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The ‘Generalized Skettrup Model’ (GSM) [1] links features of near-band gap and 

intra-gap electronic as well as corresponding optical spectra of polycrystalline and 

spatially non-homogeneous amorphous semiconductors and insulators to probabilities of 
fluctuations in an energy of the individual quasi-particle, number of quasi-particle in a 

quantum grand canonical ensemble (QGCE) of confined acoustic phonons with plane-
wave basis, and their aggregate energy. Features of the GSM are discussed herein in 

comparison to those of quantum statistics pioneered by Japanese physicist T. Matsubara 
[2], which takes into account fluctuations in temperature of QGCE. The GSM [1] might 
be ultimately treated as a ‘conservative’ counterpart of the generic Matsubara statistics 

for the specific case of ensemble of acoustic phonons confined within micrometer- and 
sub-micrometer-sized non-homogeneities (grains) of polycrystalline and spatially non-

homogeneous amorphous semiconductors and insulators . However, scope of the GSM 
might be expanded further based on the fundamental idea, pioneered by T. Matsubara. 
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1. Introduction 
 

The Generalized Skettrup Model (GSM) depicted in the second chapter of ref. [1] (see also references 

therein) is essentially based on evaluation of probabilities of fluctuations in an energy of individual 

acoustic phonon, their aggregate energy and (generally rational) number of quasi-particles of the 

(quantum) grand canonical ensemble (QGCE) corresponding to many-particle bosonic (phononic) 

excitations in amorphous and/or crystalline solids. In particular, within the GSM framework, those 

fluctuation probabilities are customarily evaluated via an integration (averaging) over available (at the 

given aggregate energy of the ensemble) quantum states of acoustic phonons and appropriate number of 

those quasi-particles, which yield the given aggregate energy of the ensemble [1]. Furthermore, the GSM 

implies that those fluctuations in the ensemble of confined longitudinal (acoustic) phonons are linked 

intimately to energy fluctuations in an electronic sub-system of a semiconductor (insulator) and eventually 

to its corresponding optical spectra: relationship between the instantaneous aggregate energies (fluctuation 

probabilities) of electronic and phononic sub-systems might be established quantitatively either based on 

semi-empirical electron-phonon coupling parameters or via the ‘deformation potential’ formalism [1].  

Aforementioned GSM approach essentially implies that individual and aggregate energies as well as 

number of quasi-particles in the phononic ensemble have to be treated as real (generally rational) 

variables, while temperature of the ensemble is usually treated as a fixed (constant) quantity for the given 

environmental conditions (i.e., as a parameter of an external ‘thermal reservoir’).  

In contrast, quantum statistical mechanics pioneered (in particular) by famous Japanese physicist 
Takeo Matsubara for a quantum many-body system [2] treats the temperature of the QGCE (comprises 

either electrons (fermions) or phonons (bosons)) as a variable complex parameter, implying that the 

temperature of the ensemble fluctuates as well – in addition to fluctuations in total number of its quasi-

particles as well as in their individual and aggregate energies for the given QGCE. Such treatment becomes 

essential for interacting systems: condensed matter, dense plasmas, neutron stars etc., where local 

temperature fluctuations are expected to be significant or dominant. Herein consequences of such effects 

are evaluated only for solid polycrystalline and amorphous semiconductors and insulators, including nano-

structured ones, and discussed in comparison with features of the GSM [1].  

 

2. Key Features of Matsubara statistics 
 

The averaged (statistical) characteristics of many-body state(s) of a condensed (either fermionic or 

bosonic) ensemble at the given (absolute) temperature T might be evaluated based on the quantum grand 

canonical density operator, D [3]: 
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where Tr[exp(–H0/kBT)] denotes trace (i.e., sum of its diagonal elements) of the matrix exponential of the 

weighted ‘thermal’ Hamiltonian matrix (H0/kBT), and kB is the Boltzmann constant. This D operator is 

Hermitian, positive definite and normalized: Tr{D}  1 [3].  

In an equilibrium state, the Hamiltonian H0 of the system is expected to be constant (time-

independent), and evolution (fluctuations) of the system characteristics have to be attributed entirely to the 

fluctuation(s) in its local temperature. Nevertheless, Eq.(1) remains valid even for Heisenberg 

representation of the quantum mechanics, which presumes that wavefunctions (set of basic states) of the 

system are time-independent, while the operators (Hamiltonian) do change in time. 

In order to implement aforementioned many-body formalism to bosonic or fermionic ensembles, it is 

worth to note that the following generic identity holds [2, 3]: 
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where i = –1,  = 1/(kBT), and  = /i. Thus, it becomes possible to treat the exp(–H0/kBT) term as an 

‘evolution’ operator on the imaginary time scale , as long as integration in Eq.(2) is fulfilled along the 

straight line, parallel to imaginary time on the complex time plane [2 – 4]. Indeed, in a very generic case, 

the unitary ‘evolution’ operator U(t0, t) satisfies a time-dependent Schrödinger’s equation with the 

solution, which might be expressed in the form very similar to that of Eq.(2) [3]. Therefore, Eq.(2) might 

be eventually re-formulated in a more compact (and yet generic) form [3]: 
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Again, due to Eq.(3), when the Ĥ0 Hamiltonian corresponds to an equilibrium state of a system (i.e. at 

Ĥ0 =  H0), the U(t0 – i, t0) operator might (formally) be identified as an evolution operator in imaginary 

time  = /i, which propagates the system from its state at the initial time t0 parallel to the imaginary time 

axis t0 – i [2, 3]. Therefore, the (averaged) effect of fluctuations in the local temperature T of the (bosonic 

or fermionic) ensemble on its statistical characteristics might be taken into account via appropriate 

integration over the ‘imaginary time’  of the ensemble; such integration also yields a sort of ‘interaction 

representation’ for the statistical ensemble [2 – 4]. It is noteworthy, that evolution of the bosonic ensemble 

is periodic on the imaginary time scale, while evolution of the fermionic ensemble is ‘antiperiodic’ [2 – 4]. 

Nevertheless, fluctuations (and ‘interactions’) in either phononic or fermionic ensemble might be taken 

into account via appropriate integration over the imaginary time scale of the given ensemble. The original 

Matsubara’s idea is tremendously fruitful and was further developed and implemented for decades in 

quantum statistic of condensed matters: in particular, in so-called (equilibrium and non-equilibrium) 

‘Green’s Function’ (GF) formalisms of those systems [3, 4]. In addition, it was advanced further by          

T. Matsubara in order to set up diagrammatic perturbation theory for grand partition function within 

framework of the field-theoretical basis [2 – 4].  However, ‘orthodox’ GF and diagrammatic formalisms do 

not apply to ‘…Bose systems below points of the Bose condensation…’ and ‘…Fermi systems in which 

superconductivity exists…’ [4]. 

 

3. ‘Matsubara correction’ for GSM equations 

   

The basic feature of the briefly depicted in the previous section Matsubara’s generalization of the 

fluctuation concept might be incorporated naturally into the GSM framework. Indeed, basic equation of 

(isotropic version) of the GSM comprises the Gibbs’s (exponential) term, number of available states of the 

QGCE of (confined) acoustic phonons as well as its ‘partition function’, ZM [1]: 
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where WD(ET) denotes probability density of finding of the ensemble of confined (within a crystallite, 

column, cone, etc.) acoustic phonons in a state with its aggregate energy of ET, (M) is Euler’s Gamma-
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function [5], h is the Planck’s constant, c s is longitudinal sound velocity, Lx, Ly, Lz are length of the 

(orthogonal) ribs of parallelepiped phonon confinement volume, while dimensionless function F(Lx, Ly, Lz) 

depends solely on ratios of the Lx, Ly and Lz parameters; see also Eq.(26a) in ref. [1]. Integration in Eq.(4) 

is expected to be fulfilled over the appropriate range of (generally rational) number M of acoustic phonons 

in the ensemble (this integration range is restricted by the MM and M0 limits), while the (rational) model 

parameters r1 and r2 are typically varying in the following ranges: 0.5  r1  2; 0.5  r2  1 [1].  

Formally, the scalar ET quantity in the exponential term of Eq.(4) might be treated as particular case of 

a (single-valued) equilibrium Hamiltonian, which causes the system evolution only on the imaginary time 

scale . Therefore, for this specific Hamiltonian, and based on Eq.(2), we have to evaluate the following 

‘evolution’ exponential ‘Matsubara’ integral: 
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where  denotes imaginary time variable, while the dimensionless M(ET, T) function (integral) depends 

both on the T and ET quantities.  Thus, Eq.(4) might be modified as follows: 
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As it was mentioned above, for bosonic (phononic) ensembles, boundary conditions have to be periodic on 

the imaginary time scale   [2 – 4], see also Fig.1(a). Noteworthy, that left-hand half of the complex plane in 

this figure corresponds to negative Re[exp(iET)] quantities, which directly implies negative probability 

[WD(ET) function(s)] defined by the Eqs.(4, 6).   

In order to overcome this problem, total contribution from ‘Matsubara correction(s)’ (expressed by the 

M(ET, T) term in Eq.(6)), might be evaluated as well (following refs. [2, 3] and Eq.(5) herein) via 

summation over Matsubara frequencies n – poles of the integrand in Eq.(5), Fig.1(b). Those frequencies 

are routinely defined for bosonic ensemble based on periodicity condition of the exponential term, Fig. 

1(a). In particular: exp(in)  1 [5];  n = 2  n or n = 2  kBTn (n herein is an integer index) [2, 3]. 

At T = 1 K and n = 1, this periodicity condition yields: 1 = 2  kBT  5.414*10
-4

 eV. The higher 

Matsubara frequencies are just proportional (topple) to the 1 quantity, Fig. 1(b). 
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FIG.1 (a), (b) (color online). Schematic illustration of (a) periodic behavior of the inverse exponential term in 

Eq.(4) on the complex plane, with two its zeros located on the imaginary axis, and (b) the Matsubara integration 
contour (solid lines and dashed curves). The black dots in figure (b) are located on the imaginary (time) axis indicate 

positions of the bosonic Matsubara frequencies. See also figure (a) and main text for more details.  
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  Conventionally, summation over mentioned above Matsubara frequencies might be replaced with 

integration over contour defined in the complex time plane, and stretched over the imaginary time range 

from –i to i [2, 3] (see also Fig.1(b)). It is noteworthy, that  = 1/kBT  11605 eV
-1

 at T = 1 K, while its 

dimensionless counterpart  = ET/kBT  11605 at ET = 1 eV. This implies that the integration contour in 

Fig. 1(b) would contain M(ET, T) = 2 = ET/( kBT)  3.694*10
3
 of the equally separated (see Fig. 1(b)) 

poles, and this number actually defines the dimensionless ‘Matsubara correction’ factor M(ET, T) to the 

exponential term in Eq.(6) at T = 1 K and ET = 1 eV. Furthermore, the correction factor M(ET, T) is 

apparently strongly affected both by the temperature T of the ‘reservoir’ and ET quantity: it is directly 

proportional to ET at the fixed T but inversely proportional to T at the fixed ET. Therefore, the ‘Matsubara 

correction’ factor becomes just of M(ET, T)  3.69 at T = 1000 K and ET = 1 eV – i.e., three orders of the 

magnitude smaller than the ‘low-temperature’ one at the same ET quantity. Temperature and spectral 

behavior(s) of the dimensionless M(ET, T) function are also illustrated in Figs.2.(a), (b), respectively.          
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FIG. 2(a), (b) (color online). Effects of (a) the absolute temperature T and (b) aggregate energy ET of the phonon 

ensemble on the M(ET, T) function. Mind double-logarithmic scale(s) for both panels of the figure. 

 

Based on results, discussed above in the main text, and illustrated in Fig. 2(b), the dimensionless 

‘Matsubara correction’ term M(ET, T) apparently might be represented as a linear function of ET at a 

given temperature T: 

 

    )7(,,, min

0

TMTM ETETE   

 

where Emin is a low limit of aggregate energy of the ensemble of acoustic phonons, imposed by presence of 

morphology (non-homogeneities) in the studied (isotropic but spatially non-homogeneous) polycrystalline 

or amorphous semiconductor (insulator), and defined by the Eq.(18B) in ref. [1], while 
0

M(Emin, T) = 

[M(Emin, T) / Emin] is a dimensional (of eV
 -1

) and temperature-dependent factor; Eq.(7) valids at ET  Emin. 

Therefore, based on Eq.(15D) in ref. [1], the ‘partition function’, ZM, for the ‘isotropic version’ of the 

Eq.(6) reads: 
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where (m, z0, z1) is the ‘generalized incomplete Gamma function’ [5] with m = (2M + 2), z0 =             

(Emin / kBT), z1 = [M * kBD / (kBT)] = MD / T. It is noteworthy that the dimension of ZM functions defined 
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by Eq.(8) is still expressed in eVs; i.e., it remains unchanged as compared to its counterpart expressed by 

Eq.(15D) in ref. [1]: enlargement in the (rational) power of the (kBT) term is ‘compensated’ by appearance 

of the dimensional 
0

M(Emin, T) one. Thus, though the dimensionless ‘Matsubara correction’ function 

M(ET, T) well exceeds 10
3
 at T  1 K and ET > 1 eV (Fig. 2(b)), its ultimate effect on the WD(ET) 

distribution defined by the Eq.(6) would be eventually reduced due to ‘normalizing’ effect of the partition 

function ZM (statistical sum). This ‘Matsubara correction’ might be also embedded naturally into an 

anisotropic version of the GSM [1]. 

Thus, the depicted above ‘Matsubara correction’ is expected to work well for crystalline and 

(probably) even liquid semiconductors and insulators at a finite temperature. Furthermore, the ‘Matsubara 

correction’ is expected to remain valid even at zero temperature for many amorphous solid semiconductors 

and insulators, where spatial atomic positions are commonly expected to be fixed – though generally 

affected by the ‘freeze-in’ temperature established at the material formation (see Eq.(37) on p.81 of ref. 

[1]). In other words, those atomic positions are still subjected to evolution in the ‘imaginary time’, though 

‘traditional’ meaning of the ‘imaginary time’ has to be amended, and rather linked to the (inverse) ‘freeze-

in’ temperature – than to actual absolute temperature of the material. It is noteworthy, that different 

versions of the GSM enable such kind of ‘Matsubara correction(s)’ readily, while many others well-known 

approaches to simulation of intra-gap electronic density-of-states (DOS) in disordered semiconductors 

(e.g., the semi-classical [6] and Halperin-Lax [7] ones) do not comprise the exponential ‘Gibbs’ term and 

might not be ‘corrected’ in this way. Furthermore, in spite of certain formal similarity among the path-

integral-based formalism [8] and Matsubara one, the physical backgrounds of those formalism and even 

their mathematical expressions are essentially different. Indeed, the real-time action (i.e. a time-dependent 

integral over a potential) in the canonical path integral formalism has to be transformed into imaginary-

time integration within framework of Matsubara’s approach via (formal) implementation of so-called 

‘Wick rotation’, see ref. [9], p.12. In general, both path-integral and Matsubara formalisms are equally 

applicable to bosonic and fermionic ensembles, though the path-integral usually oscillates far more 

strongly (with alterations in its sign!) as its argument enlarges, mainly due to relatively low  quantity (the 

dimensional kBT/ ratio is ~1.309 x 10
11

 at T = 1 K in appropriate SI units). Therefore, the path-integral 

technique was usually implemented (e.g., refs. [8, 10, 11]) to relatively small (with the typical spatial 

extent of just very few Angstroms) parts of electronic sub-system, interacting with their atomic (phononic) 

counterparts, while direct contributions from the quantized atomic vibrations (phonons) are usually 

‘integrated out’ (eliminated) within the path-integral cum Lagrangian formalisms [8, 10, 11].  

The overall contribution even from non-normalized ‘Matsubara correction’ to the basic equations of 

the GSM is expected to be relatively small for polycrystalline and spatially non-homogeneous amorphous 

semiconductors and insulators with the typical sizes of non-homogeneities (grains) of the order of ~ 1 m 

– or even sub-micrometer – (especially at elevated – e.g. room – temperature T and relatively low           

(ET < 1 eV) aggregate energy of the phonon ensemble) as compared to effects caused by variation in the 

GSM model parameters r1 and r2 in Eqs.(4, 6). Indeed, contribution from the main integrand term in 

Eqs.(4, 6) (located within square bracket in those equations) is ~2.400x10
9
 at ET = 1 eV, M = 1, r2 = 2 and   

r2 = 1 for the <100>–oriented polycrystalline diamond with Lx = Ly = Lz = 1 m, and exceeds even low-

temperature contribution from M(ET, T) term by a factor of ~6.50x10
5
. Similar differences are expected 

as well for others polycrystalline and spatially non-homogeneous amorphous semiconductors and 

insulators, when dimensions Lx, Ly and Lz of their non-homogeneities are of Lx  Ly  Lz  1 m. The 

statement on relatively insignificant room-temperature ‘Matsubara corrections’ for ensemble of acoustic 

phonons confined within grains, columns, cones (etc.) of those polycrystalline and spatially non-

homogeneous amorphous semiconductors and insulators at elevated temperatures might be verified 

independently: integration over the imaginary time is expected to yield just a partition function (for the 

aforementioned bosonic ensemble) at   0 (i.e., at T  ) limit(s), see details on p.13 of the ref. [9]. 
On the other hand, both aforementioned contribution might be well comparable for nano-structured 

semiconductors and insulators (e.g., when Lx  Ly  Lz  10 nm) at low temperature and relatively high 

aggregate energy: contribution from the integrand term in Eqs.(4, 6, 8) is expected to be reduced by ~6 

orders of the magnitude (as compared to the discussed above case of the <100>-oriented polycrystalline 

diamond), while contribution from the ‘Matsubara correction’ function M(ET, T) remains unaffected by 

alterations in the sizes of the non-homogeneities. In other words, the ‘Matsubara correction’ becomes well 

comparable with the mentioned above integrand term and becomes really important for nano-structured 

semiconductors and insulators only: the M(ET, T) term might dominate their behavior at low absolute 

temperature T and relatively high aggregate energy of the ensemble ET. 
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4. Conclusions 

 
In summary, the GSM presented in ref. [1] might be treated as a kind of ‘conservative’ counterpart to 

the well-known quantum Matsubara statistics (and closely related to it equilibrium (Matsubara) and non-

equilibrium GF formalisms [2 – 4]) for the aforementioned particular cases of ensemble(s) of acoustic 

phonons confined within polycrystalline and spatially non-homogeneous amorphous semiconductors and 

insulators with micrometer- and sub-micrometer sizes of non-homogeneities (grains), though the GSM 

apparently is not applicable directly to the ensemble of the fermions and essentially uses the Debye’s plane 

wavefunctions basis, while other convenient sets of basis functions (e.g., eigenfunctions of the quantum 

harmonic oscillator, QHO) might be used as well in the GF formalism(s) [2, 3]. On the other hand, the 

plane wave-functions basis of acoustic phonons implemented within the GSM framework [1] allows one to 

use effectively advantages of the phononic DOS concept, simplify considerably final equation(s) of the 

GSM, incorporate it naturally into conventional framework(s) of the solid state and statistical physics, as 

well as takes into account long-range (e.g., coherent, morphological) and anisotropic effects (if any) in 

polycrystalline and spatially non-homogeneous amorphous semiconductors and insulators  [1], while 

routine implementation of others sets of the basic functions (e.g., QHO eigenfunctions) might not allow to 

utilize aforementioned advantages [3], and apparently would yield in (much) more time- and resource-

demanding calculations.    

It is essentially, that following the fundamental idea pioneered by T. Matsubara [2], basic equations (of 

different versions) of the GSM might be ‘corrected’ in order to take into account effects of fluctuations in 

the absolute and/or ‘freeze-in’ temperature(s) of the ensemble of the confined acoustic phonons (via 

implementation of the dimensionless M(ET, T) function, as it discussed in the previous section), though 

such corrections are expected to be almost negligible for polycrystalline and spatially non-homogeneous 

amorphous semiconductors and insulators with micrometer- and sub-micrometer sizes of non-

homogeneities (grains), but might be significant or even dominant for their nano-structured counterparts. 

In addition, the model parameters r1 and r2 of the GSM, are typically invariable (fixed) for the given set of 

simulations even though the T and ET quantities may vary in this set [1], while the introduced above 

M(ET, T) function is clearly temperature- and energy- dependent, see Figs.2.(a), (b). This distinction 

inspires further development of the GSM, and its direct implementation to the nano-structured 

semiconductors and insulators. For such a case, the model parameters r1 and r2 of the GSM might be re-

defined readily as the energy- and temperature-dependent ones, following the ‘Matsubara style’.  
 
Electronic address: valeri_ligatchev@yahoo.com.sg 
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