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Abstract

We show how to calculate the projection of a vector, from an arbitrary

direction, upon a given plane whose orientation is characterized by its nor-

mal vector, and by a bivector to which the plane is parallel. The resulting

solutions are tested by means of an interactive GeoGebra construction.

Vector s is the “shadow” of vector g cast upon the plane by “rays of the Sun”

that have direction r̂. The unit vector in the direction of the plane’s normal is

ê.

“Calculate the vector s, which is the “shadow” of vector g cast upon

the plane by “rays of the Sun” that have direction r̂. The unit vector

in the direction of the plane’s normal is ê.”

1

https://mx.linkedin.com/in/james-smith-1b195047


Contents

1 Introduction 2

2 Formulating the Problem in Geometric-Algebra (GA) Terms,

and Devising a Solution Strategy 3

2.1 Initial Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Recalling What We’ve Learned from Solving Similar Problems

Via GA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Further Observations, and Identifying a Strategy . . . . . . . . . 4

3 Solutions for s 4

3.1 Solution via the Inner Product with ê . . . . . . . . . . . . . . . 5
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1 Introduction

In this document, we will solve—numerically as well as symbolically—a problem

of a type that can take the following concrete form, with reference to Fig.1:

“A pole (not necessarily vertical) casts a shadow onto the perfectly

flat plaza into which it is set. With respect to a right-handed

orthonormal reference frame with basis vectors â, b̂, and ĉ, the

direction of the Sun’s rays is r̂ = âra + b̂rb + ĉrc. The vector g from

the pole’s base to the pole’s tip, is g = âga + b̂gb + ĉgc, and the

upward-pointing unit vector normal to the plane is ê = âea+b̂eb+ĉec.

Calculate s, the vector from the base of the pole to the tip of the

pole’s shadow.”



Figure 1: Vector s is the “shadow” of vector g cast upon the plane by “rays of

the Sun” that have direction r̂. The unit vector in the direction of the plane’s

normal is ê.

2 Formulating the Problem in Geometric-Algebra

(GA) Terms, and Devising a Solution Strategy

2.1 Initial Observations

Let’s begin by making a few observations that might be useful:

1. By saying “the direction of the Sun’s rays is r̂ = âra + b̂rb + ĉrc”, we

assumed that all of the Sun’s rays are parallel. We’ll use that assumption

throughout this document.

2. The tip of the shadow is at the point where a ray that just grazes the tip

of the pole intersects the surface of the plaza.

3. Therefore, the vector from the tip of the pole to the tip of the shadow is

some scalar multiple of r̂. We’ll call that scalar multiple λr̂, and add it to

our earlier diagram to produce Fig. 2.

4. From Fig. 2, we can see that s = g + λr̂.

2.2 Recalling What We’ve Learned from Solving Similar

Problems Via GA

Let’s also refresh our memory about techniques that we may have used to solve

other problems via GA:

1. Problems involving projections onto a plane are usually solved by using the

appropriately-oriented bivector that is parallel to the plane, rather than

3



Figure 2: The same situation as in Fig. 1, but noting that the vector from the

tip of g to the tip of s is a scalar multiple (“λ”) of r̂.

by using the vector that is perpendicular to it. The Appendix (Section 5)

shows how to find the required bivector, given said vector.

2. In a GA equation with two unknowns, such as the equation s = g + λr̂

at the end of the preceding list, a common strategy is to eliminate one of

the unknowns by using either the “dot” product or the ‘wedge” product

(“∧”) with a known quantity. Examples of this strategy are given in Ref.

[2], and in Ref. [3], pp. 39-47.

2.3 Further Observations, and Identifying a Strategy

Guided by Sections 2.1 and 2.2, we might realize that the vector s is perpendicular

to ê. Thus, one method of solving the equation s = g + λr̂ is to eliminate s by

“dotting” both sides with ê, thereby obtaining an equation that from which we

can obtain an expression for λ in terms of g, ê, and r̂. That expression can then

be substituted for λ in the original eqation (s = g + λr̂) to find s.

The same observations that led us to the first strategy also lead us to see

that s is parallel to the plane of the plaza. Therefore, s’s product “∧” with the

bivector that’s parallel to that plane is zero. That is, if we denote said bivector

by the symbol “T”, then s ∧T = 0. Using this observation, we also arrive at an

equation for λ—and thus for s—but this time in terms of g, r̂, and T.

We’ll use both approaches in this document.

3 Solutions for s

We’ll begin with the solution that uses the normal vector ê.
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3.1 Solution via the Inner Product with ê

Taking up the first of the solution strategies that we identified in Section 2.3,

we write

s = g + λr̂;

s · ê︸︷︷︸
=0

= (g + λr̂) · ê;

∴ λ = −g · ê
r̂ · ê

. (3.1)
Question: Does our expression

for λ make sense?

Let’s pause for a moment to examine that result before proceeding. Does it

make sense? The geometric interpretation of that result is that |λ| is the ratio

of the lengths of the projections of g and r̂ upon ê. So far, so good—a study of

Fig. 2 confirms that |λ| must indeed be equal to that ratio. Examining Fig. 2

further, we see (1) that no shadow will be produced unless λ is positive, and (2)

that no shadow will be produced unless the projections of g and r̂ are oppositely

directed. Eq. (3.1) is consistent with those observations: λ is positive only when

g · ê and r̂ · ê are opposite in sign, and that difference in sign occurs only when

ê and r̂ are oppositely directed.

Now that we’ve assured ourselves that our expression for λ makes sense, we

continue by making the substitutions r̂ = âra + b̂rb + ĉrc, g = âga + b̂gb + ĉgc,

and ê = âea + b̂eb + ĉec:

λ = −

(
âga + b̂gb + ĉgc

)
·
(
âea + b̂eb + ĉec

)
(
âra + b̂rb + ĉrc

)
·
(
âea + b̂eb + ĉec

)
= −gaea + gbeb + gcec

raea + rbeb + rcec
. (3.2)

Now, we substitute that expression for λ in our original equation, then simplify:

s = g + λr̂

= âga + b̂gb + ĉgc −
[
gaea + gbeb + gcec
raea + rbeb + rcec

](
âra + b̂rb + ĉrc

)
.

By expanding the product on the right-hand side, then rearranging, the result is

s = â

[
ga (rbeb + rcec)− ra (gbeb + gcec)

raea + rbeb + rcec

]
+ b̂

[
gb (raea + rcec)− rb (gaea + gcec)

raea + rbeb + rcec

]
+ ĉ

[
gc (raea + rbeb)− rc (gaea + gbeb)

raea + rbeb + rcec

]
.

(3.3)

3.2 Solution via the Outer Product with T

In this section, we’ll write T as T = âb̂τab + b̂ĉτbc + âĉτac in order to arrive at a

solution in which the plane of the plaza is expressed in that way. The Appendix
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(5) shows how to find T in terms of the components of ê.

We indicated in Section 2.3 that because s is parallel to the plaza (and

therefore to T), s ∧T = 0. Using that fact, we arrive at a preliminary version

of λ as follows:

s = g + λr̂;

s ∧T︸ ︷︷ ︸
=0

= (g + λr̂) ∧T;

λr̂ ∧T = −g ∧T

∴ λ = − (g ∧T) (r̂ ∧T)
−1
. (3.4)

Now, we need to calculate g ∧ T and (r̂ ∧T)
−1

. To find the former, we

use Macdonald’s ([4], p. 111) definition of the product “∧”. See also the list of

formulas in Reference [2], pp. 2-4.

g ∧T = 〈gT〉3

= 〈
(
âga + b̂gb + ĉgc

)(
T = âb̂τab + b̂ĉτbc

)
〉3

= âb̂ĉ (τabgc + τbcga − τacgb) .

Similarly, r̂∧T = âb̂ĉ (τabrc + τbcra − τacrb). We recognize the product âb̂ĉ as

I3: the unit pseudoscalar for G3. Its multiplicative inverse (I−1
3 ) is−I3, = −âb̂ĉ.

Therefore, multiplicative inverse of r̂ ∧T is

(r̂ ∧T)
−1

=
I−1
3

|r̂ ∧T|2

= − âb̂ĉ

(τabrc + τbcra − τacrb)2
.

Using that result, and our expression for r̂ ∧T, Eq. (3.4) becomes

λ = −
[
âb̂ĉ (τabrc + τbcra − τacrb)

] [
− âb̂ĉ (τabrc + τbcra − τacrb)

(τabrc + τbcra − τacrb)2

]
= −τabgc + τbcga − τacgb

τabrc + τbcra − τacrb
. (3.5)

Substituting this expression for λ in s = g + λr̂, we obtain

s = â

[
τab (garc − gcra) + τac (gbra − garb)

τabrc + τbcra − τacrb

]
+ b̂

[
τab (gbrc − gcrb) + τbc (gbra − garb)

τabrc + τbcra − τacrb

]
+ ĉ

[
τbc (gcra − garc) + τac (gbrc − gcrb)

τabrc + τbcra − τacrb

]
.

(3.6)
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Figure 3: Screen shot (Ref. [5]) of an interactive GeoGebra worksheet that

calculates the vector s, and compares the result to the vector s that was obtained

by construction.

4 Testing the Formulas that We’ve Derived

Fig. 3 shows an interactive GeoGebra worksheet (Reference [5]) that calculates

the vector s, and compares the result to the vector s that was obtained by

construction. The worksheet calculates λ from ê as well as from T, but shows

the numerical calculation only for T because of space limitations.
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5 Appendix: Calculating the Bivector of a Plane

Whose Normal is the Vector ê

As may be inferred from a study of References [3] (p. (56, 63) and [4] (pp.

106-108) , the bivector T that we seek is the one whose dual is ê. That is, Q

must satisfy the condition

ê = QI−1
3 ;

∴ Q = êI3. (5.1)

Although we won’t use that fact

here, I−1
3 is I3’s negative:

I−1
3 = −âb̂ĉ.

where I3 is the right-handed pseudoscalar for G3. That pseudoscalar is the

product, written in right-handed order, of our orthonormal reference frame’s

basis vectors: I3 = âb̂ĉ (and is also b̂ĉâ and ĉâb̂). Therefore, writing Q as

Q = âea + b̂eb + ĉec,

Q = êI3

=
(
âea + b̂eb + ĉec

)
âb̂ĉ

= ââb̂ĉea + b̂âb̂ĉeb + ĉâb̂ĉec

= âb̂ec + b̂ĉea − âĉeb. (5.2)

To make this simplification, we

use the following facts:

• The product of two

perpendicular vectors

(such as â and b̂) is a

bivector;

• Therefore, for any two

perpendicular vectors p

and q, qp = −qp; and

• (Of course) for any unit

vector p̂, p̂p̂ = 1.

In writing that last result, we’ve followed [4]’s convention (p. 82) of using

âb̂, b̂ĉ, and âĉ as our bivector basis. Examining Eq. (5.2) we can see that if we

write Q in the form Q = âb̂qab + b̂ĉqbc + âĉqac , then

qab = ec, qbc = ea, qac = −ec. (5.3)
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