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The ‘Generalized Skettrup Model’ (GSM) [1] links features of near-band gap 

and intra-gap electronic as well as corresponding optical spectra of polycrystalline 

and spatially non-homogeneous amorphous semiconductors and insulators to 
probabilities of fluctuations in an energy of the individual quasi-particle, number of 

quasi-particles in a quantum grand canonical ensemble (QGCE) of confined acoustic 
phonons with static plane-wave basis (pure states), and in their aggregate energy. 

Features of the GSM [1] are discussed herein in comparison to those of quantum 
statistics pioneered by Japanese physicist T. Matsubara [2], which is based 

essentially on ‘two-points’ ‘Green Function’ (GF) formalism, and takes into account 

fluctuations in temperature of QGCE. The GSM [1] might be ultimately treated as a 
‘conservative’ (and essentially static) counterpart of the generic Matsubara 

statistics for the specific case of ensemble of acoustic phonons confined within 
micrometer- and sub-micrometer-sized non-homogeneities (crystallites) of poly-

crystalline and spatially non-homogeneous amorphous semiconductors and 
insulators. However, unambiguous links among spectral characteristics of the GSM 

and Matsubara GF might be established for equilibrated phononic ensembles with 

static and/or dynamic plane-wave basis. Moreover, original scope of the GSM might 
be expanded further based on the fundamental ideas, pioneered by T. Matsubara. 

 
PACS numbers: 05.40.-a ; 62.30. +d; 71,15.Q e; 71.23.- 4; 81.05.Cy; 81.05.G c 

 
 

1. Introduction 

 

The Generalized Skettrup Model (GSM) depicted in the second chapter of ref. [1] (see also references 

therein) is essentially based on evaluation of probabilities of fluctuations in an energy of (pure) states of 

individual acoustic phonons, their aggregate energy and (generally rational) number of quasi-particles of 

the (quantum) grand canonical ensemble (QGCE), corresponding to many-particle phononic excitations 

with static (time-independent) plane-wave basis (pure states) in polycrystalline and/or spatially non-

homogeneous amorphous semiconductors and insulators. In particular, within the GSM framework, those 

fluctuation probabilities are customarily evaluated via an integration (averaging) over available (at the 

given aggregate energy) mixed quantum states of ensemble of Debye’s acoustic phonons and appropriate 

number of those quasi-particles [1]. Furthermore, the GSM implies that those fluctuations in the ensemble 

of confined longitudinal acoustic phonons with the static plane-wave basis (microstates) are linked 

intimately to energy fluctuations in an electronic sub-system of a semiconductor (insulator) and eventually 

to its corresponding optical spectra: relationship between the instantaneous aggregate energies (fluctuation 

probabilities) of electronic and phononic sub-systems might be established quantitatively either based on 

semi-empirical electron-phonon coupling parameters or via the ‘deformation potential’ formalism [1].  

Thus, aforementioned GSM approach essentially implies that the individual and aggregate energies as 

well as number of quasi-particles in the phononic ensemble have to be treated as real (generally rational) 

variables, while temperature of the ensemble is usually treated as a fixed (constant) quantity for the given 

environmental conditions; i.e., as a parameter of an external ‘thermal reservoir’.  

In contrast, quantum statistical mechanics pioneered (in particular) by famous Japanese physicist 
Takeo Matsubara for a quantum ensemble with a time-dependent (dynamic) basis (comprises either 

electrons (fermions) or phonons (bosons)) [2] is based essentially on properties of ‘equilibrium’ two-points 

‘Green Function’ (GF), and treats the temperature of QGCE as a variable complex parameter. This implies 

that the temperature of the ensemble fluctuates as well – in addition to fluctuations in total number of its 

quasi-particles and in their individual and aggregate energies for the given QGCE. Furthermore, 

quantitative parameters of the conventional two-points GF might be evaluated appropriately via 

substitution of real-time variable of the GF defined in Euclidian space-time continuum with its ‘imaginary 

time’ counterpart, which is inversely proportional to the temperature of the ensemble [2]. Such treatment 

becomes essential for interacting systems: condensed matter, dense plasmas, neutron stars etc., where local 

temperature fluctuations are expected to be considerable or dominant. Herein significances of aforesaid 

effects are evaluated only for solid polycrystalline and non-homogeneous amorphous semiconductors and 

insulators, including nano-structured ones, and discussed in comparison with predictions of the GSM [1].  
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2. Key Features of Matsubara Statistics 
 

In a thermal equilibrium, averaged (statistical) characteristics of pure or mixed (static or dynamic) 

many-body state(s) of a non-interacting (either fermionic or bosonic) ensemble at the given (absolute) 

temperature T are routinely evaluated based on the quantum grand canonical density operator, D [3]: 
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where Tr[exp(–H0/kBT)] denotes trace (i.e., sum over its diagonal elements) of the matrix exponential of 

the weighted ‘thermal’ Hamiltonian matrix (H0/kBT), and kB is the Boltzmann constant. This D operator is 

Hermitian, ‘positive definite’ and normalized: Tr{D}  1 [3]. Importantly, that Eq.(1) remains valid even 

for Heisenberg representation of the quantum mechanics, which presumes that wavefunctions (set of basic 

states) of the system are time-independent (static), while operators (and Hamiltonians) do change in time.  

Essential generalization of concept of equilibrium statistics for an (bosonic or fermionic) ensemble 

with a time-dependent (dynamic) basis had been achieved [2] via introduction of a single-particle two-

points Matsubara ‘Green Function’ (GF), expressed herein using a coordinate representation [4]: 

  

 
            

       
)2(,

/1/exp

/1,,/exp
,,,

0

22110
2211

TTkHNTr

TrrTTkHNTr
rrG

B

B
M











 




 

where r1, 1 and r2, 2 stand for spatial and imaginary time ‘coordinates’ of the first and second points of 

an Euclidian space-time continuum, N is number of particles in the ensemble,  is its chemical potential, 

(r, ) is imaginary-time-dependent operator, acting on (time-independent) wavefunction(s) (eigenstates, 

numerated by their index ) of the ensemble, and  
+
(r, ) is its complex-conjugate (adjoint), Tt is so-

called ‘time-ordering’ operator with respect to the imaginary time, while (1/T) is a form of ‘density 

matrix’, defined (based on a generic identity) as follows [4]:  
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where i = –1,  = 1/(kBT),  = /i, and Hint(t) is a (time-dependent) ‘interaction Hamiltonian’ of the 

ensemble [4]. Thus, Eqs.(2, 3) manifest a two-points generalization (in coordinate representation) of the 

conventional (‘thermal’) density matrix, as well as density operator, expressed by Eq.(1). In particular, 

Eq.(1) might be ‘restored’ from Eq.(2) in the ‘equal times’ limit, i.e., at 1 = 2. The Eq.(2) is formally 

compatible with Heisenberg representation of quantum mechanics. An integration over the ‘imaginary 

time’ in Eq.(3) seemingly yields an ‘interaction representation’ for the statistical ensemble [2 – 4]. 

In apparent distinction from the ‘conventional’ GF Ǧ(r1, t1, r2, t2), the Matsubara’s ‘equilibrium’ two-

point GF ǦM(r1, 1, r2, 2) specified by Eqs.(2, 3), was established in ref. [2] via substitution of real-time 

variable t of the conventional GF with its ‘imaginary time’ counterpart  = –it, which is also related 

directly to the inverse temperature  of the ensemble (i.e., via so-called ‘Wick rotation’). This idea was 

apparently inspired by the structure of Minkowski (relativistic) space-time metric, which comprises of 

imaginary time axis. Formally, the equilibrium GFs, Ǧ(r1, t1, r2, t2) and ǦM(r1, 1, r2, 2) one, depend only 

on the time difference(s) [3]. Furthermore, in an equilibrium state, the Hamiltonian H0 of the system is 

expected to be static (time-independent), and evolution (fluctuations) of the ensemble parameters have to 

be attributed entirely to its evolution on the imaginary time axis, or fluctuation(s) in its local temperature.  

This kind of evolution (fluctuation) might be formally depicted by Eqs.(2, 3), as long as integration in 

Eq.(3) is fulfilled along the straight line, parallel to the ‘imaginary time’ axis on the complex time plane   

[2 – 4]. In such a case, Eq.(3) might be re-formulated in a more compact (and yet generic) form [3]: 

    )4(,ˆexp, 000 HtitU    

here U denotes an evolution operator, and t0 stands for an ‘origin’ of the real time axis. It is noteworthy, 

that evolution of the bosonic ensemble is periodic on the imaginary time scale, while evolution of the 

fermionic ensemble is ‘antiperiodic’ [2 – 4].  
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Alternatively, any (temperature-dependent) function in Euclidian space (e.g., phonon eigenfunction, 

conventional GF, creation and/or annihilation operator, thermal ‘propagator’ etc.) might be expanded 

readily in an infinite exponential Fourier series over imaginary time with Matsubara frequencies n, which 

are routinely defined for bosonic ensemble based on periodicity conditions of those exponential terms: 

exp(in)  1 [2 – 4]. Consequently, in general, integration over imaginary time in Eq.(3) might be 

replaced with a (infinite) summation over the Matsubara frequencies. However, in apparent contradiction 

with Eqs.(3, 4), those Matsubara frequencies n naturally become temperature-dependent, but not affected 

neither by frequencies of pure states (individual modes) of the phononic ensemble nor by their aggregate 

energy. In particular, based on the mentioned above periodicity condition, one readily obtains: n = 2  n 

[5] or n = 2  kBTn (n herein is an integer index) [2, 3]. At T = 1 K and n = 1, this periodicity condition 

yields: 1 = 2  kBT  5.414*10
-4

 eV. The higher Matsubara frequencies are just proportional to the 1 

quantity. Similar Matsubara frequencies might be defined readily as well for a fermionic ensemble [2 – 4]. 

Thus, fluctuations (and interactions) in either bosonic or fermionic ensemble might be taken into account 

via appropriate expansion over the imaginary time scale of the given ensemble.  

The original Matsubara’s idea is tremendously fruitful and was further developed and implemented for 

decades in GF-based formalisms of a finite-temperature quantum statistic of condensed systems [3, 4]. In 

addition, it was advanced further by T. Matsubara in order to set up diagrammatic perturbation theory for 

their grand partition functions within framework of the field-theoretical basis [2 – 4]. However, ‘orthodox’ 

GF and diagrammatic formalisms do not apply to ‘…Bose systems below points of the Bose 

condensation…’ and ‘…Fermi systems in which superconductivity exists…’ [4]. 

 

 
3. ‘Matsubara Correction’ for GSM with Static Plane-wave Basis 

   

The basic feature of the briefly depicted in the previous section Matsubara’s generalization of the 

fluctuation concept might be incorporated naturally into the framework of essentially static GSM [1]. 

Indeed, basic equation of (isotropic version) of the GSM comprises of the Gibbs (Boltzmann) term, total 

number of available static mixed states of QGCE of Debye acoustic phonons with the plane-wave-

functions (pure states) as well as its ‘normalizing’ factor, (M + 1)
-1

, and a ‘partition function’, ZM [1]: 

𝑊𝐷(𝐸𝑇) ≅  𝑒𝑥𝑝 (−
𝐸𝑇

𝑘𝐵𝑇
) ∫

1

Γ(𝑀 + 1)(𝑍𝑀)𝑟2

𝑀𝑀

𝑀0

[
2ℒ𝑥 ℒ𝑦 Ϝ(ℒ𝑥, ℒ𝑦 , ℒ𝑧) 𝐸𝑇

2

𝑀𝑟1(ℎ𝑐𝑙)2
]

 𝑀

𝑑𝑀,      (5) 

 

where WD(ET) denotes probability density of finding of the ensemble of confined (within a parallelepiped 

crystallite, column, cone, etc.) Debye acoustic phonons in a mixed state with its aggregate energy of ET, 

(M + 1) is Euler’s Gamma-function [5], h is the Planck’s constant, c l is longitudinal sound velocity,            

Lx, Ly, Lz are lengths of the (orthogonal) ribs of parallelepiped phonon confinement volume, while the 

dimensionless function F(Lx, Ly, Lz) depends solely on ratios of the Lx, Ly and Lz lengths; see also 

Eq.(26a) in ref. [1]. Integration in Eq.(5) is expected to be carried out over the appropriate range of 

(generally rational) number M of acoustic phonons in the ensemble (this integration range is restricted by 

the MM and M0 limits), while the (rational) model parameters r1 and r2 are typically varying in the 

following ranges: 0.5  r1  2; 0.5  r2  1 [1].  

In spite of significant differences in notations, structures of Eq.(2, 5) exhibit apparent similarities, in 

particular, at  = 0 and M = 1. Furthermore, close formal interrelations among those equations might be 

established readily for a specific case of the ensemble of Debye acoustic phonons with the plane-wave 

basis and ‘classical’ linear dispersion: q = c lq (here q corresponds to the quasi-wave vector q).  

Indeed, first of all, unambiguous interrelations between equilibrium two-points Ǧ(r1, t1, r2, t2) function 

and the ‘conservative’ Eq.(5) really do exist in such a case due to the following well-known identities [5]:  
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Thus, based on those identities, parameters of the equilibrium ‘conventional’ GF, defined at two points  

[(r, t), (r’, t’)] of Euclidian space-time continuum are linked directly to a number of single-point (with 

coordinates of (r, t)) poles (states) of the plane wave with the angular frequency q, propagating within the 

continuum. On the other hand, number of single-phonon states in integrand of Eq.(5) at M = 1 equals to 
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number of poles of static plane-wave basis of Debye phonons: i.e., only right-hand terms in all equalities 

expressed by the Eq.(6) have to be taken into account in such a case. Similar interrelations might be 

established as well among Eq.(5) and Matsubara GF, defined by Eq.(2) in space-time metric with an 

imaginary time axis. Furthermore, an appropriate sum (over all available indexes ) of the products 

[
+
(r, ) * (r, )] of the ‘one-body’ and ‘equal-times’ annihilation and creation operators (acting on the 

given set of ground (basis) plane-wave-functions) would yield a total density of Debye phonons in Eq.(2) 

at the particular point of Euclidian space [4, 6, 7]. Consequently, the total number of such phonons 
confined within the parallelepiped volume of Vp = LxLyLz has to be defined by integration over the afore-

mentioned phonon density, and over the whole volume, Vp. Furthermore, since Eq.(2) is formulated within 

the ‘second quantization’ framework  [4, 6, 7], actual spectrum of excitations of the ‘ground’ states of the 

(bosonic or fermionic) ensemble is routinely described based on spectral characteristics of its individual 

quasi-particles and appropriate occupation factor for the single-particle (ground) states; see also next 

section for an example. Thus, implementation of the ‘second quantization’ approach and GF formalism to 

an ensemble of bosons or fermions typically yields scalar (though generally time-dependent) parameters of 

the ensemble (e.g., average total number of particles in the ensemble, their average aggregate energy etc.), 

even though its basis wave-functions may contain vital information on direction of their spatial 

propagation and angular frequency, morphological and anisotropic effects in crystalline lattice etc.   

In contrast, the integrand term located within the square brackets of Eq.(5) is linked directly to para-

meters of the static plane-wave-functions (pure states) of the ensemble of (longitudinal) Debye acoustic 

phonons, and retains essentially the long-range (e.g., anisotropic and/or coherent) effects, ‘inherited’ from 

those plane-wave-functions; see, in particular, Eq.(26b) in ref. [1]. Moreover, the number of acoustic 

phonons is introduced explicitly as a (generally rational) parameter M of the integrand term in Eq.(5). 

However, this GSM parameter rather characterize number of quasi-particles in a coherent (i.e., with the 

same q quantity for all its components) and/or excited (with non-equivalent q quantities of its components) 

mixed state of acoustic phonons, than in their ground states (though M  1 formally matches to the ground 

state). On the other hand, – in apparent similarity with the ‘second quantization’ approach – the integrand 

term located within the square brackets of Eq.(5) is defined merely based on the (idealized) single-particle 

spectrum of the (isotropic) Debye acoustic phonon and its first Brillouin Zone (BZ); this similarity is also 

accomplished with appropriate low integration limit in the Eq.(5) [1]. It is noteworthy, that the ‘second 

quantization’ and Matsubara GF formalisms also allow one to incorporate bosonic coherent states with the 

plane-wave basis: e.g., ‘normalized’ Klauder’s state: ~ (NC!)
-1/2 

exp(–iqC r) [6, 7]; here NC is an integer, 

while qC is its quasi-wave vector. Notably, that its squared ‘normalizing’ coefficient (1/NC!) formally 

coincides with the (M+1)
-1

 term in Eq.(5) at M = NC. However, the qC vector of Klauder’s phononic 

coherent state routinely exceeds edge of the first phononic BZ. This implies that the qC parameter is ‘ill-

defined’ for the phononic states, and such coherent states could not be treated as pure states (microstates) 

of the ensemble of (longitudinal) acoustic phonons; see also next section for further discussion.  

The only term, which appears in the Eq.(2), but apparently absents in Eq.(5) – is the ‘density matrix’ 

(1/T), defined by the Eq.(3) in the previous section. However, based on the fundamental idea, pioneered 

by T. Matsubara [2], an appropriate counterpart of the (1/T) term might be introduced readily for the 

Eq.(5). Indeed, formally, the given scalar ET quantity in the exponential term of Eq.(5) might be treated as 

particular case of a (single-valued) equilibrium (static) Hamiltonian, which causes the system evolution 

only on the imaginary time scale . However, in contrast to the ‘conventional’ (and infinite) set of 

Matsubara frequencies customarily defined based on periodicity conditions of the exponential term(s) in 

the Fourier expansion of an Euclidian propagator [2 – 4] (see also end of the previous section), the 

dimensionless (and always finite) M(ET, T) function might be introduced based on a physically 

meaningful number of poles of the exponential term in Eq.(5), which is apparently affected both by the (ag-

gregate) energy of the mixed state of the phononic ensemble, as well as by its temperature, see Fig. 1(a). 

Indeed,  = 1/kBT  11605 eV
-1

 at T = 1 K, while its dimensionless counterpart reads:  = (ET / kBT)  

11605 at ET = 1 eV. Furthermore, now the (dimensional and dimensionless) Matsubara frequencies might 

be defined as follows: n = 2  kB T n [2, 3] and n = (2  kB T n) / ET (respectively). It is noteworthy, that 

poles of the exponential term in Eq.(5) as well as just defined above Matsubara frequencies are always 

located on the imaginary axes of the appropriate complex plane, see Fig.1(a), (b). 

Thus, the physically meaningful number (range) of those frequencies might be truncated, and 

evaluated following an idea formalized by Eq.(3), where the integration range of [0, ] is implemented. 

Consequently, the following ‘Matsubara’ correction function M(ET, T) to Eq.(5) – the counterpart of the 

(1/T) term – might be introduced based on the meaningful number of poles of its exponential term: 
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where Int denotes a function, which return the integer part of its argument, and unity term in right-hand 

side arises due to the zeroth Matsubara frequency of the phononic ensemble, see Fig.1(b). Spectral and 

temperature dependencies of the M(ET, T) function are illustrated in Fig. 2(a), (b).  
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FIG.1 (a), (b) (color online). Schematic illustration of (a) periodic behavior of the inverse exponential term in 
Eq.(5) on the complex plane, with two its zeros located on the imaginary axis, and (b) the Matsubara integration 

contour (dashed curve). The black dots in figure (b) are located on the imaginary frequency axis and indicate 

positions of bosonic Matsubara frequencies on the complex frequency plane. See also figure (a) and main text for 
more details. 
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FIG. 2(a), (b) (color online). Effects of (a) the absolute temperature T and (b) aggregate energy ET of the phonon 

ensemble on the M(ET, T) function, defined by Eq.(7). The plotted curves are obtained via replacement of the Int 
function in this equation with its rational argument. Mind double-logarithmic scale(s) for both panels of the figure. 
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 Subsequently, Eq.(5) might be modified as follows: 
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It is noteworthy, that left-hand half of the complex plane in Fig.1(a) corresponds to negative Re[exp(iET)] 

quantities, which formally implies negative probability [WD(ET) function(s)] defined by Eq.(8).  In order to 

overcome this problem, total contribution from ‘Matsubara correction(s)’ (expressed by M(ET, T) term – 

or Eq.(7)), is routinely evaluated via integration (summation) over Matsubara frequencies n defined on 

the complex frequency plane – following refs. [2, 3] and discussion just above herein, see also Fig.1(b).  

Based on Eq.(7), which provides the physically meaningful number of poles of exponential term of 

Eq.(5), and evaluation results illustrated in Fig. 2(b), the dimensionless ‘Matsubara correction’ term 

M(ET, T) apparently might be approximated with a linear function of ET at a given temperature T: 
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where Emin is a low limit of aggregate energy of the ensemble of acoustic phonons, imposed by presence of 

morphology (non-homogeneities) in the studied (isotropic but spatially non-homogeneous) polycrystalline 

or amorphous semiconductor (insulator), and defined by the Eq.(18B) in ref. [1], while 
0

M(Emin, T) = 

[M(Emin, T) / Emin] is a dimensional (of eV
 -1

) and temperature-dependent factor; Eq.(9) valids at            

(ET  Emin) and (ET  kBT). Therefore, due to Eq.(15D) in ref. [1] and Eq.(9) above, the ‘partition 

function’, ZM, for the ‘isotropic version’ of the Eq.(8) reads: 
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where (m, z0, z1) is the ‘generalized incomplete Gamma function’ [5] with m = (2M + 2), z0 =             

(Emin / kBT), z1 = [M * kBD / (kBT)] = MD / T. It is noteworthy that the dimension of ZM functions defined 

by Eq.(10) is still expressed in eVs; i.e., it remains unchanged as compared to its counterpart expressed by 

Eq.(15D) in ref. [1]: enlargement in the (rational) power of the (kBT) term is ‘compensated’ by appearance 

of the dimensional 
0

M(Emin, T) one. Thus, though the dimensionless ‘Matsubara correction’ function 

M(ET, T) well exceeds 10
3
 at T  1 K and ET  1 eV (Fig. 2(b)), its ultimate effect on the WD(ET) 

distribution defined by the Eq.(8) would be eventually reduced due to ‘normalizing’ effect of the partition 

function ZM (statistical sum). Similar ‘Matsubara correction’ might be also ‘embedded’ readily into an 

anisotropic version of the basic equation of GSM [1]. 

Thus, depicted above ‘Matsubara correction’ is expected to work well for crystalline semiconductors 

and insulators at a finite temperature. Furthermore, such ‘Matsubara correction’ is expected to remain valid 

even at zero temperature for many amorphous solid semiconductors and insulators, where spatial atomic 

positions are commonly expected to be time-independent (static) – though generally affected by the 

‘freeze-in’ temperature, established at the material formation (e.g., Eq.(37) on p.81 of ref. [1]). In other 

words, those atomic positions are still subjected to evolution in the ‘imaginary time’, though ‘traditional’ 

meaning [2] of the ‘imaginary time’ has to be amended, and rather linked to the (inverse) ‘freeze-in’ 

temperature – than to actual absolute temperature of the material. It is noteworthy, that different versions 

of the GSM enable such kind of ‘Matsubara correction(s)’ readily, while many others well-known 

approaches to simulation on near-band-gap and intra-gap electronic density-of-states (DOS) in disordered 

semiconductors (e.g., the semi-classical [8] and Halperin-Lax [9] ones) do not comprise the exponential 

Gibbs-Boltzmann term and might not be ‘corrected’ in this way. Furthermore, in spite of certain formal 

similarity among the path-integral-based formalism [10] and Matsubara one, the physical backgrounds of 

those formalism and even their mathematical expressions are significantly different. Indeed, the real-time 

action (i.e. a time-dependent integral over a potential) in the canonical path integral formalism has to be 

transformed into imaginary-time integration within framework of Matsubara’s approach via (formal) 

implementation of so-called ‘Wick rotation’, see ref. [7], p.12. In general, both path-integral and 

Matsubara formalisms are equally applicable to bosonic and fermionic ensembles, though the path-integral 

usually oscillates far more strongly (with alterations in its sign!) as its argument vary, mainly due to 
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relatively low  quantity (the dimensional kBT/ ratio is ~1.309 x 10
11

 at T = 1 K in appropriate SI units). 

Therefore, the path-integral technique was widely implemented (e.g., refs. [10 – 12]) to relatively small 

(with the typical spatial extent of just very few Angstroms) parts of electronic sub-system, interacting with 

their ionic counterparts, while direct contributions from the quantized atomic vibrations (phonons) are 

usually ‘integrated out’ (eliminated) within the path-integral cum Lagrangian formalisms [10 – 12].  

The overall contribution even from non-normalized ‘Matsubara correction’ to the basic equations of 

the GSM [1] is expected to be relatively small for polycrystalline and spatially non-homogeneous 

amorphous semiconductors and insulators with the typical sizes of non-homogeneities (grains) of the order 

of ~ 1 m – or even sub-micrometer – (especially at elevated – e.g., room – temperature T and relatively 

low (ET < 1 eV) aggregate energy of the phonon ensemble) as compared to effects caused by variation in 

the GSM model parameters r1 and r2 in Eqs.(5, 8). Indeed, contribution from the main integrand term in 

Eqs.(5, 8) (located within square brackets in those equations) is ~2.40x10
9
 at ET = 1 eV, M = 1, r1 = 2 and   

r2 = 1 for the <100>–oriented polycrystalline diamond with Lx = Ly = Lz = 1 m, and exceeds even low-

temperature contribution from the M(ET, T) term by a factor of ~1.30x10
6
, though this ratio apparently 

becomes much larger at elevated (e.g., ‘room’) temperatures. Similar ratios are expected as well for others 

polycrystalline and spatially non-homogeneous amorphous semiconductors and insulators, when 

dimensions Lx, Ly and Lz of their non-homogeneities are of Lx  Ly  Lz  1 m. Thus, relatively small 

room-temperature ‘Matsubara corrections’ are generally expected for an ensemble of acoustic phonons 

confined within grains, columns, cones (etc.) of those polycrystalline and spatially non-homogeneous 

amorphous semiconductors and insulators at elevated temperatures. This statement might be verified 

independently: integration over the imaginary time is expected to yield just a partition function (for the 

aforementioned bosonic ensemble) at   0 (i.e., at T  ) limit(s), see details on p.13 of the ref. [7]. 

On the other hand, contribution from the ‘Matsubara correction’ function might be significant or even 

dominant for nano-structured semiconductors and insulators (e.g., when Lx  Ly  Lz  10 nm), especially 

at low temperature and relatively high aggregate energy of the mixed states of the ensemble. Indeed, in 

such a case, contribution from the integrand term in Eqs.(5, 8, 10) is expected to be diminished by ~6 

orders of the magnitude (as compared to the discussed above case of the <100>-oriented polycrystalline 

diamond), while contribution from the ‘Matsubara correction’ function M(ET, T) remains unaffected by 

alterations in the sizes of the non-homogeneities (crystallites).  

Thus, following the fundamental idea pioneered by T. Matsubara in ref. [2], basic (and essentially 

static) equations (of original versions) of the GSM [1] might be ‘corrected’ in order to take into account 

effects of fluctuations in the absolute and/or ‘freeze-in’ temperature(s) of the ensemble of the confined 

acoustic phonons (via implementation of the dimensionless M(ET, T) function, as it discussed above in 

this section), though such corrections are expected to be relatively small for polycrystalline and spatially 

non-homogeneous amorphous semiconductors and insulators with micrometer- and sub-micrometer sizes 

of non-homogeneities (grains), but might be significant or even dominant for their nano-structured 

counterparts. In addition, the model parameters r1 and r2 of the GSM, are typically invariable (fixed) for 

the given set of simulations even though the T and ET quantities may vary for this set [1], while the 

introduced above M(ET, T) function is apparently temperature- and energy- dependent, see Fig. 2.(a), (b). 

Furthermore, the static plane-wave basis of the GSM [1] might be expanded readily in the time domain.  

 

 

4. Dynamic Expansion of Plane-wave Basis for GSM 

 

In contrast to the original static version of the GSM and closely related to it static Born-Huang 

expansion (see Appendix A and Appendix B in ref. [1]), the single plane-wave eigenfunction (r, t) of the 

pure state (microstate) of the longitudinal Debye’s acoustic phonon with ‘classical’ linear dispersion q = 
c lq, might be expanded readily both in time and spatial domains (i.e., represented within framework of 

Schrödinger’s picture of quantum mechanics with time-dependent eigenstates), and linked to its 

characteristic frequency q using analytical properties of the exponential (direct and inverse) Fourier 

transform(s) and well-known identities for Dirac’s -function [6]: 

 

                )11(,'''''exp'exp, rrttrrttrrqittitr q


 

 

where the quasi-wave-vector q of the plane wave (pure state of acoustic phonon) defines spatial orientation 

of the plane-wave-function and its evolution in the space domain; see also Eq.(6) in the previous section. 
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Thus, in contrast to the purely static wavefunctions of the GSM and canonical Born-Huang expansion [1], 

the plane-wave-function expressed by Eq.(11) apparently becomes time-dependent (dynamic) due to its 

first term in the right-hand side(s), but retains spatial propagation direction of the plane wave due to the 

second one. Furthermore, it is easy to show that the given plane wave (eigenfunction) of the confined 
longitudinal Debye’s acoustic phonon apparently yields equal numbers of the poles (states) in the spatial 

and time domains. This immediately implies that the crucially important (for generic solid state physics) 

concept of the phononic DOS implemented essentially in the original (static) versions of the GSM [1] 

might be retained even for the case of dynamic (time-dependent) expansion of the plane-wave basis of 

the GSM, though actual number of the ground phononic states corresponding to the given frequency q = 

c lq has to be just multiplied by the factor of 2 as compared to its original static version. Furthermore, as it 

was discussed in the previous section (see also Eq.(6) therein and Eq.(11) above), the dynamic (time-

dependent) expansion of the plane-wave basis expressed by the latter equation allows one to establish a 

direct link among spectral characteristics of the GSM and those of the conventional equilibrium GF   

Ǧ(r1, t1, r2, t2) with such basis (pure states), even though – in apparent distinction from the GSM – the 

Ǧ(r1, t1, r2, t2) function is rather defined based on parameters of second-quantization operators acting on 

the time-dependent wave-functions (of the phononic ensemble), than based on actual dynamic 

characteristics of those wavefunctions (pure states of the ensemble) [2 – 4]). On the other hand, 

interrelations among key features of the GSM (even with the dynamic plane-wave basis) and those of the 

equilibrium Matsubara GF even with the same basis functions (pure states) are far less straightforward.  

Indeed, based on the fundamental idea pioneered by T. Matsubara in ref. [2], the inverse temperature 

of the (bosonic or fermionic) ensemble has to be treated as a complex time, and the first (exponential, 

Gibbs-Boltzmann) and the rest (i.e., evaluated based on the DOS concept) terms of the ‘dynamic’ version 

of the GSM (see also Eq.(5) herein) should not be any more considered as truly independent ones, but 

become related intimately and affected by the system evolution on its complex time plane. It is 

noteworthy, that such approach to description of excitations of the bosonic or fermionic ensembles at a 

finite temperature is the genuine essence of the whole Matsubara statistics and the (equilibrium) Matsubara 

GF [2 – 4]. One of the most straightforward consequences of implementation of this ‘ideology’ to a 

quantum ensemble with plane-wave basis is that the spectral representation (direct Fourier transform) of 

the basis time-dependent plane-wave-function (e.g., pure state of acoustic phonon) now becomes a 

function of two frequencies: the real plane-wave circular frequency q (which characterize spatial  

oscillations of the plane waves propagating in a direction defined by the quasi-wave vector q) and the 

imaginary Matsubara frequencies n (which are rather related to lifetime of those plane waves between two 

consecutive scattering events and/or their spatial decay) [6]:  

   

  )12(,
211

,
22

qn

q

qnqn

qn
ii 













  

 

with q = c lq. The latter equation is valid for bosonic excitations with plane-wave basis [4]. The 

denominator of very last term in right-hand side of Eq.(12) is also known as spectral representation of 

‘Matsubara thermal propagator’ [6]. Indeed, its poles (on the complex frequency plane) are apparently 

defined by the characteristic frequencies, q and n, of the dynamic plane-wave function. Similarly, 

spectral characteristics of both static and dynamic versions of the GSM are eventually defined by the poles 

corresponding to the real frequencies of (either static or dynamic) plane-wave basis functions (micro-

states), and imaginary (Matsubara) frequencies of the exponential (Gibbs-Boltzmann) term in Eq.(5). This 

similarity establishes an unambiguous link among spectral characteristics of the GSM and those of 

equilibrium GF formalism(s).    

As it is discussed briefly in the previous section (see also Fig.1(a), (b) therein), in general, a whole 

(ultimately – infinite) set of Matsubara frequencies has to be taken into account at analysis of evolution of 

an ensemble on its imaginary time axis. However, summation even over an infinite set of the ‘Matsubara 

thermal propagators’ (with the conventional Matsubara frequencies n, evaluated based on the periodicity 

of Fourier expansion coefficients) often yields a finite (convergent) expression [6]: 

  

     )13(,21
2

1

2
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2

111
22 qeffqBE
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where the ‘conventional’ Matsubara frequencies n are numerated here by their integer (summation) index 

n, while coth(q/2) denotes hyperbolic cotangent (of its argument), and nBE(q)  =  [exp(/kBT) – 1]
-1

 

stands for the conventional Bose-Einstein occupation factor of the phononic state corresponding to the 

frequency q = c lq [6]. This implies, that the right-hand side of Eq.(13) might be treated as an ‘effective’ 

occupation factor neff(q) of a ground Debye’s phononic state (with the plane-wave basis) of the (real and 

positive) frequency of q. Since (n = 0) = 0 for a bosonic ensemble [2 – 4] (see also Fig.1(b) in the previous 

section), the sum(s) in the right-hand side of Eq.(13) might diverge at q 0 (i.e., in this limit, behaves 

similar to the spectral dependence nBE(q) of the ‘standard’ Bose-Einstein occupation factor). However, 

even in polycrystalline and spatially non-homogeneous amorphous semiconductors and insulators with 

micrometer-sized crystallites (non-homogeneities), the q is always expected to be non-zeros due to effect 

of phonon confinement imposed by the limited spatial extent of those non-homogeneities. Therefore, the 

divergence in both neff(q) and nBE(q) dependencies become avoidable even for those materials – not 

only for nano-structured semiconductors and insulators, where the phonon confinement effects are expec-

ted to be manifested in much more profound way (see, for instance, Fig.4D in Appendix D of ref. [1]).  

As it is shown in Fig. 3, spectral behavior of the room-temperature effective occupation neff(q) 

factor differs considerably from that of the standard Bose-Einstein one, nBE(q), for ground states of 

ensemble of acoustic phonons of the diamond. 
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FIG. 3 (color online). The room-temperature spectral dependencies of the ‘standard’ Bose-Einstein occupation 

factor nBE(q) and its ‘effective’ counterpart neff(q), defined by Eq.(13). Both dependencies are evaluated for 

ground single-particle states of Debye acoustic phonons of the diamond with its Debye energy of kBD = 193.0 meV 

(D = 2240 K), indicated in the figure with the vertical dashed line. See further details in the main text. 

 

In particular, it decays faster than the nBE(q) one with the q enlargement at relatively low phonon 

energies (q < 20 meV), but much slower than that at relatively high (q > 50 meV) those energies,   

Fig. 3. It is noteworthy, that in case of a real semiconductor or insulator (e.g., diamond), both dependencies 

remain meaningful only within the phonon energy range, limited by the Debye energy, kBD: conventional 

(ground) single-phonon states with higher energies simply do not exist in an equilibrium state of the 

ensemble of acoustic phonons! Thus, both dependencies plotted in Fig. 3 become truncated at the kBD 

energy. Furthermore, average occupation factors of the excited and coherent states of the ensemble of 

interacting acoustic phonons might deviate from that derived routinely based on the standard Bose-

Einstein statistics: see, for instance, Eq.(13) above.  

The basic equation(s) of (static and dynamic versions) of the GSM incorporate such interacting excited 

(with generally non-equivalent q quantities for all its basic components in an appropriate Hilbert space) 

and coherent (with the same q parameter for all its components) states naturally. Furthermore, within the 

GSM framework, spectral characteristics of such excited and coherent states of longitudinal acoustic 

phonons are always composed based on eigenenergies of single Debye acoustic phonons, which allows one 
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to retain traditional concept of the phononic DOS for those individual phonons, and insure that their basic 

quasi-wave vectors q are well-defined and always located within the first phononic Brillouin Zone (BZ). 

On the other hand, aforementioned excited and coherent states are always composed as mixed quantum 

states of the ensemble of acoustic phonons within the GSM framework, which eventually implies that 

quasi-wave vector of such mixed states becomes ‘ill-defined’ quantity – since their ‘aggregate’ quasi-wave 

vector is expected to exceed significantly the edge of the first phononic BZ. Moreover, typical spatial 

extent of those mixed states is well comparable with an inter-atomic distance of a semiconductor 

(insulator): see Figs. 3D, 6D in Appendix D of ref. [1]. In other words, this spatial extent is (many) orders 

of the magnitude shorter than typical sizes of crystallites (non-homogeneities) in polycrystalline and spa-

tially non-homogeneous amorphous semiconductors and insulators. Thus, such mixed states are essential-

ly localized, and could hardly be characterized by any meaningful wave-vector, even though longitudinal 

acoustic plane waves (pure states of Debye phonons) might propagate within the whole volume of those 

non-homogeneities without disruption [1], and are described by their well-defined vectors q, see Eq.(11).  

In contrast, Klauder’s bosonic coherent states ~(NC!)
-1/2 

exp(–iqC r) [6, 7] are apparently well-defined 

for photonic excitations in vacuum, though they are usually characterized by a quasi-wave vector qC, 

located well beyond of the first BZ of the (longitudinal acoustic) phonons. Moreover, based on the ‘classic’ 

dispersion relation  = c lqC, the phonon energy  would routinely exceed their upper limit – the Debye’s 

energy (kBD) – defined for the ground states of acoustic phonons; see comments to Fig.3 above. All these 

apparently imply that the qC quantity becomes ‘ill-defined’ as well even for Klauder’s coherent phononic 

states, and so-called Umklapp processes have to be taken into account at a quantitative description of 

electron interactions with those phononic states and phonon-phonon interactions. Thus, similar to the 

excited and coherent states of the GSM, Klauder’s phononic coherent states could hardly be associated as 

well with propagating thermal plane waves in solids, and should not be identified neither as pure states 

(microstates) of the phononic ensemble.  

As a result, an effective occupation factor of interacting mixed (coherent and excited) states of 

ensemble of acoustic phonons within framework of modified dynamic version of the GSM is generally 

expected to deviate significantly from the Gibbs-Boltzmann occupation factor of non-interacting phonon 

states in its original version, depicted in ref. [1] (i.e., at the following ‘model parameters’: r1 = 2, r2 = 1).       

It is noteworthy as well, that the set of (dimensionless in such a case) Matsubara frequencies is limited 

(truncated) for the GSM – since it is defined based on the periodicity condition of the exponential term in 

Eq.(5); see also brief discussion in the previous section, and Eq.(7) therein. Consequently, within the GSM 

framework, spectral density of ensemble of acoustic phonons [6] (which generalizes traditional concept of 

conventional one-dimensional phononic DOS spectrum – since the latter one is not applicable directly 

within framework of the second quantization formalism) with the dynamic plane-wave basis might be 

linked straightforwardly to the dynamic DOS function, multiplied by the M(ET, T) term, while a dynamic 

counterpart of Eq.(5) now reads: 

 

𝑊𝐷(𝐸𝑇) ≅   𝑒𝑥𝑝 (−
𝐸𝑇

𝑘𝐵𝑇
) ∫

1

Γ(𝑀 + 1)(𝑍𝑀)𝑟2

𝑀𝑀

𝑀0

[
4ℒ𝑥 ℒ𝑦  Ϝ(ℒ𝑥 ,ℒ𝑦 , ℒ𝑧) Θ𝑀(𝐸𝑇 ,𝑇) 𝐸𝑇

2

𝑀𝑟1(ℎ𝑐𝑙)2
]

 𝑀

𝑑𝑀 .     (14) 

 

The ‘partition function’ ZM for the Eq.(5), expressed by Eq.(9) above, now has to be amended as well: 

 

𝑍𝑀 =  (𝑘𝐵𝑇)[2(𝑀+1)] Γ [(2𝑀 + 1), (
𝐸𝑚𝑖𝑛

𝑘𝐵𝑇
), (𝑀

𝑘𝐵𝜃𝐷

𝑘𝐵𝑇
)] [

4ℒ𝑥 ℒ𝑦 Ϝ(ℒ𝑥, ℒ𝑦 , ℒ𝑧) Θ𝑀(𝐸𝑇 ,𝑇)

𝑀𝑟1(ℎ𝑐𝑙)2
]

 𝑀

.   (15) 

 

Again, in the T   limit, Eqs.(14, 15) are expected to coincide with their ‘conservative’ counterparts 

expressed for this case by the Eqs.(26a, 15D) in ref. [1] (respectively).  In particular, Eq.(15) would yield 

the conventional ‘partition function’ at   0 (T  ) [7], see also Fig. 2(b) in the previous section. 

Thus, the essentially dynamic formalism, depicted above in this section, might be implemented readily 

for quantitative evaluation of statistical properties of ensembles of acoustic phonons in polycrystalline and 

even spatially non-homogeneous amorphous semiconductors and related to them electronic and optical 

characteristics of those materials at a finite temperature, though original static plane-wave basis might be 

probably retained for amorphous semiconductors at zero temperature.  This also expands further scope of 

the GSM, establishes its intimate relationship with the equilibrium conventional and Matsubara GFs, and 

inspires its direct implementation to the nano-structured semiconductors and insulators.  



Valeri Ligatchev 

 

11 

 

5. Conclusions  

 

In summary, the GSM presented in ref. [1] might be treated as a kind of ‘conservative’ (and essentially 
static) counterpart to the well-known quantum Matsubara statistics (and closely related to it equilibrium 

conventional and Matsubara Green Functions formalisms [2 – 4]) for the aforementioned particular cases 

of ensemble(s) of acoustic phonons confined within polycrystalline and spatially non-homogeneous 

amorphous semiconductors and insulators with micrometer- and sub-micrometer sizes of non-

homogeneities (crystallites), though the GSM apparently is not applicable directly to the ensemble of 

fermions and essentially uses the static Debye’s plane wavefunctions basis (pure quantum states), while 

other convenient sets of basis functions (e.g., time-dependent eigenfunctions of the quantum harmonic 

oscillator, QHO) might be used as well within the generic framework of GF formalism(s) [3].  

On the other hand, the static plane wave-functions basis of Debye acoustic phonons implemented 

within the GSM [1] allows one to use effectively advantages of the phononic DOS concept and Christoffel 

Matrix formalism (see Appendix C in ref. [1]), simplify considerably final equation(s) of the GSM, 

incorporate it naturally into conventional framework(s) of the solid state and statistical physics, as well as 

to take into account long-range (e.g., coherent, morphological) and anisotropic effects (if any) in 

polycrystalline and spatially non-homogeneous amorphous semiconductors and insulators [1], while 

routine implementation of others sets of the basis wave functions (e.g., QHO eigenfunctions) might not 

allow to utilize aforementioned advantages [3], and apparently would yield in (much) more time- and 

resource-demanding computations. At the same time, the basis and scope of the GSM might be expanded 

even further based on the fundamental ideas, pioneered by Takeo Matsubara in ref. [2].  

In particular, the essentially static set of the basis wavefunctions of the original version of the GSM [1] 

might be expanded readily using the time-dependent (dynamic) plane-wave basis for pure states 

(microstates) of Debye acoustic phonons. Importantly, that such dynamic expansion allows one to retain 

almost entirely principal features of the conventional (static) phononic DOS concept (essentially used in 

original versions of the GSM [1]) and vital structures of its basic equations. Furthermore, such kind of 

dynamic expansion allows one to establish physically unambiguous link among spectral characteristics of 

the (original, static, and modified, dynamic, versions of) GSM and those of equilibrium conventional and 

Matsubara Green Functions. In addition, the model parameters r1 and r2 of the original version of the 

GSM [1] might be re-defined readily as the energy- and temperature-dependent ones, following the 

‘Matsubara style’. All these validate rigorous physical background for the basic ideas and principal 

equations of (both the original, static, and modified, dynamic, versions of) the GSM, and inspire its direct 

implementation to the appropriate quantitative descriptions of statistical characteristics of phononic 

excitations with the plane-wave basis in nano-structured semiconductors and insulators as well as of their 

near-band-gap and intra-gap electronic and optical spectra. 
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