with charges: apart from perhaps neutrinos and Higgs bosons,
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we know that every system of temperature greater zero radiates an electro-
magnetic field and that every particle of mass m > 0 gets scattered by light
as it crosses its way.

Next, given a charge being smeared out as a charge density in space (for
each instance of time), be it appreciable, or be it just an infinetisimal little
bit, there is no way to tell how the charges or particles will have to move:
they may be jiggling in one, two, or three dimensions. But they could also
move synchronously around a steady axis. If the particles move in the body,
we only know two things: The motion must be confined to the boundary of
that body, and we know their average kinetic energy. Consequently, there
is no concept of temperature exclusively for jiggling, there is but a unique
notion of temperature, which is proportional to the particles’ kinetic energy,
regardless of their kind of motion!
By the principle of relativity, the laws must be the same in all inertial cood-
inate systems. Hence, a system of particles (or charges) that doesn’t radiate
an electromagnetic field at T = 0, would never be able to radiate at a tem-
perature T > 0. We know that this is wrong. That implies that the electro-
magnetic, corrective field ΦT above, cannot not drop to zero as T → 0!

Furthermore, it has been known even before Einstein’s theory of special
relativity, that the electromagnetic field A = (A0, . . . , A3), which satisfies
�A = (j0, . . . , j3) with j as the 4-vector of charge ρ = j0 and flux (j1, j2, j3),
converges to the Coulomb equation ∆A0 = ρ as T → 0: because the flux then
converges to zero, and likewise � = (1/c2)∂2

0 − ∆ converges to −∆ as the
speed of light c becomes large: c→∞.

Now, if that electromagnetic field would not be able to capture the
entire gravitational field for T → 0 somehow, then the difference of Φ minus
the (T → 0)-limit of that electrodynamic field would become a nontrivial
field independent from the electromagnetic field. Given, that by the general
principle of relativity, gravitation is the effect of a curvature in space-time,
gravity must affect the electromagnetic field, because light and charges will
be affected by that curvature. We’d therefore get an additional ghostly field
to balance out the difference between gravitation and electromagnetism.

Let’s see how one might fix the situation:

4. Examination
Under non-relative conditions (i.e. small temperature or large velocity of
light), let S be an N -particle system of masses at rest, confined to a bounded
region in space for all times. By Bernoulli, S is to be defined by the vector
function (t, ~x) 7→ (ρt(~x), ρt(~x)~vt(~x)) of energy or mass density ρt and flux
~j := ρt~vt for each time t, where ~vt is the velocity density. Since we assume
slow velocity, t 7→ ρt is approximately constant, and it consists of the energy of
the rest masses of all N particles, as well as their mutual energy of interaction.
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That makes
Etot = +

√
ρ2
t c

4 + ρ2
t |~vt|

2
c2

a good candidate for the total energy density of the system, from which
Etot ≈ ρc2 + (1/2)ρ|~v|2t follows for c → ∞. And, with the Poisson equation,
ρ∆ΦT=0 = 4πGρ2, this suggests, that ΦT for T > 0 is to become a vector
composition of four fields (Ψ0, . . . ,Ψ3) for each of the four mass and flux
components (ρ = j0, . . . , j3), such that

∑
0≤µ≤3 jµ∆Ψµ = 4πj2

µ = E2 with
c ≡ 1.
To extend these equations equations to relativistics, two measures must be
taken: First, relativistic invariance of the fields Ψµ mandates ∆ to be replaced
by −�. The 2nd is a more subtle one: For the system S to have a positive
spatial extension, d, say, there is no unique time t to describe the particle
densities as a function of t and ~x: each single point in the system has its own
eigentime, and these time values can utmost be synchronized up to a time
difference δt = d/c. In a spatially smooth density function, we even loose
control over spacelike and timelike regions on the whole. In other words,
the localized (energy) density functions will have to become time-curves of
packages of space-time densites, where integration has to be done over space-
time R4 as sketched below:

Compare this with Maxwell’s equations, which we write, dropping t, as:
j0�A0 + · · ·+ j3�A3 = j2

0 + · · ·+ j2
3 ,

where again c ≡ 1: We know that the charge (space-time-)density j0 cannot
be a scalar function, because generally, a negatively charged particle does
not cancel against a positively charged one: both particles and charges will
still be preserved: it’s only that at large distances, the charges appear as a
neutral composite, bare of charges. So, to keep track of these charges, their
positive and negative charges should be kept on different components. (This
kind of separation is already needed to get get at the notion of a flux ~j
in a neutral wire.) Interaction of charges then must be expressed in terms of
2×2-matrix valued functions, Hamilton’s quaternion-valued functions, which
only later had been replaced by the notion of the 4-vector field A, only to
be dug up again in the quantum mechanical concept of spin. And indeed,
the algebraically complete square root of � is

∑
µ ∂µγµ, where the γµ are
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4× 4-matrices, known as Dirac-matrices.
With this, the jµ and Aµ turn into quadruples, and the products jµAµ and
j2
µ will be replaced by inner products. But the jµ (along with the Aµ) now

are complex quadruples, whereas the right hand side should be proportional
to E2, which is to be always greater or equal to zero.
That condition however can be met by taking the left factors to be the (com-
plex) adjoints j̄µ of the energy momentum-densities jµ. In all, we arrive at:∑

µ

< jµ(x),�Aµ(x) >= −4πG
∑
µ

∣∣jµ(x)
∣∣2 (= −E2(x)).

Did we miss out any (massy) particle on the right hand side?
It seems no: In all, we have 16 components jµk, k = 1, . . . , 4 and µ = 0, . . . , 3,
and we sum up their absolute squares. That accounts for 4 dimensions,
namely the energy-momentum density. Then we have 4 electric charge and
flux components, which go into the total square. These four generate the
symmetry group U(2), which is isomorphic to the product SU(2)×U(1) and
hence contains the Salam Weinberg group SU(2). There are then 8 dimen-
sions left over, and these can be identified with the 8 generators of the hadron
group SU(3). So, we are complete: all known sub-particles of mass greater
zero will contribute to E2.

Now, as the equation above is in the square of the jµ, it feels natural
to integrate the square over space-time R4 to a square of energy, of which
then the (positive) square root would be taken. That is currently hindered by
the fact that the jµ are based to be space-time densities of energy. However
this is just a technical aspect: Remember that the jµ ∈ C∞c (R4) are smooth
functions of space-time with compact support, and as such they are in Lp(R4),
i.e. they are p-integrable for every p = 1, . . . ,∞. We are therefore free to base
the jµ on the square root density, instead of density, which means that the∣∣∣j2
µ

∣∣∣ will now be densities of the square of energy. And this allows it to write
the equation as a quadratic form:

< j,�A >:=
∑
µ

∫
R4
j̄µ(x)�Aµ(x)d4x =

− 4πG < j, j >:= −4πG
∑
µ

∫
R4

∣∣jµ(x)
∣∣2 d4x(= −E2). (4.1)

Remark 4.1. What this equation says, is that a system of total square energy
E2 includes a mutual interaction through a massless gravitational field of a
strength proportional to E2.

For each µ, the mapping Θµ : jµ 7→ Aµ defines a linear mapping from
jµ ∈ C∞c (R4) to a functional (see: below), which is defined ”outside the sup-
port supp(jµ) of jµ”:
For x, y ∈ R4 let d(x− y) := (x− y)µ(x−x)µ ∈ R be the Minkowksi distance
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of x and y, and with jµ ∈ C∞c (R4) and x ∈ R4 let
p(x, supp(j)) := min

0≤µ≤3
inf

y∈supp(jµ)

∣∣d(x− y)
∣∣ ∈ [0,∞),

which defines a seminorm on R4. With it, given j = (j0, . . . , j3) as above,
let Ω(j) := {x ∈ R4 | p(x, supp(j)) > 0}, which is open in R4. Then Θ =
(Θ0, . . . ,Θ3) maps j to a quadrupel of functionals on C∞c (Ω(j)) (as shown
subsequently).

Θ = S2 can be broken into a square of some operator S (see: below).
So, < j,�A >=< j,�S2j >=< S∗j,�Sj >= −4πG < j, j >, where Sj is
simply the action function of j, that is traveling from its source j through
space-time at the speed of light, and S∗j̄ is its time inversion!

Let’s define the functional spaces above and see what the seemingly un-
defined term < j,A >=< j, S2j > gives in terms of distributions:

Let K ⊂ R4 be the (compact) closure of a non-empty, open, and
bounded subset Ko ⊂ R4, and let Ω(K) as above be the set of all x ∈ R4

with p(x,K) > 0, which is an open, non-empty subset of R4. Ω(K) itself is
the union of a sequence X1, X2, . . . of compact regions of R4, which as K are
the closures of nontrivial, open sets Xo

l ⊂ R4. Given such a compact region
X, the set of all infinitely differentiable (complex-valued) functions with sup-
port in X is a vector space C∞c (X), which becomes a complete locally convex,
separable space, when equipping it with the sequence of supremum norms for
all its n-th order partial derivatives (where n ≥ 0 is understood), see e.g. [6].
Then the space C∞c (X)4 = C∞c (X)⊕· · ·⊕C∞c (X) of quadruples (j1, . . . , j4) is
a (separable, complete) locally convex space, and so is its dual, C′∞c (X)4, the
space of continuous linear functionals on C∞c (X)4 (see again: [6]). This then
defines C′∞c (Ω(K))4 as the union

⋃
l∈N C′∞c (Xl)4, giving it the finest locally

convex topology, for which the embeddings ι : C′∞c (Xl)4 → C′∞c (Ω(K))4 are
continuous, which is called LF-space (see again: [6, Ch.13]).

Proposition 4.2. S and S2 are well-defined as linear mappings on C∞c (K)4

into C′∞c (Ω(K))4, and < j, Sj >=< j, S2j >= 0 holds for each j ∈ C∞c (K)4.

Proof. Let δ : C(R4) 3 f 7→ f(0) ∈ C be the Dirac-distribution (in 4 dimen-
sions). Then �f = δ is solved by f(x) = 1

(2π)4

∫
R4 e

ix·ξ −1
ξ2

0−ξ2
1−ξ2

2−ξ2
3
d4ξ, so for

x ∈ Ω(K) and j ∈ C∞c (K)4,

S2j(x) = 1
(2π)4

∫
R4×R4

e(ix−y)·ξ −1
(x0 − y0)2 − · · · − (x3 − y3)2 j(y)d4yd4ξ

is a well-defined complex functional on C∞c (Ω(K))4, since for g ∈ C∞c (Ω(K))4

g(x) ·
∫
f(x− y)j(y)d4y is integrable in x, due to inf

x∈supp(g)
p(x,K) > 0. And,

since j is infinitely differentiable, S2j is infinitely differentable on Ω(K).
(Because the 4 components jk of j satisfy

∫
|jk| d4y ≤ V ol(K) supy∈K

∣∣jk(y)
∣∣,

S2 even defines a continuous mapping from C∞c (K)4 into C′∞c (Ω(K))4.)
Along with S2, all its partial derivatives are well-defined too.
Hence, S = (

∑
0≤µ≤3 γµ∂µ)S2 is a well-defined mapping from C∞c (K)4 to
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C′∞c (Ω(K))4.
Lastly, < j, S2j >=< j, Sj >= 0 follows from the fact that every jµ ∈ C∞c (K)
is equal to zero outside of K, so in particular vanishes on Ω(K). �

Remark 4.3. Physically, what the proposition tells, is that the field does not
interact with its own source.

With it, we are finally able to deal with the gravitational interaction:
Let j =

∑
1≤k≤N jk be the sum of N time-curves of smooth vector

functions t 7→ j1(t), . . . , jN (t) ∈ C∞c (R4)4 of disjoint support and of compact
support at each instance of time as illustrated below:

That’s what an external observer would e.g. see, as he looks at our solar
system: at each time t = x0, he sees planets and sun as chunks of energy-
momentum distributions spatially staying apart of eachother. Dropping t
again, equation 4.1 holds for the sum of energy momentum distributions
j =

∑
k jk, and as such it includes the interaction between all the N chunks

jk (at retarded times). If instead the N chunks were independently moving
from eachother, we would see different distributions of energy-momentum
jfree,1, . . . , jfree,n, each moving in a straight line. What we want is an inter-
action defining field V (jfree,1, . . . , jfree,N ), which captures that interaction,
i.e. such that:
<

∑
1≤k≤N

jk,
∑

1≤k≤N
jk >=<

∑
k

jfree,k,
∑
k

jfree,k > +V (jfree,1, . . . , jfree,N ).

This in mind, let’s put jk = jfree,k + iSjfree,k. Then,

<
∑
k

jk,
∑
k

jk >=<
∑
k

jfree,k,
∑
k

jfree,k > +
∑
k

< S∗jfree,k, Sjfree,k >

+
∑

1≤k,l≤N
< S∗jfree,k, Sjfree,l >

=<
∑
k

jfree,k,
∑
k

jfree,k > +
∑
k

< jfree,k, S
2jfree,k >

+ 2
∑

1≤k<l≤N
Re < jfree,k, S

2jfree,l > .

By the proposition above,
∑
k < jfree,k, S

2jfree,k >= 0, so we get that the
square E2 of the total energy of the interacting N-part system equals the
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square E2
free of the total energy of the N non-interacting systems plus a

sum V of mixed, real-valued terms Re < jfree,k, S
2jfree,l >, (k < l), so for∣∣Efree∣∣�|V |:

|E| = +
∣∣Efree∣∣

√
1 + V

Efree
≈
∣∣Efree∣∣+ V

2
∣∣Efree∣∣ =

=
∣∣Efree∣∣+ 1∣∣Efree∣∣ ∑

1≤k<l≤N
Re < jfree,k, S

2jfree,l > .

For N = 2 and restricting to real-valued j1, j2, we have
1∣∣Efree∣∣Re < jfree,1, S

2jfree,2 >

= 1∣∣Efree∣∣
∫
j1(x) · (S2j2)(x)d4x =

∫
j1(x)Φ(x)d4x

with Φ(x) := 1
|Efree|S

2jfree,2(x), which then is the vector field of gravita-
tional interaction, of which the first component converges to the classical
gravitational field as c → ∞, and the other components converge to zero.
(Doing the same for N > 2, would lead to a vector field Φ which depends on
N space-time quadruples x1, . . . , xN ∈ R4, however.)

In all, it was shown that the gravitational field can be derived as an
approximation from the Lorentz-invariant quadratic field equation 4.1, which
by its simple, yet rich U(4)-symmetry allows to include all gauge fields of the
standard model.
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