

Covert channel by abusing x509 extensions
Jason Reaves

Malware Research, Fidelis Cybersecurity
Jason.reaves@fidelissecurity.com; sysopfb@gmail.com

Abstract

Malicious actors in the world are using more ingenuity than ever for both data infiltration and
exfiltration purposes, also known as command and control communications. In this paper I aim
to describe a system that could be used to send or receive data from both a client and a server
perspective utilizing research into x509 certificates specifically in areas where you can place
arbitrary binary data into the certificate or utilizing them as a covert channel. While lots of
attention is given to data infiltration and exfiltration techniques they are commonly done so after
they’ve been used in an incident, making this area of cyber security very retroactive in a
defensive posture. The aim in presenting this material is to demonstrate that we can take some
lessons from the other areas of cyber security research, namely exploitation, and look at potential
use cases in how malware authors could utilize technologies outside of their intended purposes to
not only accomplish their goals but also end up bypassing common security measures in the
process. Doing this sort of research can lead to more advances in defensive security postures by
spurring discussions in the community on how a technique either does or doesn’t bypass security
measures.

Keywords
Malware; x509 Certificate; SSL; TLS; Botnet; Security

1. Introduction	

Computer networks are under constant attack from adversaries that are always looking for new
ways to communicate while bypassing both common and advanced security systems that are in
place. Many of these attacks utilize various malicious software tools or malware in order to
accomplish any number of objectives. A number of different kinds of malware will utilize
Command-and-Control(C2) using various methodologies such as DNS[13,14,15] by abusing the
protocol to send and/or receive data. Another protocol SSL(Secure Socket Layer) or
TLS(Transport Layer Security) offers similar possibilities as these other protocols for hiding data
in order to bypass common security methods, utilizing x509 certificates for covert channels has
been researched previously[17] but with the addition of extensions in version 3 we are able to
expand on this previous research pretty significantly. While lots of the research in this paper is
derived from malware research it’s also worth mentioning that these sort of techniques don’t
have to be purely used by malware but can be used in any instance where data is wanted to be
received or transmitted in a covert manner.

In this paper, I describe my research into using x509 extensions for unintended purpose of both
transmitting and receiving arbitrary data. Section 2 describes x509 extensions and the language
used in the specifications that led to this research, section 3 describes building a proof of concept
from the server-side where a program would want to retrieve data from outside a network,
section 4 describes building a proof of concept from the client-side where a program within a
network would want to send data outside of the network.

2. Certificate	Extension	

X509 certificate extensions[4] are describing as being added to provide methods for associating
additional attributes with users or public keys and for managing relationships between CAs[4].
However due to the ambiguity in the language this has led to many relaxed implementations,
with some documentation language even hinting at arbitrarily creating extensions being possible
outside of the standard[5].
One such standard extension is SubjectKeyIdentifier. When looking at the openssl specifications
for this field we see at the end "The use of the hex string is strongly discouraged"(Figure 1).

Figure	1	OpenSSL	x509	v3	Subject	Key	Identifier	documentation	

So we have a field that can have arbitrary information stored in it which can then be stored in a
certificate? So that sounds plausible to be used for communicating data, it also sounds like it
could be used for exploitation but I'm going to stick to the malware C2(Command and Control)
angle for now. With communication of malware we have two main forms, infiltration whereby a
program receives data from another system and exfiltration whereby a program sends data to
another system. For the purpose of this paper we will investigate each method separately by
creating a POC(proof of concept) and refer to them as the ‘server side’ for infiltration and as
‘client side’ for the exfiltration.

3. Server	Side,	Data	Infiltration	

A proof of concept of the server side would involve a way to automate generating a certificate to
be used by a web server with encoded data in the SubjectKeyIdentifier field of our choosing,
we'll also need some code to retrieve this data and to go one step further I'd like to do it without
actually making an HTTP request so we only pull the cert and then drop the connection. In this
manner we are limiting the landscape for identifying the attack purely on the SSL(Secure Socket
Layer) or TLS(Transport Layer Security) connection.

3.1. Cert	Generation	

To generate a self-signed certificate we simply need to generate an RSA Private Key and a
Certificate Signing Request(CSR)
openssl	genrsa	-des3	-out	mine.key	2048	
openssl	rsa	-in	mine.key	-out	stupid.key	
openssl	req	-new	-key	stupid.key	-out	stupid.csr
Now we can generate a self-signed certificate but first we need to generate the extensions file for
openssl, the specification says it should be “subjectKeyIentifier=” followed by either the word
hash or a hex string, so what’s in a hex string? Well we could write up a mock configuration for
a bot such as:

	
Then we can either directly convert this to a hex string or encrypt it, such as with RC4 or just a
basic XOR followed by a binascii.hexlify in python(Figure 2).

”steal:gmail.com,yahoo.com,amazon.com;webinject:gmail.com(<div>stup
id</div>);ABAB”	

Figure	2	Python	code	for	generating	a	certificate	with	encoded	data	embedded	

You could make this more complicated by adding in byte flags and prepending the key to the
data, or even having an agreed upon encryption key and prepending a random salt to the data.
We’re not here to make the most advanced system out there just proof that it’s possible.
For our proof of concept we have fulfilled the requirement for automatically generating a
certificate based on data we would like encoded into an extension.

3.2. Retrieve	the	data	

For retrieving the data we can start with a simple example posted on MSDN showing how to get
certificate information using wininet[2]. First we set a number of
INTERNET_OPTION_SECURITY_FLAGs on the connection, mainly dealing with ignoring the
fact that our certificate is self-signed and the CN doesn’t match. After that we send off our
HEAD request to the provided server(Figure 3).

Figure	3	Sending	our	HEAD	request	

Since one of our requirements is to not send a request but yet we just sent a request, we prevent
this by setting up a callback(Figure 4).

Figure	4	InternetSetStatusCallback	

Inside our callback function we are looking to wait until dwInternetStatus is the value
INTERNET_STATUS_SENDING_REQUEST which will be the point after the cert exchange
has happened and so we will have access to the certificate but prior to the sending of the HTTP
request which means we can go ahead and pull out the certificate, handle any of the data we want
and then close the connection(Figure 5).

Figure	5	Callback	function	waiting	

After enumerating the certificate we pull out the SubjectKeyIdentifier and for demonstration
purposes we print out the data in hex form and then pass it off to our decode function which
simply XORs the data with a hardcoded single bye key and prints out the decoded data(Figure
6).

Figure	6	Get	extension	and	decode	data	

4. Client	Side,	Data	Exfiltration	

Demonstrating this technique will be similar to the server side except that we will be
manipulating the certificate on the client side and sending it to the server. This might sound
harder but in reality it’s actually easier with one simple exception, most SSL/TLS libraries that

allow for client certificate authentication [6] are setup to simplify validating the client certificate
and will automatically handle validating the certificate, this is a good thing for most people but
not for us because we don’t want to really use the certificate for validation purposes but instead
to transmit data. After researching a few python libraries it was decided upon to use Twisted [7]
for two reasons, one that it allowed client certificate authentication and two it allowed me to
hook directly into the certification validation piece in the standard SSL server class. This lets us
bypass validation and instead be able to access the peer certificate from the server whenever the
client connects to it.
The proof of concept for this can involve utilizing a similar cert generation method as was used
in the server side. Since we have access to the OpenSSL library we can also create our keys and
certificates on the fly which will be the method utilized for the client side portion of this paper.
Other key aspects will be similar to those from the server side such as limiting the
communication to the connection and the SSL. Since our data is being transmitted by being
embedded in the x509 certificate however this means that we have to make a connection every
time we want to send data to the server.

4.1. Client	

Using some example code from the twisted documentation [8] as our base code allows us to
focus on the relevant portions we will need to successfully create our proof of concept which will
be happening entirely in the ContextFactory portion(Figure 7). When the connection is
established the method getContext from this section of code will be called where we can then
create the certificate while embedding the data we want to send and setting this certificate and
key to be used by the context for the connection.

Figure	7	Client	context	factory	

For generating a certificate, we utilize the OpenSSL wrapper library in python [9]. Creating a
generic function(Figure 8) for generating a private key and certificate that takes a parameter that
will be used for the CN(Command Name) [4] along with an optional parameter for a list of

extensions to be added to the certificate. Having this base functions allows us to easily create
wrapper functions(Figure 9) around it that can perform various other tasks such as creating a
certificate with a single extension, creating a certificate with a pseudo random extension name
based on a list of available certificate names that can be utilized and a function for handling
encrypting the data before passing it off to the random extension function.

Figure	8	Generic	certificate		function	

Figure	9	Certificate	wrapper	functions	

4.2. Server	

For our server code we also start with some example code from the twisted documentation [8],
verification is setup by passing a callback function to the SSL context(Figure 10). The
verification callback(Figure 11) function becomes our main function for handling the peer
certificate by checking if there is an extension before handling the data that has been encoded
inside the first extension. As for actual verification of the certificate we don’t really care so much
as long as there is at least one certificate extension available.

Figure	10	Setup	Verification	Callback	

Figure	11	Verification	Callback	Function	

5. Experimental	Results	

Testing shows that using this methodology for communication and control in malware will not
result in anything beyond an SSL negotiation which could bypass common security mechanisms
that are not looking for abnormal data being passed in x509 certificates(Figure 12). Some

possible oddities could present themselves in the traffic however such as frequent outbound
connections in order to send data in blocks, if an attacker where to limit the data within the
extension to a short length(Figure 13) then this would inherently limit the amount of data that
could be sent in one connection to the remote system. Limiting the data in this way would cause
many outbound connections along with SSL negotiation traffic from the same system in a short
period of time which could be considered an anomaly in the network. To get around this oddity
large chunks can be transferred at once since the only limit to the amount of data you can put
into an x509 certificate extension appears to be limited by the library you use and since most
libraries are based on OpenSSL which will accept very large amounts of data in an
extension(>60k characters), the client can also pause between connections which would make
the SSL connections appear less frequently in the network traffic. Detection considerations then
could rely on a number of possible avenues including detection based on client/server IP address,
looking for abnormal x509 certificates through data mining or machine learning techniques [10,
11] and also profiling SSL clients which has had research devoted to it recently [12, 16].

Figure	12	Client	Certificate	sent	

Figure	13	Short	data	section	sent	in	extension	

6. Conclusion	and	Future	Work	

In this paper, I have described one of many areas within x509v3 which can be used to send and
receive arbitrary data due to the open ended wording of the specification leading to lenient
implementations of the specification in many common libraries used for processing certificates.
Using some techniques from a few different fields of cyber security I have showed some possible
methods that could bypass common security systems in use today if they have not accounted for
looking for oddities in x509 certificates in order to detect such things. My future work will
branch out into other structures and data in use in SSL such as CRL(Certificate Revocation List)
as well as expanding on the research presented in this paper to include some more advanced
methods for a client interacting with a server such as also combining distributed architecture and
load balancing techniques to make this command and control methodology more difficult to
detect. I believe this sort of research is imperative to help defenders and researchers in the cyber
security field to be able to stay ahead of the adversaries.

References

1. Kulesza,	J.	(2014,	May	16).	9	OpenSSL	Commands	To	Keep	Handy.	
https://spin.atomicobject.com/2014/05/12/openssl-commands/	

2. Sanders,	J.	(2009,	April).	How	to	get	Certificate	Information	Using	WinInet	APIs.	
https://blogs.msdn.microsoft.com/jpsanders/2009/04/17/how-to-get-certificate-information-
using-wininet-apis/

3. Foundation,	I.	O.	(n.d.).	OpenSSL.	
https://www.openssl.org/docs/manmaster/apps/x509v3_config.html

4. Internet	X.509	Public	Key	Infrastructure	Certificate	and	Certificate	Revocation	List	(CRL)	Profile.	
(n.d.).	https://tools.ietf.org/html/rfc5280

5. Curry,	I.	(1996,	July).	Entrust	Technologies	White	Paper,	Version	3	X.509	Certificates.	
ftp://193.174.13.99/pub/pca/docs/misc/Entrust/x509v3.pdf

6. Hess,	Adam	&	Jacobson,	Jared	&	Mills,	Hyrum	&	Wamsley,	Ryan	&	Seamons,	Kent	&	Smith,	
Bryan.	(2002).	Advanced	Client/Server	Authentication	in	TLS.	
https://www.researchgate.net/publication/2518072_Advanced_ClientServer_Authentication_in
_TLS	

7. Downloads.	(n.d.).	https://twistedmatrix.com/trac/	
8. Using	SSL	in	Twisted.	(n.d.).	

http://twistedmatrix.com/documents/11.0.0/core/howto/ssl.html#auto7	
9. Welcome	to	pyOpenSSL's	documentation!.	(n.d.).	https://pyopenssl.org/	
10. Al-Hassanieh,	K.,	Sharma,	A.,	&	Reaves,	J.	(2017,	October	13).	Detecting	Malicious	SSL	

Certificates	Using	Machine	Learning	-	2017	B-...	
https://www.slideshare.net/KhaledAlHassanieh/detecting-malicious-ssl-certificates-using-
machine-learning

11. Bagaria,	Sankalp	&	Rajendran,	Balaji	&	Bindhumadhava,	Bapu.	(2017).	Detecting	Malignant	TLS	
Servers	Using	Machine	Learning	Techniques.	
https://arxiv.org/ftp/arxiv/papers/1705/1705.09044.pdf	

12. Althouse,	J.	B.,	Atkinson,	J.,	&	Atkins,	J.	(2017,	December	05).	Salesforce/ja3.	
https://github.com/salesforce/ja3?files=1

13. Raman D. et al. (2013) DNS Tunneling for Network Penetration. In: Kwon T., Lee MK.,
Kwon D. (eds) Information Security and Cryptology – ICISC 2012. ICISC 2012. Lecture
Notes in Computer Science, vol 7839. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-37682-5_6

14. Dietrich, C. J., Rossow, C., Freiling, F. C., Bos, H., Steen, M. V., & Pohlmann, N.
(2011). On Botnets That Use DNS for Command and Control. 2011 Seventh European
Conference on Computer Network Defense. doi:10.1109/ec2nd.2011.16

15. S. Zander, G. Armitage and P. Branch, (2007) A survey of convert channels and
countermeasures in computer network protocols. doi:10.1109/COMST.2007.4317620

16. Husák, M., Čermák, M., Jirsík, T. et al. EURASIP J. on Info. Security (2016) 2016: 6.
https://doi.org/10.1186/s13635-016-0030-7

17. Scott, Carlos. (2018). Network Covert Channels: Review of Current State and Analysis
of Viability of the use of X.509 Certificates for Covert Communications

