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ABSTRACT 

 

Results as diverse as the ABC conjecture and the PNT could be but select areas that can be 

shown to have stemmed from a common domain—which additionally accounts for an inherently 

fuzzy line between addition and multiplication, linearity and nonlinearity of operators, and the 

striking simplicity underlying the broader (indeed complete) host of operations at large.  
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Making a Question into an Answer 

To begin with, one should be able to appreciate just how handy the [otherwise self-

serving] meta-notion of trilinearity will come in throughout. It will, for one, refer to a ‘three-line’ 

demonstration or schema for approaching the inexorably involved problem (which has reportedly 

begotten entire new [Teichmuellerian?] areas) so as to render it unbearably simple albeit allowing 

for multiple extensions and bridges (as ever). This manner of having the problem caught right- 

and left-handed (which is to say complete as well as simple in contrast to partial expositions 

tending to induce undue arcaneness) could be seen as a three-stroke approach, or indeed a third-

strike criterion, to draw upon the legal analogy in addressing Type I and Type II errors by 

arguing that, too many findings concurring and pointing in largely the same direction might 

indeed be revealing essentially the same—credibly or cogently so. For that matter, trilinearity 

will, somewhat more literally, posit the special part that powers anywhere near 3 play in blurring 

the gap between linearity (additivity as well as products) and non-linearity (multiplicity as well as 

powers). Other than these implications in hindsight (yet to be unearthed), the notion may or may 

not have some substantive or anything-but-tenuous bearing on the way the [special] ABC 

conjecture is approached—the same going for the interim calculi that are only covered in passing. 

 

Sketching the Grand Problem—or Is It but a Very Special Case? 

Insofar as coprimes are formalized as proposed in the Appendix, it can be argued that, for 

any such numbers X and Y, 

(1) 𝑟𝑎𝑑(𝑋𝑌) = 𝑟𝑎𝑑(𝑋) ∗ 𝑟𝑎𝑑(𝑌) 

By straightforward induction, 

(1.1) 𝑟𝑎𝑑(𝑎𝑏[𝑎 + 𝑏]) = 𝑟𝑎𝑑(𝑎𝑏) ∗ 𝑟𝑎𝑑(𝑎 + 𝑏) = 𝑟𝑎𝑑(𝑎) ∗ 𝑟𝑎𝑑(𝑏) ∗ 𝑟𝑎𝑑(𝑎 + 𝑏) 

A [largely operational] notion of quasi-derivative will be introduced early on, which tends to the 

conventional or functional derivative for large values of a while only appearing aimed at being 

rendered irrelevant ultimately (in line with the orduale premises whereby the complete is 

reasonably simple, and the unknown or indefinite is of far lesser importance): 

(𝐴) 𝑟𝑎𝑑′(𝑎𝑏) ≡
𝑟𝑎𝑑(𝑎 + 𝑏) − 𝑟𝑎𝑑(𝑎)

𝑏
 

In this notation, ab refers routinely to a b-neighborhood of a. By substituting the extended [(a+b)-

a] form for the b differential and coupling the related terms, it is straightforward to see that, 

(𝐴′) (𝑎 + 𝑏) ∗ 𝑟𝑎𝑑′ = 𝑟𝑎𝑑(𝑎 + 𝑏) 𝑖𝑓𝑓 𝑎 ∗ 𝑟𝑎𝑑′ = 𝑟𝑎𝑑(𝑎) 
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This conditional coupling, routinely abused despite its ambivalent merit, can be relaxed 

by applying non-unity operators (p, q), as will be qualified later in text. For now, though, some of 

the core results can safely fare on these joint or contingent premises (which are orduale or 

residuale in their own right) in ways that can be acid-tested for the singular (m=1)—whether 

prime or prime-basis (as opposed to co-prime)—case ushering in identities in place of 

equivalences. Needless to say, the aforementioned operator is itself identity-based, which is one 

residuale way of inducing tentatively valid inference. 

It immediately follows from the above (and will informally be invoked later on) that 

(1.2) 
𝑎 + 𝑏

𝑟𝑎𝑑(𝑎 + 𝑏)
=

𝑎

𝑟𝑎𝑑(𝑎)
= 𝑟𝑎𝑑′ =

𝑥

𝑟𝑎𝑑(𝑥)
 ∀𝑥 

Alternatively, the very initial definition or identity can be solved as a functional equation, such 

that 

(1.3) 𝑟𝑎𝑑(𝑥) = 1
𝑥
𝑏 + (𝑥 − 1) ∗ 𝑟𝑎𝑑′ 

The implied invariance can be put in terms of a parity, with the unity terms (though rigorously 

treated as complex decompositions) assumed (and effectively posited as a special case) just 

that—unity values. Alternatively, it can likewise be shown that full-fledged complexity borders 

on nonlinearity. 

(1.4) 𝑟𝑎𝑑′ =
𝑟𝑎𝑑(𝑎 + 𝑏) − 1

𝑎 + 𝑏 − 1
=
𝑟𝑎𝑑(𝑎) − 1

𝑎 − 1
=
𝑟𝑎𝑑(𝑏) − 1

𝑏 − 1
=
𝑟𝑎𝑑(𝑥) − 1

𝑥 − 1
 

Although (1.4) may appear slightly at odds with (1.2), the two converge for large underlying 

primes (referring to the prime basis as opposed to powers with respect to which the rad operator 

is invariant). First, (1.4) can be deployed to arrive at the extended equivalence likely 

underpinning the ABC conjecture: 

(1.5) (𝑎 + 𝑏) = 1 +
𝑟𝑎𝑑(𝑎 + 𝑏) − 1

𝑟𝑎𝑑(𝑏) − 1
∗ (𝑏 − 1) ≥ 𝑟𝑎𝑑(𝑎𝑏[𝑎 + 𝑏]) 

To show that the right-hand side is the case, consider large values, such that the left-hand side 

can be approximated as follows: 

(1.5′) (𝑎 + 𝑏) ≥ 𝑟𝑎𝑑(𝑎 + 𝑏) ∗
𝑏

𝑟𝑎𝑑(𝑏)
 

Equivalently, and fully in line with (1.2) as well as approximately so with (1.4), 

(1.6) 
(𝑎 + 𝑏)

𝑟𝑎𝑑(𝑎 + 𝑏)
≥

𝑏

𝑟𝑎𝑑(𝑏)
~

𝑎

𝑟𝑎𝑑(𝑎)
~

𝑥

𝑟𝑎𝑑(𝑥)
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Consequently, the latter term could be captured (if only as a special case) in terms of an arbitrary 

gamma elasticity-based tossup of the other two (or indeed the rest), with gamma at ½ being one 

possibility: 

(1.7) 
(𝑎 + 𝑏)

𝑟𝑎𝑑(𝑎 + 𝑏)
≥

𝑎𝛾𝑏1−𝛾

[𝑟𝑎𝑑(𝑎)]𝛾[𝑟𝑎𝑑(𝑏)]1−𝛾 𝛾≡2
→  

(𝑎𝑏)1/2

[𝑟𝑎𝑑(𝑎) ∗ 𝑟𝑎𝑑(𝑏)]1/2
 

Again, for the coprime case, this reduces to, 

(1.7′) 
(𝑎 + 𝑏)

𝑟𝑎𝑑(𝑎 + 𝑏)
≥ [

(𝑎𝑏)

𝑟𝑎𝑑(𝑎𝑏)
]
1
2 

However, a similar result obtains immediately by putting x=ab: 

(1.7′′) 
(𝑎 + 𝑏)

𝑟𝑎𝑑(𝑎 + 𝑏)
≥

𝑥

𝑟𝑎𝑑(𝑥) 𝑥≡𝑎𝑏
→   

(𝑎𝑏)

𝑟𝑎𝑑(𝑎𝑏)
 

One way of reconciling the two results could be by invoking either large numbers or small 

powers (anywhere around unity, with 2 and 3 standing out as cases of utmost importance): 

(1.8) 
(𝑎 + 𝑏)

𝑟𝑎𝑑(𝑎 + 𝑏)
≥

𝑥

𝑟𝑎𝑑(𝑥)
= [𝑟𝑎𝑑(𝑥)]𝑚−1 = 𝑥1−

1
𝑚 

(1.9) [
𝑎𝑏

𝑟𝑎𝑑(𝑎𝑏)
]
1
2 = [𝑟𝑎𝑑(𝑎𝑏)]

𝑚−1
2 ~

𝑥

𝑟𝑎𝑑(𝑥)
~

𝑎𝑏

𝑟𝑎𝑑(𝑎𝑏)
= [𝑟𝑎𝑑(𝑎𝑏)]𝑚−1 

By combining (1.8) and (1.9), it obtains that either 

(1.10) (𝑎 + 𝑏) ≥ 𝑟𝑎𝑑(𝑎 + 𝑏) ∗ [𝑟𝑎𝑑(𝑎𝑏)]
𝑚−1
2  

or, 

(1.10′) (𝑎 + 𝑏) ≥ 𝑟𝑎𝑑(𝑎 + 𝑏) ∗ [𝑟𝑎𝑑(𝑎𝑏)]𝑚−1 

Whilst both seem consistent with the ABC conjecture for m hovering around 3 (or 2 in the 

latter representation), of special importance is the m=1 case, which reduces it to a prime basis, or 

quasi-prime setup (PB or QP as opposed to co-primes CP) ushering in self-identity for (a+b). To 

remind: 

𝑟𝑎𝑑(𝑥 + 𝑦) ∗ 𝑟𝑎𝑑(𝑥𝑦) = 𝑟𝑎𝑑(𝑥𝑦[𝑥 + 𝑦])  ∀𝑎, 𝑏 ∈  𝐶𝑃 

𝑟𝑎𝑑(𝑥) = 𝑥 ∀𝑥 ∈ 𝑄𝑃 

As ever, the large m instance stands alone while likewise fully satisfying both. This completes 

the demonstration sketch. 
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Heuristic Support 

The above result could be seconded from a number of alternative standpoints. First, the 

ABC conjecture appears to pass the dimensionality check: 

(𝑎 + 𝑏) ≥ 𝑟𝑎𝑑(𝑎𝑏[𝑎 + 𝑏]) 

𝐿~𝐿
1
𝑚𝑎𝐿

1
𝑚𝑏𝐿

1
𝑚𝑎+𝑏 

𝑚𝑥→3
→   𝐿 

As one alternative to this m=3 case, power-invariance could be invoked by directly 

drawing on the nature of the rad operator without imposing any restrictions on the underlying 

values save that the RHS product cannot possibly be a prime thus yielding no [absurd] case of, 

say, ab totaling near unity. In other words, the quasi-derivative can never take on a unity value 

for any products (other than those pertaining to the prime-basis or m=1 case without the primes 

products having to collapse to a prime value). 

Not least, the LHS and RHS of the ABC conjecture could be assessed by presuming that a 

and b refer to the minimum versus maximum values respectively, as follows: 

𝐿𝐻𝑆 ≡ (𝑎 + 𝑏) ∈ 2(𝑎. 𝑏), 𝑅𝐻𝑆 ≡ 𝑟𝑎𝑑(𝑎𝑏[𝑎 + 𝑏]) ∈ 2[𝑟𝑎𝑑(𝑎), 𝑟𝑎𝑑(𝑏)] 

It is straightforward to appreciate that the LHS generally falls outside the RHS range, with near-

full overlap accruing to the strong, prime-basis setup (featuring implied m=1).  

 

Twin & Twixt Multiplicity versus Additivity 

A host of peripheral yet suggestive results could be proposed along the lines of 

reconciling linear and non-linear representations. For starters, based on the parities, the 

underlying values and their rad operators could be seen as either lacking any independent 

substance (which finding is consistent with orduale residuality as well as the inherently 

Diophantine nature of primes, as will be shown in further expositions). 

(2.1) 𝑟𝑎𝑑(𝑎) =
𝑎 − 1

𝑏 − 1
∗ 𝑟𝑎𝑑(𝑏) +

𝑏 − 𝑎

𝑏 − 1
 

(2.2) 𝑟𝑎𝑑(𝑎 + 𝑏) =
𝑎

𝑎 − 1
∗ [𝑟𝑎𝑑(𝑎) − 1] + 𝑟𝑎𝑑(𝑏) 

(2.3) 
𝑟𝑎𝑑(𝑎 + 𝑏) − 𝑟𝑎𝑑(𝑎)

𝑟𝑎𝑑(𝑎 + 𝑏) − 𝑟𝑎𝑑(𝑏)
=
𝑏

𝑎
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From considering the fully blown unity-decomposition cases (albeit without expanding 

them beyond reconciliation around 1), it follows that: 

(2.4) [ ]𝑎+𝑏 = [ ]𝑎
𝑎 ∗ [ ]𝑏

𝑏−1, [ ]𝑥 ≡ 𝑟𝑎𝑑(𝑥) − 𝑟𝑎𝑑
′ ∗ (𝑥 − 1) 

In fact, the latter alone refers back to the initial quasi-derivative structure, to suggest: 

(2.5)  𝑟𝑎𝑑′ = 𝑟𝑎𝑑(𝑎 + 1) − 𝑟𝑎𝑑(𝑎) 

(2.6) 𝑟𝑎𝑑′ ∗ 𝑥 = 𝑟𝑎𝑑(𝑎 + 𝑥) − 𝑟𝑎𝑑(𝑎) = 𝑥 ∗ [𝑟𝑎𝑑(𝑎 + 1) − 𝑟𝑎𝑑(𝑎)] 

(2.7) 𝑟𝑎𝑑(𝑦) =
𝑟𝑎𝑑(𝑦 + 𝑥) − 𝑥 ∗ 𝑟𝑎𝑑(𝑦 + 1)

1 − 𝑥
= 𝑟𝑎𝑑(𝑦 + 1) +

𝑟𝑎𝑑(𝑦 + 𝑥) − 𝑟𝑎𝑑(𝑦 + 1)

1 − 𝑥
 

(2.8) 
𝑦

𝑥
=
𝑟𝑎𝑑(𝑎 + 𝑦) − 𝑟𝑎𝑑(𝑎)

𝑟𝑎𝑑(𝑎 + 𝑥) − 𝑟𝑎𝑑(𝑎)
 

By reconciling (2.4) against (2.5) through (2.7), the non-linear counterpart could be boiled down 

to, 

(2.9) 2𝑟𝑎𝑑(𝑎 + 𝑏) − 𝑟𝑎𝑑(2[𝑎 + 𝑏] − 1) = [2𝑟𝑎𝑑(𝑎) − 𝑟𝑎𝑑(2𝑎 − 1)]𝑎

= [2𝑟𝑎𝑑(𝑏) − 𝑟𝑎𝑑(2𝑏 − 1)]𝑏−1 

In all of the above instances, the trivial identity obtains as a prime [basis] check. Even so, 

the very basic special values may lack independent or ‘cardinale’ nature, even as they reinforce 

the unity power irrelevance (i.e. essential linearity) as postulated from the outset without 

discarding the more general setup. This can be deduced from solving (2.6) as a dual functional 

equation wherein either side can be exogenized in the interim: 

𝑟𝑎𝑑(𝑎) = 1
𝑎−1
𝑥 ∗ 𝑟𝑎𝑑(1) + (𝑎 − 1) ∗ [𝑟𝑎𝑑(𝑎 + 1) − 𝑟𝑎𝑑(𝑎)]

= 1𝑎−1 ∗ 𝑟𝑎𝑑(1) +
𝑎 − 1

𝑥
∗ [𝑟𝑎𝑑(𝑎 + 𝑥) − 𝑟𝑎𝑑(𝑎)] 

Since direct comparison of the latter terms in the RHS’s leads up to (2.6), the same should go for 

the former terms (being equivalent thereby). This points to unity power invariance, with a=0 

suggesting the entangled natures of the basic rad values: 

(2.10) 𝑟𝑎𝑑(0) =
1

2
∗ [𝑟𝑎𝑑(1) + 𝑟𝑎𝑑(−1)] 

Although the values of 0, +1 and -1 might appear plausible as special [cardinalcy] conventions, 

this is but one arbitrary way of reducing the inherently intertwined nature of the values in 

question. 

As proposed from the outset, though, a strong-form parity as posited by (1.4) might not 

appear very plausible, if only because a varying m power would likely result in varying ratios. 
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While this might be less of an issue for coprimes (the Appendix showing in what ways they are 

complements or duals with the implied, averaged, or effective power being comparable), still one 

might want to consider a relaxed case other than the one building on direct, like-for-like coupling 

of terms. In other words, assume: 

(𝐵) (𝑎 + 𝑏) ∗ 𝑟𝑎𝑑′ ≡ 𝑝 ∗ 𝑟𝑎𝑑(𝑎 + 𝑏), 𝑎 ∗ 𝑟𝑎𝑑′ ≡ 𝑞 ∗ 𝑟𝑎𝑑(𝑎) 

The resultant parity would generalize (1.2): 

(1.2′) [𝑟𝑎𝑑′]−1 =
(𝑎 + 𝑏)

𝑟𝑎𝑑(𝑎 + 𝑏)
∗
1

𝑝
=

𝑎

𝑟𝑎𝑑(𝑎)
∗
1

𝑞
=

𝑏

𝑟𝑎𝑑(𝑎 + 𝑏) − 𝑟𝑎𝑑(𝑎)
 , 𝑝 ≠ 𝑞 ≠ 1 

The latter term is invariant vis-à-vis the operator or coupling convention attempted and could be 

seen as the more reliable core of analysis. However, since the other two render it indirectly 

contingent thereon, it could be reduced to either of them, e.g.: 

(1.3) [𝑟𝑎𝑑′]−1 =
𝑏

𝑟𝑎𝑑(𝑎 + 𝑏)[1 −
𝑝
𝑞 ∗

𝑎
𝑎 + 𝑏

]
=

𝑏

𝑟𝑎𝑑(𝑎)[
𝑞
𝑝 ∗
𝑎 + 𝑏
𝑎 − 1]

 

By juxtaposing the LHS’s of (1.2’) and (1.3), it follows that, 

(𝑎 + 𝑏) =
𝑝𝑏

1 −
𝑝
𝑞 ∗

𝑎
𝑎 + 𝑏

 

The above collapses to trivial identity under the former p=q=1 case (a similar outcome accruing 

on b being very small amidst its asymmetry being evident against a, and likewise for p versus q). 

As will be reiterated in passing, the RHS of (1.2’) fits into (1.2) amidst a nearing zero 

while maintaining rad (0)=0. Among other possibilities, the resultant uncertainty could be 

handled a la L’Hopitale whilst ushering in the patterns below (as one way around unity 

adjustment operators) as per the prime-basis (m near 1) setting: 

[𝑟𝑎𝑑′(𝑎𝑏)]
−1

𝑚→1
→  𝑟𝑎𝑑′(𝑎𝑏) =

𝑎

𝑟𝑎𝑑(𝑎)
∗
1

𝑞 𝑎→0
→  

𝑎′

𝑟𝑎𝑑′(𝑎𝑏)
∗
1

𝑞
 

lim
𝑎→0

𝑟𝑎𝑑′(𝑎𝑏) =
1

√𝑞
 

lim
𝑏→0

𝑝 = 𝑞 

lim
𝑏→0

𝑟𝑎𝑑′(𝑎𝑏) = 𝑟𝑎𝑑
′(𝑎𝑏) ∗

𝑞

𝑝
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lim
𝑎,𝑏→0

𝑟𝑎𝑑′(𝑎𝑏) =
1

√𝑝
 

This may not appear to stand to scrutiny—perhaps because the latter term of the (1.2’) 

parity was based on (A’), whereas (B) would suggest, 

𝑎 ∗ 𝑟𝑎𝑑′ ≡ 𝑞 ∗ 𝑟𝑎𝑑(𝑎) = 𝑝 ∗ 𝑟𝑎𝑑(𝑎 + 𝑏) − 𝑏 ∗ 𝑟𝑎𝑑′ 

Intriguing (and possibly valid as a kind of ‘non-Cartesian’ extension) as this 𝑟𝑎𝑑′ =
𝑝∗𝑟𝑎𝑑(𝑎+𝑏)−𝑞∗𝑟𝑎𝑑(𝑎)

𝑏
 implied generalization might promise to be, it proves at odds with the very 

original definition of the quasi-derivative, as if to imply that the p and q operators are identically 

unity.  

This shortcut impossibility spares the bulk of effort. However, should one be interested in 

toying with the relaxed parity and the implied relationships, the gravest concern would perhaps 

rest with whether or not the q/p ratio is so finite (compressed) as to keep the entire parity terms 

well-behaved beyond the weak dimensionality check (with this ratio being dimensionless and 

hence unlikely to affect the prior test). In other words, of special interest could be a rethinking of 

the ab=1 case insofar as it (inter alia) captures as well as expands on the conventional derivative 

which builds on a/b laden discontinuity (b being very small compared to a) thus paradoxically 

questioning the well-behaved or finite-ratio outcomes. Again, though, bearing in mind the nature 

of the values (coprime), this frontier of tradeoffs appears altogether irrelevant—as does any 

alternative to the special q=p=1 case as imposed at the outset. 

That said, by trying to reconcile the two alternate representations of the ‘characteristic 

slope,’ general and special, one could arrive at one other parity frontier: 

𝑟𝑎𝑑(𝑎 + 𝑏)

𝑟𝑎𝑑(𝑎)
=
𝑞 − 1

𝑝 − 1
=
𝑞

𝑝
∗
𝑎 + 𝑏

𝑎
 

It may for one appear that, for the p=q case, the initial parity obtains. However, as per the p=q=1 

restriction, one could further surmise, 

𝜕𝑟𝑎𝑑(𝑎 + 𝑏)

𝜕𝑟𝑎𝑑(𝑎)
=
𝑎 + 𝑏

𝑎
 

if and only if b is held constant or exogenous (e.g. the way an independent-variable differential is 

treated under a conventional derivative—a dual case of variations). One other way of showing the 

implied local linearity (or homogeneity 1) of the operator would be to check, 

𝜕𝑟𝑎𝑑(𝑘𝑎) =
𝑘𝑎

𝑎
∗ 𝜕𝑟𝑎𝑑(𝑎) 

In any event, more generally, 
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(1 +
𝑏

𝑎
) ∗ (1 −

1

𝑝
) = 1 −

1

𝑞
 

As q tends to 1, so does p—unless b is very large compared with a. By contrast, for b small or p, 

q large (or both): 

1

𝑝
−
1

𝑞
~
𝑏

𝑎
 

To rehash on this, consider again: 

(1.2′) [𝑟𝑎𝑑′]−1 =
(𝑎 + 𝑏)

𝑟𝑎𝑑(𝑎 + 𝑏)
∗
1

𝑝
=

𝑎

𝑟𝑎𝑑(𝑎)
∗
1

𝑞
=

𝑏

𝑟𝑎𝑑(𝑎 + 𝑏) − 𝑟𝑎𝑑(𝑎)
 , 𝑝 ≠ 𝑞 ≠ 1 

As pointed out previously, the RHS of (1.2’) could be reconciled to its counterpart as of (1.2) by 

merely holding a anywhere near zero while assuming rad (0)=0. At this rate, however, either 

p=1 is implied (the same holding for q) or both are uncertain a la L’Hopitale. In this event: 

[𝑟𝑎𝑑′]−1 ≡ [𝑟𝑎𝑑′(𝑎)]−1 =
𝑎

𝑟𝑎𝑑(𝑎)
∗
1

𝑞 𝑎→0
→  

𝑎′

𝑟𝑎𝑑′(𝑎)
∗
1

𝑞
 

Which implies q=1, the same going for p from comparing, 

1

𝑝
∗ lim
𝑎→0

(𝑎 + 𝑏)

𝑟𝑎𝑑(𝑎 + 𝑏)
= lim
𝑎→0

𝑏

𝑟𝑎𝑑(𝑎 + 𝑏) − 𝑟𝑎𝑑(𝑎)
 

 

Zooming in on Operational Linkage: Beyondness as Simplicity 

Consider taking one step further beyond the special conjecture and toward the underlying 

linkage between addition and multiplication (or, more generally, across operations, as will be 

proposed in the next section) by first considering the singular case featuring a degenerate basis: 

{𝑝𝑘} → 𝑝,∑ 𝑝𝑘 → 𝑛𝑝 ≡ ∑,   ∏𝑝𝑘 = 𝑝
𝑛 ≡ ∏

𝐾=𝑛

𝑘

𝐾=𝑛

𝑘

 

One should have no difficulty showing that, 

(3) ∑𝑛 = 𝑛𝑛∏ 

∏
1
𝑛 =

∑

𝑛
 

∏∑ = ∑𝑛∏ 
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Interestingly, the latter suggests a striking glimpse at the long-offered (Shevenyonov, 2016c), 

utterly general ordual calculus premises: 

(𝐴, 𝑎)𝜌−1~(𝑎, 𝐴),  (𝐴, 𝑎)𝜌 = (𝑎, 𝐴)
𝜌
𝜌−1 = (𝑋, 𝑋)  

Now substitute x for n for generality and consistency’s sake. As long as the sum is tantamount to 

the product (which could be seen as an n>2 generalization of duality, 𝜌 ∗
𝜌

𝜌−1
≡ 𝜌 +

𝜌

𝜌−1
), it 

follows that: 

∑𝑥 = 𝑥𝑥∏ = 𝑥𝑥∑ 

Unless the sum (or indeed the product) is unity, zero, or very large in absolute terms,  

(3.1) ∑𝑥−1 = 𝑥𝑥 

Now, since ∑ = 𝑥𝑝 = 𝑝 ∗ 𝑥, the [singular] basis can be inferred at, 𝑝 = 𝑥
1

𝑥−1. This inter-linkage 

between sums and products, or linearity and non-linearity can now be depicted as, 

(𝐶) 𝑝𝑥 = 𝑝𝑥 

again, as a generalization of 𝑝 + 𝑥 = 𝑝𝑥 .  

It obtains tentatively that, 

(3.2) ∑𝑥 = 𝑥
𝑥2

𝑥−1 

(3.3) ∑𝑥−1 = 𝑥𝑥 = [∑1−𝑥]−1 

(3.4) ∑𝑥+1 = 𝑥
𝑥2+𝑥
𝑥−1 = ∑𝑥 ∗ ∑1/𝑥 

(3.5) ∑𝑥±𝑚 = ∑𝑥 ∗ ∑±𝑚/𝑥 

(3.6) ∑𝑚𝑥 = ∑𝑥+(𝑚−1)𝑥 = ∑𝑥 ∗ ∑𝑚−1 

(3.7) ∑𝑥
𝑚
= ∑𝑚𝑥 ∗ [∑ ∗ ∑

𝑥𝑚−1
1−𝑥 ] 

(3.8) ∑𝜑(𝑥) = ∑𝑘𝑥 ∗ [∑
𝜑(𝑥)

𝑥𝑘 ∗ ∑
𝑥𝑘−1
1−𝑥 ]~𝑥−

1
𝑥  ∀𝑘, 𝜑(∗) 

(3.9) ∑ ∗ ∑𝜑 = ∑𝑥 ∗ ∑𝜑/𝑥
𝜑→1
→  ∑𝑥+1 

(3.10) ∑𝑚𝑥
𝑚→0
→  ∑𝑥 ∗ ∑−1~∑𝜑 ∗ ∑−𝜑/𝑥 

(3.11) ∑𝑚𝑥(𝑥−1) = ∑𝑥
−𝑚
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Of course, one might have wished for a more generalized, perhaps identity-based setup 

bearing on the fudge factor: 

(𝐶′) ∑𝑥 ≡ 𝑘𝑥𝑥∏ = 𝑘𝑥𝑥∑ 

 ∑𝑥−1 = 𝑘𝑥𝑥 

At this rate, the invariant (albeit perhaps not necessarily one with respect to x, hinting at k=k(x)) 

could be tantamount to the [special-case] basis, 

∑𝑥 ∗ 𝑥−𝑥 = 𝑥
1
𝑥−1 = 𝑝 = 𝑘∏ 

in which light, 

𝑘 = 𝑘(𝑥) = 𝑝1−𝑥 =
1

𝑥
 

∑ = 𝑥, ∏ = ∑−𝑥 

Needless to say, this only holds under the two versions of the pi-sigma calculus married, which 

additionally presupposes unity sums, products, and basis for that matter—even though the unit 

operators have exhibited some nontrivial patterns and relationships throughout. Moreover, all of 

the above structures might resemble the [extended-form] Gamma-like patterns:  

𝛤(𝑛 + 1)~𝑛!~∫ 𝑥𝑛𝑒−𝑥
∞

0

𝑑𝑥 

The underlying product could be assessed at, 𝑥𝑛𝑒−𝑥~𝛤(𝑛 + 1) − 𝛤(𝑛)~(𝑛 − 1)𝛤(𝑛) 

One alternative way around the issue could be to approach values by exponentiating them 

around an x average: 

𝑥𝑖 ≡ 𝑥 ∗ 𝑒
∆𝑖 , 𝑥 =

1

𝑛
∗∑𝑥𝑖

𝑛

𝑖

 

∏ 𝑥𝑖 ≡ ∏ = 𝑥
𝑛 ∗ 𝑒∑ ∆𝑖

𝑛
𝑖

𝑛

𝑖
= 𝑛−𝑛 ∗ (𝑥 ∗∑𝑒∆𝑖

𝑛

𝑖

)𝑛 

(4) 𝑛𝑛𝑒∑∆ = ∑𝑛𝑒∆ 

∑𝑒∆ =
𝑒
1
𝑛
∑∆

1
𝑛
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The above in differentials does resemble the [special-case] pi-sigma basis in levels (3) as 

above. On the other hand, under an n large, the linkage between linearity and nonlinearity is 

straightforward: 

(4.1) lim
𝑛→∞

∑𝑒∆ = ∑∆ 

By induction, it could be surmised for higher-order differences: 

(4.2)  𝑛𝑛𝑒∑∆
𝑘
= ∑𝑛𝑒∆

𝑘
 ∀𝑘 

To discern any further utility, consider ways in which the prime numbers asymptotic 

distribution (PNT) could be inferred from the above considerations (if only insofar as the above 

pi-sigma notations may apply to prime products and sums much the way they do to any values—

let alone this would bridge the gap between the ABC and the distant yet entangled areas). 

As before, the values will be assessed in terms of their underlying logarithmic 

differentials, with the particular threshold actually referring to a maximum prime. In this case, the 

number of terms will pertain to that of the prime values in the implied distribution: 

𝜋(𝑥𝑚𝑎𝑥)~
𝑥𝑚𝑎𝑥

log (xmax)
~𝐾 = 𝑛 

In essence, it shall be maintained that the desired number of primes (as per a particular nature or 

value of the implied maximum) is n—a kind of backwards induction or dual stance. 

Suffice it to gauge whether: 

𝑛

𝑥
∗ 𝑒−∆𝑚𝑎𝑥~(𝑙𝑜𝑔𝑥 + ∆𝑚𝑎𝑥)

−1 

Based on (4) and (4.2), it should be self-explanatory that ∑𝑛𝑒∆ < ∑𝑛𝑒∆𝑚𝑎𝑥 . Therefore, 

𝑛 >
∑∆

∆𝑚𝑎𝑥
=

∑∆

𝑙𝑜𝑔𝑥𝑚𝑎𝑥 − 𝑙𝑜𝑔𝑥
 

By invoking ∑∆= ∑𝑙𝑜𝑔𝑥𝑖 − 𝑛𝑙𝑜𝑔𝑥, check whether  

𝑛 >
∑𝑙𝑜𝑔𝑥𝑖
𝑙𝑜𝑔𝑥𝑚𝑎𝑥

 

In other words, with an eye on the exact same denominator, the entire scrutiny has come down to 

comparing the numerators, i.e. control if 

∑𝑙𝑜𝑔𝑥𝑖 < 𝑥𝑚𝑎𝑥 
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At any rate, the LHS will fall short of 𝑛 ∗ 𝑙𝑜𝑔𝑥𝑚𝑎𝑥 which, bearing in mind the original 

distribution as a matter of fact, suggests  

∑𝑙𝑜𝑔𝑥𝑖 < 𝑛 ∗ 𝑙𝑜𝑔𝑥𝑚𝑎𝑥~𝑥𝑚𝑎𝑥   ↔  ∑𝑙𝑜𝑔𝑥𝑖 < 𝑥𝑚𝑎𝑥   𝑄𝐸𝐷 

Alternatively, the above amounts to comparing, 

𝑇 < 𝑥𝑛 𝑣𝑠. 𝑇′ ≡ 𝑒𝑥 

As has been noted before, this ratio amounts to just under, (𝑛 − 1)𝛤(𝑛), or above unity for n>2 

(evidently a weak prerequisite for any asymptotic regularity ever to hold—let alone for an 

operation like sum or product to be well-defined or at all applicable).  

This completes the demonstration of how the standardized result follows from the proposed 

approach of featuring the linkage between operations. Better yet, it can be shown that: 

(A) Both ABC and prime distribution lend themselves to shared origins 

(B) The latter amounts to so much as a special case of the pi-sigma calculus without having to 

embark on any utter generality—which latter will, too, be suggested (Shevenyonov, 

2016q) 

It is natural to start with the aforementioned (4) through (4.2) equivalence (indeed, in line 

with the identity based approach) as opposed to an incomplete inequality as above: 

𝑛 ≡
∑𝑒∆

𝑘

𝑒
1
𝑛
∑∆𝑘

<
∑∆

∆𝑚𝑎𝑥
 

Likewise, for k=1, it holds that 

𝑛~
∑(𝑥𝑖/𝑥)

(∏
1
𝑛𝑥𝑖)/𝑥

=  
∑

∏
1
𝑛

 

Evidently, this refers back to (3), which pi-sigma premises could be seen as the ultimate object 

behind the asymptotic prime distributions, as hypothesized above.  

 

Outlook on Operations as Unspecified Objects: Beyond the Divide 

The present analysis of the long-standing problems offers but an early glimpse of the 

broader yet simpler perspective, as has been proposed in my previous expositions. In the 

forthcoming papers, it will be proposed that operations confront no binding borderlines, in the 

first place.  
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This attempt is dedicated to the late (awkward and preposterous as this state might sound) 

Mariam Mirzakhani, myself poised to come to learn from and fully appreciate her work one day. 

It is unfortunate that the same cannot carry over to the contributions by Teichmueller, for reasons 

we all know full well. I might never be in a position to even consider this alternative (or is it an 

emerging core yet?) area, unless specifically challenged to, much to my own regret and due to 

that other tragic lot being of a different and more discretionary nature than the former case. 
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APPENDIX 

 

Any pair of candidate coprimes could conveniently be formalized by building on what can be 

dubbed a prime basis 𝑃𝐵~{𝑝𝑘} alternatively denoted in terms other than vector or set-theoretic 

as: 

𝑃𝐵 ≡∏𝑝𝑘

∞

𝑘

 

All of the individual pk in this value potential are primes whose set could be complete or 

boundless, even though it may effectively be restricted to a particular upper bound power M 

beyond which any applicable powers in the [Boolean-filtered] number structures below would 

identically be zeros: 

𝑚𝑘 = 𝑚𝑘 ∗ (𝑚𝑘 < 𝑀) 

Alternatively, it is the k that is effectively confined to a desired threshold: 

𝑋 ≡∏𝑝𝑘
𝑚𝑘 ,   𝑚𝑘 ≡ 0  ∀𝑘 > 𝐾

𝑘

 

Since coprimes are characterized by an inherently interdependent or dual nature, the implied 

power-conjugates could be thrown in to arrive at a zero power in the respective basis position of 

the one number anytime its counterpart in the other is nonzero: 

𝑎

𝑏
~
𝑋𝑖
𝑋𝑗
=
∏ 𝑝𝑘

𝑚𝑘𝑖
𝑘

∏ 𝑝𝑘
𝑚𝑘𝑗

𝑘

=∏𝑝𝑘
𝑚𝑘𝑖−𝑚𝑘𝑗

𝑘

≡∏𝑝𝑘
∆𝑚𝑘

𝑘

 

𝑚𝑘𝑗 ≡ 0 𝑖𝑓𝑓 𝑚𝑘𝑖 ≠ 0  ↔   ∆𝑚𝑘 = ±𝑚𝑘  ∀𝑘 = 1, 𝐾̅̅ ̅̅ ̅ 

It is straightforward to see that the prime basis obtains as the rad of a product (featuring a full-

fledged basis as a combination of coprime semi-bases): 

𝑃𝐵 = 𝑟𝑎𝑑(𝑎𝑏) = 𝑟𝑎𝑑(𝑎)𝑟𝑎𝑑(𝑏) = 𝑟𝑎𝑑(∏𝑝𝑘
𝑚𝑘𝑖

𝑘

∗∏𝑝𝑘
𝑚𝑘𝑗)

𝑘

= 𝑟𝑎𝑑∏𝑝𝑘
𝑚𝑘

𝑘

=∏𝑝𝑘
𝑘

 

The working convention is that a zero effective power amounts to an omitted respective pk layer 

of the basis in the semi-basis—in contrast to any nonzero exponent. On the other hand, this calls 

for value-specific prime basis: 
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𝑃𝐵𝑖 ∗ 𝑃𝐵𝑗 = 𝑟𝑎𝑑(𝑋𝑖) ∗ 𝑟𝑎𝑑(𝑋𝑗) = 𝑃𝐵 

Needless to say, a prime basis need not amount to a prime [number], if only because K may not 

be tantamount to unity (it will be shown how prime singularity has similar as well as divergent 

implications compared to the more general prime-basis case with reference to the effective 

power).  

What is more, lest the coprime ratio might collapse to a prime [number], some sign alteration 

would be warranted: 

∃(𝑘, ∆𝑘): 𝑠𝑖𝑔𝑛∆𝑚𝑘 = −𝑠𝑖𝑔𝑛∆𝑚𝑘+∆𝑘 

While at it, please note: 

𝑎 = (𝑎𝑏 ∗
𝑎

𝑏
)
1
2 =∏𝑝𝑘

𝜇𝑘
2 ,   𝜇𝑘 = {

2𝑚𝑘 
0

𝑘

 

𝑏 = (𝑎𝑏/
𝑎

𝑏
)
1
2 =∏𝑝𝑘

𝜇′𝑘
2 ,   𝜇′𝑘 =

𝑘

2𝑚𝑘 − 𝜇𝑘 

It is straightforward to see that 𝑟𝑎𝑑(𝑥𝑦) = 𝑟𝑎𝑑(𝑥)𝑟𝑎𝑑(𝑦) holds for coprimes only (as above) 

whereas, for lack of conjugacy, the more general (independent or cardinale) notion of values, 

even as one might be based on the very same premises, would suggest: 

𝑟𝑎𝑑(𝑎𝑏) = 𝑟𝑎𝑑∏𝑝𝑘
𝑚𝑘𝑖+𝑚𝑘𝑗

𝑘

=∏𝑝𝑘
𝑘

≡ 𝑃𝐵 ≠ 𝑟𝑎𝑑 (∏𝑝𝑘
𝑚𝑘𝑖

𝑘

) ∗ 𝑟𝑎𝑑 (∏𝑝𝑘
𝑚𝑘𝑗

𝑘

)

=∏𝑝𝑘
2 ≡ 𝑃𝐵2

𝑘

 

At this stage, for ease of notation as well as manipulation (or indeed to circumvent the intricacies 

of vector operations and equivalence of the form, 𝑋𝑖
{𝑚𝑖}

−1
= 𝑋𝑗

{𝑚𝑗}
−1
= {𝑝}), one may want to 

consider the notion of the effective power, to be defined in a straightforward fashion: 

𝑚 ≡
𝑙𝑜𝑔∏ 𝑝𝑘

𝑚𝑘
𝑘

𝑙𝑜𝑔∏ 𝑝𝑘𝑘
=
∑ 𝑚𝑘𝑙𝑜𝑔𝑝𝑘𝑘

∑ 𝑙𝑜𝑔𝑝𝑘𝑘
 

Readily verifiable, 

𝑟𝑎𝑑(𝑋) = 𝑟𝑎𝑑 (∏𝑝𝑘
𝑚𝑘

𝑘

) =∏𝑝𝑘 = 𝑋
1
𝑚

𝑘

 ↔  𝑋1−
1
𝑚 ∗ 𝑟𝑎𝑑(𝑋) = 𝑋 = [𝑟𝑎𝑑(𝑋)]𝑚 

It is by the same token that the implied functional or recurrent representation could be 

rationalized with an eye on its solution or [non-vector] reduction: 
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𝑓(𝑚) ≡ 𝜑 ∗ 𝑓(𝑚 − 1) = 𝜑𝑚 ∗ 𝑓(0), 𝑓(𝑚) ≡ 𝑋, 𝜑 ≡ 𝑟𝑎𝑑(𝑋) 

That said, not only might the above solution suggest a structure similar to the [reciprocal] gamma 

distribution or factorial (should the exponential stretching allow for a linear-transform equivalent 

as will be discussed in the pi-sigma calculus section), this analogy could be reinforced by 

inferring [alternatingly] that rad (0)=1. At this rate, some of the patterns under study may 

resemble structures of the Euler beta sort, or indeed their combinatorial counterparts. In pi-sigma 

terms, and based on the analogy 𝑟𝑎𝑑~(∏∗)
1

𝑚 yet to be covered in text, 

𝑋 = 𝑓(𝑚) = 𝜑(𝑚) ∗ 𝑓(𝑚 − 1) =
(∑∗)

𝑚

𝑚!
=
𝑚𝑚∏∗

𝑚!
~𝑒𝑚 ∗ √

𝑚

2𝜋
∏∗ 

For the singular case (prime or m=1) with the sum tantamount to the product, this reduces to 

identity. Somewhat similar results could be obtained asymptotically for large underlying values 

(in place of the powers): 

𝛤(𝑎 + 𝑏)~𝛤(𝑎) ∗ 𝑎𝑏~√
2𝜋

𝑎
∗
𝑎𝑎+𝑏

𝑒𝑎
 

By treating the above as a functional equation and holding the factor fixed, the reduced form can 

be approximated as, 

𝛤(𝑎)~𝑎𝑎 𝑜𝑟 𝑎
𝑎2

2𝑏 

Alternatively, by substituting (m, 1) for (a, b), the above can take on, 

𝛤(𝑚)~√2𝜋 ∗
𝑚𝑚+

1
2

𝑒𝑚
 

While direct substitution of the sort might make little sense, it points to similar results throughout 

the levels of analysis.  


