
Brief Solutions to Collatz Problem, Goldbach Conjecture and Twin Primes

I published some solutions[1] a time ago to Goldbach Conjecture, Collatz Problem and Twin Primes;
but I noticed that there were some serious logic voids to explain the problems. After that I made some
corrections in my another article[2]; but still there were some mistakes. Even so, I can say it easily
that here I brought exact solutions for them out by new methods back to the drawing board.
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1 Goldbach Conjecture

The main question about Goldbach Conjecture is pretty
clear that is each even number sum of two prime numbers?

1.1 The solution

Being p is a prime number, for definition of p4 > p3 ∧

p4 − p3 = 2n + 2 ∧ n > 2 ∧ n ∈ Z+; first number group
which is created by n pieces non-prime consecutive positive
odd whole numbers, the smallest odd whole number it has is
p3+2 or p4−2n and the biggest odd number it has is p3+2n or
p4−2, contains greater numbers than last number group which
contains n−1 pieces consecutive non-prime odd numbers and
none of the numbers n group contains, for definition of p2 >
p1 ∧ p2 − p1 = 2(n− 1) + 2 is before n group, and the smallest
odd number it has is p1+2 or p2−2(n−1) and the biggest one it
has is p1 + 2(n−1) or p2 −2. Also n−1 groups which contain
n − 1 pieces non-prime consecutive odd numbers and have
greater numbers than n groups have are possible; but these
groups can never exist until n groups emerge because of the
above stated reasons and definitions; because n groups also
contain 2 pieces (n−1)1 and (n−1)2 consecutive groups which
n − 2 pieces elements of them are common with n groups.

The difference between n − 1 and (n − 1)m is not to be of
prime number there after last number of first group and before
first number of last group of emerging two groups; therefore
when two groups emerged as (n−1)1 and (n−1)2, it means that
n group already had been emerged spontaneously, and is first
n group. Being (n − 1)1 is the first and (n − 1)2 is the second
group, as last element of (n − 1)2 group is always bigger than
all numbers of (n − 1)1, it means (n − 1)1 had already been
emerged before n group. Also as n − 1 group must exist at
the place before (n − 1)1 group, then numbers of n group are
always greater than numbers of n − 1 group for the definition
of n and n − 1 groups. Here all possible n − k groups for
m, k ∈ Z+ definition are unique; but (n − k)m groups which
have common element with another groups are not unique.

Being k = 0, for n − k = n groups, 1 piece of selected n
pieces consecutive odd numbers from 3 to numbers of n + 1
group has to be prime number; so if some tables are made like
table 6 and table 7 in the main appendix section of the article
for each n, they will help about the main question.

When similar tables for the other n groups are made, and
when an addition is done by order between selected n pieces

of the smallest consecutive x number group elements and el-
ements of y groups that each group of y contains n pieces of
consecutive odd numbers, the result will be like in the tables.
Here, the first group of y is the same with x column. The first
and the smallest number of the next y group is greater by 2
than the first and the smallest number of the previous y group.
The sum of b is always an even number as well.

As the first y group is also x group and as also the biggest
number of x group is always 2n + 1, the biggest number of
first b group must always become 2(2n + 1) = 4n + 2. This
number is the first number which starts to be common with
all the other b even numbers which are formed by different x
elements for the same n value in the tables; because it is in the
last emerging line. Each even number after this number can be
formed absolutely as n pieces the number itself is included as
well. As 1 piece of selected consecutive n pieces odd numbers
must be prime number until n + 1 group, minimum 1 piece of
the even numbers which are in each even number group has
n pieces of the same even number must be sum of two prime
numbers.

Here, if also 4n+4 number after 4n+2 number is included,
if all of emerging n pieces of the same 4n + 4 even numbers
are not the numbers of n + 1 group in a table for the same n
value, as all results of 4n + 4 and 4n + 2 form set of even num-
bers greater than 8, then it means each even number which is
greater than 8 absolutely must be sum of two prime numbers.

The equation between a values that first a namely a1
which gives even numbers in the first line for a = [1,∞) over
2a + 4, and an which accepts the first even as 4n + 2 and gives
the numbers of 2a + 4n is (1)

a1 = an + 2n − 2 (1)

Here, result of a1 for an = 1 is also equal to number of
used odd numbers in the first y line to form 4n + 2 number or
is equal to number of used numbers which are different than
each other in the tables for the same n value, outside of using
an to form 2an + 4n namely 4n + 2 number; because it is also
x + y operation number of forming 4n + 2 even number in the
first line; therefore a1 number over (1) for an = 2 is required
to form 4n + 4, and it must be (2)

N = 2n (2)
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1.2 The result

As the result for the above stated information, assume that
4n+2 and 4n+4 numbers cannot be sum of two prime numbers
for each n value. Last n pieces of y consecutive odd numbers
which are required to form 4n + 2 and 4n + 4 numbers for re-
quired n value, must be n group numbers; thus only 2n−n = n
pieces y consecutive odd numbers can be used it means being
3 is the first usable number on the first y line; but already this
means that all numbers except 1 are non-prime consecutive
odd numbers for each n value that is impossible. Even if it
is assumed that, for the worst possibility n and n − 1 groups
emerge together by the same numbers as non-unique groups,
also the information stated above that this assumption is im-
possible. Already if it is impossible even for n group, when it
is assumed that there are another groups,

2n −
n∑

n=2

n (3)

number of used or usable consecutive y odd numbers will de-
crease by (3), and is impossible for n > 1 definition. As and if
we do not know prime separation, for the worst possibility of
number of existent primes in 2n pieces usable consecutive odd
numbers on the first y line, assume that for n, there are con-
secutive n groups until last 2n number; so as unique groups
are between two primes, there must be 2n pieces prime num-
bers. As this 2n is also equal to number of the used numbers
on the first y line that it is not important which numbers of 2n
pieces numbers are prime or not prime here, absolutely mini-
mum 1 piece of each n pieces the same even 4n + 2 numbers
and minimum 1 piece of each n pieces the same even 4n + 4
numbers which emerge in each table separately are absolutely
sum of two prime numbers. Also it means that all even num-
bers greater than 8 are sum of two prime numbers. This is
also proof of infinite number of twin primes.

2 Twin primes

Select any unique number group which has n pieces of
consecutive non-prime odd numbers. This group has to exist
between 2 prime numbers according to the definition stated
at the beginning between prime numbers and group numbers;
because otherwise there will occur a group like n + 1 group
instead of n group that actually infinite number of non-prime
numbers can be consecutive. For example, let us take consec-
utive multiples of 3, 5, 7, 9 and 11 for n = 5 group. Being
a is an odd number, any multiples of odd numbers become
a(2x + 1) for required x; so over (6x1 + 3) + 2 = 10x2 + 5, it
becomes x1 = 5x. Over (6x1 + 3) + 4 = 14x3 + 7, it becomes
x1 = 7x. Over (6x1 + 3) + 6 = 18x4 + 9, it becomes x1 = 9x.
Over (6x1 + 3) + 8 = 22x5 + 11, it becomes x1 = 11x. Re-
sults of 6x1 + 3 which are odd multiples of 3 become 30x + 3,
42x + 3, 54x + 3 and 66x + 3 for the stated x1 values. If also
these are made equal to each other, being (11 · 9 · 7 · 5 · x) = m

and the first number of the group is multiple of 3, consecu-
tive multiples of the group numbers become by order 6m + 3,
6m + 5, 6m + 7, 6m + 9 and 6m + 11. For more consecutive
odd multiples, we can increase the number of used numbers
in a group forever.

I selected n1, n2, n3 and n4 consecutive odd numbers in
n = 4 group like p1n1n2n3n4 p2 being p is prime number. Min-
imum one of these n numbers has to be multiple of 3; because
separation of odd multiples of 3 is according to 6x + 3, and
so there are always 2 consecutive odd numbers between two
consecutive odd multiples of 3. Here, if n2 becomes odd mul-
tiple of 3, then p2 must be the next multiple of 3 that this is
only possible for n = 5. If n3 becomes odd multiple of 3, then
p1 must be the previous multiple of 3 that this is also possible
for n = 5. As it was said, it is possible to form groups have in-
finite number of consecutive non-prime odd number, namely
n = 4 must exist anyway.

If n1 becomes odd multiple of 3, then n4 must be the next
multiple of 3 and also n5 becomes the next multiple of 3 after
n4 as n0 became the previous odd multiple of 3 before n1 over
n0nx p1n1n2n3n4 p2nyn5.

If n4 becomes odd multiple of 3, then n5 becomes the next
multiple, and n0 and n1 become the previous multiples of 3;
thus n1 and n4 are pretty suitable to be odd multiple of 3.

Here, infinite number off odd consecutive n number can
take place after n5; so element number of the next group after
n = 4 is not important; but ny is always prime or not, this
is important. Over ny = n5 − 2 = (6x + 3) − 2, it becomes
ny = 6x+1. Hence, ny never can be only prime number where
x ∈ Z+ ∧ x > 0. It is not prime for required x, and otherwise it
is prime for emerging odd numbers between two ny and ny+1
numbers which are a result of consecutive two x and x + 1
values; so when it becomes ny = p3, it is a twin prime group
between n4 and n5; thus twin primes are in infinite number.

3 Collatz Problem

The main question about the Collatz Problem is also pretty
clear. When a positive whole number is selected, if the num-
ber is an even number then it is divided by 2; otherwise it is
multiplied by 3, and after that 1 is added to the result. When
the same operation with required option of the problem due
to the condition of to be odd or even number of the result is
repeated for the last results, can each positive integer which is
different than 0 and 1 be reduced into 1?

3.1 The solution

If the input number is an even number, and if it is not an
even number as 2n as well for definition of n ∈ Z+ ∧ n > 0;
being pn is process number, when the input number is divided
by pn times 2 or directly by 2pn, each positive even number
absolutely turns into a positive odd number as they can be
defined as (2x+1)·2n for definition of x, n ∈ Z+∧n > 1∧x > 0;
thus we should only work over odd numbers.
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an+1 =
3an + 1

2
(4)

Over (4), it must become an+1 = 2, 5, 8, 11, ...., 3x − 1
where x ∈ Z+ ∧ x > 0 for a limited interval. For the
numbers which make an an odd number, it becomes an+1 =

5, 11, 17, ...., 6x − 1 for a limited interval and the same x defi-
nition. Also it becomes an = 3, 7, 11, 15, ...., 4x − 1 over an+1
odd numbers for the same conditions.

The below is a table over an and an+1 numbers by order
over (4) for a limited interval being E is even and O is odd.

Table 1: an and an+1 numbers

an 3 7 11 15 19 23 ...
an+1 5 11 17 23 29 35 ...
an+2 E O E O E O ...

On the table of 1, for 12x− 7 numbers from an+1 numbers
with the same x definition, it becomes (5).

18x − 10 =
3(12x − 7) + 1

2
(5)

The result of (5) is absolutely even number for each x. For
12x−1 numbers from an+1 numbers with the same x definition,
it becomes (6).

18x − 1 =
3(12x − 1) + 1

2
(6)

The result of (6) is absolutely odd number for each x. Right
this point, the question is this that for (7),

an+2 =
3an+1 + 1

2
(7)

when an+2 becomes an even number and divided by 2pn, does
emerging odd numbers as a result always emerge before an+1
in set of odd numbers due to number order or can it be bigger
number than an+1?

As the answer, if the result of the operation of (7) becomes

even, to realize of to be reduced of the result of
3an+1 + 1

2 · 2pn op-
eration into an odd number which is before an+1, the condition
of (8) always has to be provided.

1 >

3an+1 + 1
2 · 2pn

an+1

(8)

If (8) is edited then as (9),

1 >
1

2pn+1

Å
3 +

1
an+1

ã
(9)

the inequality of (9) always provides this for the definition of
pn > 0 ∧ an+1 > 1 ∧ pn, an+1 ∈ Z

+.
As a result, when an+2 is reduced into an odd number, the

odd number is always before an+1 odd, and is smaller than it.

It means that the odd number as a result of am =
3an+1 + 1

2 · 2pn is

always smaller than an+1 number. Even if
3am + 1

2
becomes

even number, again it can be reduced into a smaller odd num-
ber than both am and an+1, and it is acceptable for the other
repeats as well.

Right this point, a second question emerges that is there
a number which always gets bigger and does not become an
odd number on (4) infinite chain.

As the answer, there is table for the numbers which do
not emerge on table 1. If these numbers are included to the
numbers on table 1 as well, the sum is set off odd numbers.
There will no other odd number which is not included to the
calculations.

Table 2: The numbers which are not in the previous table

5 9 13 17 21 25 29 ... 4x+1

The numbers which are written thick are also in an+1 line
in table 1. The other numbers are the numbers which are not
in table 1.

If some groups are made for 4x + 1 numbers in table 2,
there will only emerge 3 groups for 12x−3, 2x+1 and 12x−7
numbers for the same x definition. Being an+1 = 12x− 3, (10)
always gives even result.

18x − 8 =
3(12x − 3) + 1

2
(10)

Being an+1 = 12x + 1, (11) always gives even number result
as well.

18x + 2 =
3(12x + 1) + 1

2
(11)

As 12x − 7 numbers, they are already the same numbers with
an+1, and at the result of (7) they always give even number
being an+1 = 12x − 7.

As even numbers, they can always be reduced into a
smaller odd number than the odd number which makes them
even number in the operation of (4) as it was proved; thus if
each one of an = 4x−1 numbers do not get greater by turning
into an odd number when (4) is repeated for each n number
where n ∈ Z+, it means all positive whole numbers different
than 0 and 1 can be reduced into 1.

In table 1, 8x− 5 numbers from an numbers turn into an+1
number which gives even result over (7); thus the only chance
is to give odd result always of 8x − 1 numbers over (4) infi-
nite chain. To be realized of this, the same numbers with an

must emerge on an+1 line in table 1. Also always the numbers
which give odd result must emerge on an+1 line between them.
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For the same x condition, 4x−1 and 6x−1 operations give an

and an+1 over (4) for the same x number; so the waited loop
occurs or does not occur,

x1 =
6x2

4
(12)

(12) shows this over the equality of 4x1 − 1 = 6x2 − 1. For
(12), it becomes x1 = 3t and x2 = 2t over t ∈ Z+ ∧ t > 0
condition; so the problem is reduced into the rule of table 3
below.

Table 3: The numbers for each t

2t 2 4 6 8 10 12 ...
3t 3 6 9 12 15 18 ...

Each number on 4x− 1 and 6x− 1 is also order number of
an and an+1 in table 3; thus the number has 3t order number
on an or 2t line and the number has 2t order number on an+1
or 3t line in table 3 are the same numbers.

As the odd numbers on 3t line in table 3 are an+1 numbers
which give even result in table 1, they are elected; thus table
3 turns into table 4.

Table 4: The other numbers for each t

4t 4 8 12 16 20 24 ...
6t 6 12 18 24 130 36 ...

In table 4, to occur of the infinite loop, when a 4t number
is selected, also 6t number which is under it and on 6t line in
table 4 must be even number, and also this 6t number must
take place on 4t line again. This condition has to take place
for one or more than one number to be broken of the Col-
latz’s reducing chain, and then one or more than one number
will not be reduced into 1; but this is impossible; because for

tn+1 =
6tn
4

where t > 0 ∧ t, n ∈ Z+, for each t whole number,

tn+1,t = lim
n−→∞

6tn,t
4

(13)

(13) has to be provided for the condition of (14),

tn,t, tn+1,t ∈ Z
+ (14)

where tn,t = 4t, t is the order number of the number which is
waited of starting the loop from it, and n is the repeat number
of (13) for each t. As this condition of (14), it cannot be
provided for each t. For example, for t1,1 = 4, it becomes
6t1,1 = 4t2,1 and so becomes t2,1 = 6. For t2,1 = 6, it becomes
6t2,1 = 4t3,1 and so becomes t3,1 = 9. For t3,1 = 9, it becomes
6t3,1 = 4t4,1 and so becomes t4,1 = 27/2. As it can be seen,
t4,1 < Z+ and so the condition of (14) cannot be provided.

3.2 The result

(13) cannot continue forever; because wee need a num-
ber which has infinite number of common divisors like 4∞ or
(2x + 1) · 4∞ imaginary numbers. As it can be seen, only we
can increase the repeat number by using a t number like 4m

where m > 0 ∧ m ∈ Z+ that if m gets bigger, then the repeat
will increase; but there is no infinite repeat; hence, any whole
number absolutely can be reduced into 1 by changing opera-
tion numbers of the Collatz’s rule due to the used number.

3.3 Appendix

For the repeats of (4), being 2m is order number of the
selected odd number of an in table 1 where m > 0 ∧ m ∈ Z+,
it gives m + 2 pieces odd number, and then the last one gives
even number on (4) for 2m. Table 5 is a demonstration of this.

Table 5: The other numbers for each t

m an
1 7−→ 11−→ 17
2 15−→ 23−→ 35−→ 53
3 31−→ 47−→ 71−→ 107−→ 161
4 63−→ 95−→ 143−→ 215−→ 323−→ 485
.
.

Also we can use an operation like (15), and we can derive
another operation as well. The below is an example.

a = 7 +

m∑
m=3

2m (15)

Here for (15), m + 1 pieces odd numbers or repeats on (4)
emerges being a = a0 which is first input number on (4). You
can write your own operation as well.
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4 Appendix

Table 6: The table for n=2

x y x + y = b
3 3 5 7 9 11 13 ... 6 8 10 12 ... 2a+4
5 5 7 9 11 13 15 ... 10 12 14 16 ... 2a+8

Table 7: The table for n=3

x y x + y = b
3 3 5 7 9 11 13 ... 6 8 10 12 14 16 ... 2a+4
5 5 7 9 11 13 15 ... 10 12 14 16 18 20 ... 2a+8
7 7 9 11 13 15 17 ... 14 16 18 20 22 24 ... 2a+12
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